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NEARLY ORTHOGONAL VECTORS

AND SMALL ANTIPODAL SPHERICAL CODES

B. BUKH and C. COX

Abstract. How can d + k vectors in Rd be arranged so that they are as close

to orthogonal as possible? In particular, define θ(d, k) := minX maxx 6=y∈X |〈x, y〉|
where the minimum is taken over all collections of d + k unit vectors X ⊆ Rd. In

this work, we focus on the case where k is fixed and d→∞. In establishing bounds

on θ(d, k), we find an intimate connection to the existence of systems of
(k+1

2

)
equiangular lines in Rk. Using this connection, we are able to pin down θ(d, k)
whenever k ∈ {1, 2, 3, 7, 23} and establish asymptotics for general k. The main tool

is an upper bound on Ex,y∼µ |〈x, y〉| whenever µ is an isotropic probability mass

on Rk, which may be of independent interest. Our results translate naturally to
the analogous question in Cd. In this case, the question relates to the existence

of systems of k2 equiangular lines in Ck, also known as SIC-POVM in physics

literature.

How can a given number of points be arranged on a sphere in Rd so that
they are as far from each other as possible? This is a basic problem in coding
theory; for example, the book [5] is devoted to this problem exclusively. Such
point arrangements are called spherical codes. Most constructions of spherical
codes are symmetric. Here we consider the antipodal codes, in which the points
come in pairs x,−x. In other words, we seek arrangements of d + k unit vectors
in Rd so that they are as close to orthogonal as possible. An alternative point of
view is that these are codes in the projective space RPd−1; for example, see [2].
We focus on the case when k is small.

As we will see, this question relates to the problem of the existence of large fam-
ilies of equiangular lines in Rk. Similarly, the analogous question for unit vectors
in Cd relates to equiangular lines in Ck, which are the mathematical underpinning
of symmetric informationally complete measurements in quantum theory [9]. Be-
cause of this, we elect to treat the real and complex cases in parallel. Henceforth,
we denote by H the underlying field, which can be either R or C.

For H ∈ {R,C}, define the parameter

θH(d, k) := min
X

max
x 6=y∈X

|〈x, y〉|,

where the minimum is taken over all collections of d+ k unit vectors X ⊆ Hd. In
this paper, we prove bounds on θH(d, k) when k is fixed and d→∞.
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For a collection of vectors X = {x1, . . . , xn} ⊆ Hd, the Gram matrix is the
matrix A ∈ Hn×n where Aij = 〈xi, xj〉. It will be easier to work with the Gram
matrices than with the vectors themselves.

For a matrix A ∈ Hn×n, define off(A) := maxi 6=j |Aij |. By considering Gram
matrices, one can equivalently define θH(d, k) = minA off(A) where the minimum
is taken over all A ∈ H(d+k)×(d+k) with rk(A) = d where Aii = 1 for every i and
A is Hermitian and positive semidefinite. Our techniques are not specialized to
Hermitian, positive semidefinite matrices, so we also define

offH(d, k) := min
A

off(A),

where the minimum is taken over all A ∈ H(d+k)×(d+k) with rk(A) = d and Aii = 1
for every i. Note that offH(d, k) ≤ θH(d, k).

We show that there is an intimate connection between determining these pa-
rameters and the existence of large systems of equiangular lines in Hk.

Definition 1. A system of equiangular lines in Hk is a collection of unit vectors
X ⊆ Hk so that there is some β ∈ R where |〈x, y〉| = β for all x 6= y ∈ X.

It is known that if X ⊆ Rk is a system of equiangular lines, then |X| ≤
(
k+1
2

)
and if X ⊆ Ck is a system of equiangular lines, then |X| ≤ k2.

The main results of this paper are as follows:

Theorem 2.
1. For positive integers d, k,

offR(d, k) ≥ 1

αk(d+ k)− 1
,

where αk = (k−1)
√
k+2+2

k(k+1) . If equality holds, then there exists a system of(
k+1
2

)
equiangular lines over Rk and d ≡ −k (mod

(
k+1
2

)
).

2. For positive integers d, k,

offC(d, k) ≥ 1

α∗k(d+ k)− 1
,

where α∗k = (k−1)
√
k+1+1

k2 . If equality holds, then there exists a system of k2

equiangular lines over Ck and d ≡ −k (mod k2).

This is an improvement over the classical Welch bound [10] when k ≤ O(d1/2).
It is a quantitative improvement of a result of Cohn–Kumar–Minton [2, Corol-
lary 2.13] which asserts that Welch bound is not sharp for k ≤ O(d1/2), without
providing a better bound.

A computer-assisted proof of the case (d, k) = (4, 2) of Theorem 2 was recently
given by Fickus–Jasper–Mixon [6].

We show also that equality in Theorem 2 does, in fact, hold under the stated
conditions.
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Theorem 3.
1. If there is a system of

(
k+1
2

)
equiangular lines in Rk and

d ≡ −k (mod
(
k+1
2

)
), then

offR(d, k) = θR(d, k) =
1

αk(d+ k)− 1
,

where αk = (k−1)
√
k+2+2

k(k+1) .

2. If there is a system of k2 equiangular lines in Ck and d ≡ −k (mod k2),
then

offC(d, k) = θC(d, k) =
1

α∗k(d+ k)− 1
,

where α∗k = (k−1)
√
k+1+1

k2 .

The usual way of proving bounds on codes is to use linear programming. In the
context of spherical codes, the relevant linear program first appeared in the work
of Delsarte, Goethals and Seidel [3]. See [5, Chapter 2] for the general exposition,
and [1] for the case of few vectors.

In contrast, we establish Theorem 2 by relating the problem to that of bounding
the first moment of isotropic measures.

Definition 4. For H ∈ {R,C}, a probability mass µ on Hk is called isotropic if
Ex∼µ |〈x, v〉|2 = 1

k‖v‖
2 for every v ∈ Hk. Equivalently, µ is isotropic if Ex∼µ xx∗ =

1
k Ik. Such a probability mass is also called a probabilistic tight frame with frame
constant 1/k (see [4] for a survey).

We show the following:

Lemma 5.

1. If µ is an isotropic probability mass on Rk, then

Ex,y∼µ |〈x, y〉| ≤
(k − 1)

√
k + 2 + 2

k(k + 1)
,

with equality if and only if there exists X ⊆ Rk, a system of
(
k+1
2

)
equian-

gular lines, and µ satisfies µ(x) + µ(−x) = 1/
(
k+1
2

)
for every x ∈ X.

2. If µ is an isotropic probability mass on Ck, then

Ex,y∼µ |〈x, y〉| ≤
(k − 1)

√
k + 1 + 1

k2
,

with equality if and only if there exists X ⊆ Ck, a system of k2 equiangular
lines, and µ satisfies µ(x) + µ(−x) = 1/k2 for every x ∈ X.

As there are systems of
(
k+1
2

)
equiangular lines over Rk whenever

k ∈ {1, 2, 3, 7, 23}, we can give tight answers for infinitely many d in these cases.
See [7, 8, 11] for the known bounds of the size of the largest system of equiangular
lines in Rk.

Even in the cases not covered by Theorem 3, we still show that Theorem 2 is
asymptotically tight.
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Theorem 6. Let H ∈ {R,C}. For every ε > 0, there is an integer k0 so that
for any fixed k ≥ k0,

θH(d, k) ≤
(
1 + o(1)

) (1 + ε)
√
k

d
,

where o(1)→ 0 as d→∞.
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1. Astola J. T., The Tietäväinen bound for spherical codes, Discrete Appl. Math. 7 (1984),
17–21.

2. Cohn H., Kumar A. and Minton G., Optimal simplices and codes in projective spaces, Geom.

Topol. 20 (2016), 1289–1357.
3. Delsarte P., Goethals J. M. and Seidel J. J., Spherical codes and designs, Geom. Dedicata

6 (1977), 363–388.

4. Ehler M. and Okoudjou K., Probabilistic Frames: An Overview, Finite Frames, Birk-
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