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DEGREE CONDITIONS FORCING ORIENTED CYCLES

R. GLEBOV, A. GRZESIK and J. VOLEC

Abstract. The longstanding Caccetta-Häggkvist Conjecture is asking for the min-

imum outdegree (or semidegree) in an oriented graph that forces the appearance of

a directed cycle of a bounded length. Motivated by this, Kelly, Kühn and Osthus
made a conjecture on the minimal semidegree forcing the appearance of a directed

cycle of a given length, and proved it for cycles of length not divisible by 3. Here

we prove all the remaining cases of their conjecture with the optimal semidegree
threshold.

1. Introduction

One of the most famous conjectures in graph theory is the following conjecture
stated more than 40 years ago by Caccetta and Häggkvist [4].

Conjecture 1 (Caccetta-Häggkvist). Every n-vertex oriented graph G with
minimum outdegree δ+(G) ≥ n

` contains an oriented cycle of length at most `.

Here, by an oriented graph we understand a directed graph without loops and
multiple edges, i.e., an orientation of a simple graph. The conjecture was proved for
many large values of ` [4, 8, 10, 19], with additive error term in the bound for the
cycle length [5, 15, 20], with multiplicative error term in the outdegree assumption
[3, 4, 7, 9, 14, 18], or with additional assumption on forbidden subgraphs [6, 17].
For more results and problems related to the Caccetta-Häggkvist Conjecture see a
summary [21]. The weaker conjecture with assumption on the minimal semidegree
(minimum of outdegrees and indegrees over all vertices) is also open and generalizes
a conjecture of Behzad, Chartrand and Wall [2] from 1970.

Motivated by the above conjecture, Kelly, Kühn and Osthus [12] made the
following conjecture.

Conjecture 2 (Kelly-Kühn-Osthus). For any ` ≥ 4 every big enough n-vertex
oriented graph G with δ±(G) ≥ n

k + 1
k contains an oriented cycle of length exactly `,

where k is the smallest integer greater than 2 that does not divide `.
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Kelly, Kühn and Osthus [12] proved it for k = 3, which means for ` not divisible
by 3, and also showed the asymptotic version of the conjecture for k = 4 with
` ≥ 42 and for k = 5 with ` ≥ 2550. Additionally, they proved that a bound of
n/3 + 1 suffices to force a cycle of length ` for any ` ≥ 4.

Later, Kühn, Osthus and Piguet [13] proved an asymptotic version of the con-
jecture for ` big enough, i.e., that for any ` ≥ 107k6 and ε ≥ 0, every big enough
oriented graph G with δ±(G) > n

k (1 + ε) contains a cycle of length `.

2. Main results

We present constructions showing that in general the conjectured threshold is not
correct, and we prove the optimal threshold for each ` ≥ 4.

Theorem 3. For any ` ≥ 4 every big enough n-vertex oriented graph G with
semidegree δ±(G) ≥ n

k + k−1
2k contains a directed cycle of length `, where k is the

smallest integer greater than 2 that does not divide `.

Moreover, if ` 6≡ 3 (mod 12), then this is the best possible threshold. If ` ≡ 3
(mod 12), then δ±(G) ≥ n

4 + 1
4 is already forcing an `-cycle and this is the best

possible threshold.
The proof for the case k = 4 is different than the proof for larger values of k.

In particular, for k ≥ 5 one can prove the following stability version, which is not
true for k = 4.

Theorem 4. For ` ≥ 4 let k being the smallest integer greater than 2 that does
not divide `. If k ≥ 5, then any oriented graph H with δ±(H) ≥ n

k

(
1− 1

30k

)
that

does not contain a closed walk of length `, is a subgraph of a blow-up of k-cycle.

3. Constructions

We show that the semidegree threshold in Theorem 3 is optimal separately for odd
and even values of k.

For odd k, we need to present an n-vertex graph G without `-cycle having
semidegree δ±(G) = n

k + k−3
2k . To construct such a graph, we start with a balanced

blow-up of a k-cycle on n+ (k− 3)/2 vertices. This way we have good semidegree
and no `-cycle. Now, we need to remove (k − 3)/2 vertices, without changing the
semidegree and avoiding creating an `-cycle. In order to do this we use (k − 3)/2
times one of the maneuvers described on Figure 1. For ` < k/2 we use (k−1)/2−`
times the first maneuver and `−1 times the second maneuver. While for ` > k/2 we
use k−1−` times the first maneuver and `−(k+1)/2 times the second maneuver.
In both cases, we cannot create cycles of lengths congruent to ` (mod k).

When k is an even number then we need to present an n-vertex graph G without
`-cycle having semidegree δ±(G) = n

k + k−2
2k . Similarly as before, to construct such

a graph, we start with a balanced blow-up of a k-cycle on n + (k − 2)/2 vertices
and we need to remove (k − 2)/2 vertices without changing the semidegree and
avoiding creating an `-cycle.
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Figure 1. Maneuvers used for the constructions for odd k. By adding edges to arbitrarily chosen
two vertices in the bottommost blobs, one can remove a vertex in the topmost blob.

If ` ≡ k/2 (mod k), which covers all the considered cases except k = 4 and ` 6≡ 2
(mod 4), then we can use (k − 2)/2 times the maneuver described on Figure 2.

. . .

Figure 2. Maneuver used for the constructions for even k. By adding the middle vertex and
incident edges, one can remove a vertex in each topmost blob.

In the case k = 4 and ` ≡ 3 (mod 4), the optimal construction for Theorem 3 is
just a blow-up of a 4-cycle. In the case k = 4 and ` ≡ 1 (mod 4), one can consider
a blow-up of a 4-cycle with all diagonal edges to a single vertex in one blob, and
all diagonal edges from a single vertex in a non-adjacent blob.

4. Overview of the proofs

In order to prove Theorem 4, we firstly obtain that such a graph has bounded
directed diameter by providing bounds on the sizes of neighborhoods. This can be
achieved by proving the Caccetta-Häggkvist Conjecture with multiplicative error
term in the outdegree assumption, using similar ideas as in [20]. Then we show
using Frobenius coin problem that such a graph cannot contain short cycles with
one edge reversed. This is enough to define the wanted blobs and prove the theorem
by analysis of the graph structure.

To prove Theorem 3 for k ≥ 5, we use the regularity lemma for oriented graphs
by Alon and Shapira [1] and Theorem 4, to obtain a structure of the graph G with
some small fraction of additional edges and vertices. Then, by application of some
results on additive combinatorics, we prove that the assumed semidegree threshold
gives enough many additional edges and vertices to construct the wanted cycle of
length `.

The case of k = 4 requires a different approach. In particular, notice that for
` = 6 one blob of a 4-cycle blow-up can contain arbitrary one-way oriented bipartite
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graph. Also, for any odd `, one can reverse edges of any 4-cycle contained in a
blow-up of a 4-cycle keeping the semidegree assumption and avoiding cycles of odd
lengths.

Our proof of the main theorem for k = 4 needs directed diameter bound, that
cannot be obtained in the same way as for k ≥ 5. To achieve this, we use the
method of flag algebras created by Razborov [16]. The proofs, especially in the
cases of ` = 6 and ` = 9, need also more detailed analysis, because the small length
of the wanted cycle can cause complications in combining some partial structures
to obtain the cycle of length `.
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