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INDEPENDENT TRANSVERSALS VERSUS TRANSVERSALS

K. K. DABROWSKI, M. JOHNSON, G. PAESANI, D. PAULUSMA
and V. ZAMARAEV

Abstract. We compare the minimum size of a vertex cover, feedback vertex set
and odd cycle transversal of a graph with the minimum size of the corresponding
variants in which the transversal must be an independent set. We investigate for
which graphs H the two sizes are equal whenever the graph in question belongs to
the class of H-free graphs. We find complete classifications for vertex cover and
almost complete classifications for feedback vertex set and odd cycle transversal.

1. Introduction

A transversal τ(π) of a graph G is a set of vertices that transverse (intersect) all
subsets of G that have some specific property π. The default aim is to find a
transversal τ(π) that has minimum size, but one may also add further conditions,
such as demanding that the transversal must induce a connected subgraph or
must be an independent set (a set of pairwise non-adjacent vertices). In this
paper we focus on the latter property and consider three classical and well-studied
transversals obtained by specifying π.

Let G = (V,E) be a graph. A set S ⊆ V is a vertex cover if for every edge
uv ∈ E, at least one of u and v is in S, or, equivalently, if the graph G − S
(obtained from G by deleting the vertices in S) contains no edges. We let vc(G)
denote the size of a minimum vertex cover of G. A set S ⊆ V is a feedback vertex
set if for every cycle in G, at least one vertex of the cycle is in S, or, equivalently, if
the graph G− S is a forest. We let fvs(G) denote the size of a minimum feedback
vertex set of G. A cycle is odd if it has an odd number of vertices. A graph is
bipartite if its vertex set can be partitioned into at most two independent sets. A
set S ⊆ V is an odd cycle transversal if for every odd cycle in G, at least one vertex
of the cycle is in S, or, equivalently, if G − S is bipartite. We let oct(G) denote
the size of a minimum odd cycle transversal of G.

Note that under the additional constraint of being an independent set it might
be possible that no such transversal exists. However, for the above three transver-
sals it is straightforward to characterize the graphs that have an independent
transversal. A graph has an independent vertex cover if and only if it is bipartite.
For a bipartite graph G, we let ivc(G) denote the size of a minimum independent
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vertex cover. A graph has an independent feedback vertex set if and only if its
vertex set can be partitioned into an independent set and a set of vertices that
induces a forest. Graphs with this property are said to be near-bipartite. For a
near-bipartite graph G, we let ifvs(G) denote the size of a minimum independent
feedback vertex set. A graph has an independent odd cycle transversal if and only
if its vertex set can be partitioned into at most three independent sets. Graphs
with this property are said to be 3-colourable. For a 3-colourable graph G, we
let ioct(G) denote the size of a minimum independent odd cycle transversal.

As part of a systematic study, we consider monogenic graph classes, which
are classes of graphs defined by a single forbidden induced subgraph H. Such
graphs are also said to be H-free (more generally, a graph is (H1, . . . ,Hp)-free if
it has no induced subgraph isomorphic to Hi for all i ∈ {1, . . . , p}). Monogenic
graph classes fall under the framework of hereditary graph classes, that is, classes
that are closed under vertex deletion. In a previous paper [11] we considered the
following transversal problem for all fixed graphs H: is it true that for every H-free
graph G, the size of a smallest possible independent transversal (if one exists) is
bounded in terms of the minimum size of a transversal? We could also formulate
this by asking: is the price of independence bounded? As in this paper, in [11] we
also considered the transversals vertex cover, feedback vertex set and odd cycle
transversal.

We can formally define the notion of boundedness as follows. Given a class X of
bipartite graphs, we say that X is ivc-bounded if there is a function f : Z≥0 → Z≥0
such that ivc(G) ≤ f(vc(G)) for every G ∈ X . We define the notions of fvs-bounded
(for near-bipartite graphs) and oct-bounded (for 3-colourable graphs) analogously.
We will use the results of [11] on boundedness for H-free graphs in this paper, but
to present these results we first need to introduce some additional terminology.

Let Cn, Pn and Kn denote the cycle, path and complete graph on n vertices,
respectively. For r ≥ 0, let K1,r denote the star on r + 1 vertices (so K1,0 = P1).
For r ≥ 1, let K+

1,r denote the graph obtained from K1,r by subdividing one edge.
The disjoint union G+H of two vertex-disjoint graphs G and H is the graph with
vertex set V (G)∪V (H) and edge set E(G)∪E(H). We denote the disjoint union
of r copies of a graph G by rG. We now present the three results of our previous
paper.

Theorem 1.1 ([11]). Let H be a graph. The class of H-free bipartite graphs
is ivc-bounded if and only if H is an induced subgraph of K1,r + rP1 or K+

1,r for
some r ≥ 1.

Theorem 1.2 ([11]). Let H be a graph. The class of H-free near-bipartite
graphs is ifvs-bounded if and only if H is isomorphic to P1 + P2, a star or an
edgeless graph.

Theorem 1.3 ([11]). Let H be a graph. The class of H-free 3-colourable graphs
is ioct-bounded:
• if H is an induced subgraph of P4 or K1,3 + sP1 for some s ≥ 0 and
• only if H is an induced subgraph of K+

1,4 or K1,4 + sP1 for some s ≥ 0.



INDEPENDENT TRANSVERSALS VERSUS TRANSVERSALS 587

We note that the classification given in Theorem 1.3 is almost complete. In [11]
we proved that there are exactly three non-equivalent open cases. Namely, we do
not know if the class of H-free 3-colourable graphs is ioct-bounded when H = K1,4

(or equivalently K1,4 + sP1 for any s ≥ 1), H = K+
1,3, or H = K+

1,4.

Our New Results. We concentrate on determining those monogenic graph
classes for which the price of independence is zero. Formally, given a class X
of bipartite graphs, we say that X is ivc-identical if ivc(G) = vc(G) for every
G ∈ X . We define the notions of ifvs-identical (for near-bipartite graphs) and
ioct-identical (for 3-colourable graphs) analogously. We prove the following three
classifications, the first one of which is complete.

Theorem 1.4. Let H be a graph. The class of H-free bipartite graphs is ivc-
identical if and only if H is an induced subgraph of K+

1,3 or 2P1 + P3.

Theorem 1.5. Let H 6= K1,3 be a graph. The class of H-free near-bipartite
graphs is ifvs-identical if and only if H is a subgraph of P3.

Theorem 1.6. Let H /∈ {K1,3,K
+
1,3, 2P1 +P3} be a graph. The class of H-free

3-colourable graphs is ioct-identical if and only if H is a subgraph of P4 that is not
isomorphic to 2P2.

Related Work. The term price of independence was first used by Camby [4]
for dominating sets (see also [7]). Work on the price of independence is closely
related to the study of the price of connectivity, in which the relationship between
minimum size transversals and minimum size connected transversals is studied.
Starting with the work of Cardinal and Levy [9], this study has yielded a large
number of results for a variety of transversals and other graph properties, such as
vertex cover [5, 6, 15], dominating set [5, 8], face hitting set [12], feedback vertex
set [2] and more general transversals [13]. In particular, several of these previous
papers [2, 10, 13] also considered classes of H-free graphs.

2. Proofs

Due to space restrictions, we omit the proof of Theorem 1.6.
A matching in a graph G is a set of edges that have no common vertices. A

graph is an almost complete bipartite graph if it can be obtained from a complete
bipartite graph by removing a (possibly empty) set of edges that form a matching.
For the proof of Theorem 1.4 we need the following lemma due to Alekseev.

Lemma 2.1 ([1]). Every connected K+
1,3-free bipartite graph is either a path, a

cycle or an almost complete bipartite graph.

We also need the following lemma for the proof of Theorem 1.4.

Lemma 2.2. Let G be an almost complete bipartite graph. Then ivc(G) =
vc(G).

Proof. Notice that ivc(G) = vc(G) holds if and only if the equality holds for
every connected component of G. Therefore, without loss of generality, we may
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assume that G is connected. Let X,Y be the parts of the bipartition of G, and
let S be a minimum vertex cover of G. We may assume without loss of generality
that |X| ≤ |Y |. If vc(G) ≤ 1, then ivc(G) = vc(G). Therefore we may assume that
|X| ≥ vc(G) ≥ 2. If S is independent or |S| = |X|, then again ivc(G) = vc(G).

Now we assume that S is not independent and |X| > |S|. This implies that
there exist two adjacent vertices x ∈ X ∩ S and y ∈ Y ∩ S, and another vertex
y′ ∈ Y rS. By the structure of G, the vertex y′ is adjacent to all but at most one
vertex of X. Moreover, since y′ 6∈ S, the neighbourhood of y′ is contained in S.
Therefore |X| > |S| ≥ |{y} ∪N(y′)| ≥ 1 + (|X| − 1) = |X|, a contradiction. �

Theorem 1.4 (restated). Let H be a graph. The class of H-free bipartite
graphs is ivc-identical if and only if H is an induced subgraph of K+

1,3 or of 2P1+P3.

Proof. First suppose that H is an induced subgraph of K+
1,3 or of 2P1+P3. We

start with the case where H = K+
1,3. Let G be a K+

1,3-free bipartite graph. We may
assume without loss of generality that G is connected. By Lemma 2.1, G is either
a path, a cycle or an almost complete bipartite graph. For the first two cases it is
readily seen that ivc(G) = vc(G). For the third case we apply Lemma 2.2.

Now suppose H = 2P1 + P3. Let G be a (2P1 + P3)-free bipartite graph with
bipartite classes A and B, and let S be a minimum vertex cover of G. Suppose S
is not an independent set. Then S contains two adjacent vertices x and y, say
x ∈ A and y ∈ B. Let Ix and Iy be the set of neighbours of x and y, respectively,
in G− S. As S has minimum size, Ix and Iy are both nonempty. Moreover, as G
is bipartite, Ix ∩ Iy = ∅. As G is (2P1 +P3)-free, we find that |Ix| ≤ 1 or |Iy| ≤ 1,
say |Ix| ≤ 1. Let Ix = {u}. If |Iy| ≥ 2, we replace S by S′ = (S r {x}) ∪ {u}
to obtain another minimum vertex cover of G. Moreover, u has no neighbours
in S′. In order to see this, let z be a neighbour of u in S′, and let v1, v2 be
two vertices in Iy. As V (G) − S is an independent set, u is not adjacent to v1
and v2. As v1, v2, x, z all belong to A, they are also pairwise non-adjacent. Hence,
the set {v1, v2, x, u, z} induces 2P1 + P3 in G, a contradiction. We conclude that
replacing x by u yields a minimum vertex cover S′ such that G[S′] contains at
least one fewer edge than G[S].

Let now S∗ be a minimum vertex cover such that G[S∗] has as few edges as
possible. If S∗ is independent, then we have proven that ivc(G) = vc(G). Sup-
pose S∗ is not an independent set. Then S∗ contains two adjacent vertices x∗
and y∗, say x∗ ∈ A and y∗ ∈ B. By the choice of S∗ and the above discus-
sion, we conclude that each of x∗ and y∗ has exactly one (private) neighbour
in G − S∗. Since G is (2P1 + P3)-free, this means that G − S∗ has at most
three vertices. The latter implies that at least one of |A r S∗| and |B r S∗|,
say |A r S∗|, has at most one vertex. But now, since |B ∩ S∗| ≥ 1, we have
ivc(G) ≥ vc(G) = |S∗| = |A∩S∗|+ |B ∩S∗| ≥ |A∩S∗|+ |ArS∗| = |A| ≥ ivc(G),
and hence ivc(G) = vc(G).

Now suppose that H is not an induced subgraph of K+
1,3 or of 2P1 + P3. By

Theorem 1.1 we need only consider the case where H is an induced subgraph of
K1,r + rP1 or K+

1,r for some r ≥ 1. Hence, H contains an induced subgraph from
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the set {K1,4,K1,3+P1, 3P1+P2, 5P1}. LetG be the double star with two leaves for
each central vertex, that is, G is the tree on vertices x, y, u1, u2, v1, v2 and edges xy,
u1x, u2x, v1y, v2y. We note that G is bipartite and (K1,4,K1,3+P1, 3P1+P2, 5P1)-
free and thus H-free, while vc(G) = 2 and ivc(G) = 3. This completes the proof.

�

To prove Theorem 1.5 we will need the following lemma from [11].

Lemma 2.3 ([11]). If G is a (P1+P2)-free near-bipartite graph, then ifvs(G) =
fvs(G).

Theorem 1.5 (restated). Let H 6= K1,3 be a graph. The class of H-free
near-bipartite graphs is ifvs-identical if and only if H is a subgraph of P3.

Proof. First suppose that H is a subgraph of P3. If H = P1+P2, then ifvs(G) =
fvs(G) for every H-free near-bipartite graph G by Lemma 2.3. If H = P3, then
every H-free near-bipartite graph G is a disjoint union of complete graphs on
at most three vertices, and hence ifvs(G) = fvs(G) holds. Finally suppose that
H = 3P1. LetG be a 3P1-free near-bipartite graph. AsG is 3P1-free, any minimum
independent feedback vertex set of G has size at most 2. Hence, any minimum
feedback vertex set of G also has size at most 2. Moreover, if it has size 1, then it
is an independent feedback vertex set. We conclude that ifvs(G) = fvs(G).

Now suppose that H is not a subgraph of P3. Recall that we assume that
H 6= K1,3. By Theorem 1.2 we may then assume that H = K1,r for some r ≥ 4 or
H = sP1 for some s ≥ 4. Consider the graph G in Figure 1. It is straightforward
to check that G is 4P1-free and near-bipartite; {u, v} is a minimum feedback
vertex set (indeed G − {u, v} is P5) while ifvs(G) = 3 (for instance, {u, u1, u2} is
a minimum independent feedback vertex set of G). This completes the proof. �

v

u

u1

u2

Figure 1. An example of a 4P1-free near-bipartite graph G with ifvs(G) = fvs(G) + 1.

3. Conclusions

We fully classified for which graphs H the class of H-free graphs is ivc-identical.
We did the same for the notions of being ifvs-identical and being ioct-identical,
only here a few cases remain open. We pose these as open problems.
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Open Problem 3.1. Does there exist a K1,3-free near-bipartite graph G with
ifvs(G) > fvs(G)?

Open Problem 3.2. ForH ∈ {K1,3,K
+
1,3, 2P1+P3}, does there exist anH-free

3-colourable graph G with ioct(G) > oct(G)?

We note that the classes of K1,3-free near-bipartite graphs and K1,3-free 3-
colourable graphs are ifvs-bounded and ioct-bounded by Theorems 1.2 and 1.3,
respectively. However, it is also still open if the class of K+

1,3-free 3-colourable
graphs is ioct-bounded.

We also note that the classes of K1,3-free near-bipartite graphs and K1,3-free 3-
colourable graphs are NP-complete to recognize. This follows from the results that
the problems of deciding near-bipartiteness [3] and deciding 3-colourability [14]
are NP-complete for line graphs, which form a subclass of K1,3-free graphs.
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