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DUSHNIK-MILLER DIMENSION

OF STAIR CONTACT COMPLEXES

L. ISENMANN and D. GONÇALVES

Abstract. The theorem of Schnyder asserts that a graph is planar if and only if
the Dushnik-Miller dimension of its poset of incidence is at most 3. Trotter aksed

how this can be generalized to higher dimensions. Towards this goal, Dushnik-

Miller dimension has been studied in terms of TD-Delaunay complexes, in terms
of orthogonal surfaces, and in terms of polytopes. Here we consider the relation

between the Dushnik-Miller dimension and contact systems of stairs in Rd. We
propose two different definitions of stairs in Rd which are connected to the Dushnik-

Miller dimension as follows. The first definition allows us to characterize supremum

sections, which are simplicial complexes related to the Dushnik-Miller dimension, in
two different ways. The second definition provides for any Dushnik-Miller dimension

at most d + 1 complex a representation as a contact system of stairs in Rd.

1. Intoduction

The Dushnik-Miller dimension (also known as the order dimension) of a poset P
has been introduced by Dushnik and Miller [3]. It is the minimum number of
linear extensions of P such that P is the intersection of these extensions. See
[16] for a comprehensive study of this topic. Schnyder [15] studied the Dushnik-
Miller dimension of the incidence posets of graphs which captures the fact that a
vertex is incident to some edges. Some classes of graphs can be characterized by
their Dushnik-Miller dimension which we define as the Dushnik-Miller dimension
of their incidence poset. For example, path forests are the graphs of Dushnik-
Miller dimension at most 2. Schnyder [15] obtained a celebrated combinatorial
characterization of planar graphs: they are those of Dushnik-Miller dimension at
most 3. The question of characterizing classes of graphs of larger dimension is
open [16]. Nevertheless there are some partial results. Ossona de Mendez [13]
(see also [1]) showed that every simplicial complex of Dushnik-Miller dimension
d has a straight line embedding in Rd−1 which generalizes the result of Schnyder
in a way. The reciprocal is false by considering Kn which has a straight line
embedding in R3 while its Dushnik-Miller dimension is Θ(log log n) [11]. The
class of graphs of Dushnik-Miller dimension at most 4 is rather rich. Extremal
questions in this class of graphs have been studied: Felsner and Trotter [8] showed

Received June 7, 2019.
2010 Mathematics Subject Classification. Primary 06A06; Secondary 05C62.
This research is partially supported by the ANR GATO, under contract ANR-16-CE40-0009.



828 L. ISENMANN and D. GONÇALVES

that these graphs can have a quadratic number of edges. Furthermore, in order
to solve a question about conflict free coloring [5], Chen et al. [2] showed that
many graphs of Dushnik-Miller dimension 4 only have independent sets of size at
most o(n). This result also implies that there is no constant k such that every
graph of Dushnik-Miller dimension at most 4 is k-colorable. Therefore, graphs of
Dushnik-Miller dimension at most 4 seem difficult to characterize. Nevertheless, it
was conjectured in [12] (see also [4]) that the class of Dushnik-Miller dimension d
complexes is the class of TD-Delaunay complexes. But this conjecture is false [9].
Following the work of Scarf [14], Felsner and Kappes [7], considered the notion of
Dushnik-Miller dimension through the lens of orthogonal surfaces.

In [10], the authors studied contact graphs of shapes similar to thick x’s in the
plane. They proved that every triangle free or 4-connected planar graph can be
obtained as contact graphs of thick x’s. Thick x’s can be seen as particular stairs
where there is only one bend. Allowing more general stairs one obtains all planar
graphs as contact graphs. We consider two ways to define stairs in R2. The first
one consists in taking the union of rectangles which have the same bottom left
corner. The second one consists in taking a positive quadrant and removing other
positive quadrants. This two definitions are equivalent and can be generalized to
higher dimensions as we will see: the first one leads to the notion of stairs and the
second one to truncated stairs.

Motivated by Trotter’s question, this observation leads us to introduce in this
work the notion of stairs and of truncated stairs in Rd which can be seen as the
generalization of thick x’s in the plane. We study the link between contact com-
plexes of stairs in Rd and the Dushnik-Miller dimension. In the second section, we
prove that supremum sections are in bijection with contact complexes of truncated
stairs defined from an ordered point set. In the third section, we prove that supre-
mum sections are in bijection with contact complexes of truncated stairs which
have the property to be in some sense stable under the operation consisting in
removing vertices. In the fourth section, we prove that any simplicial complexes
of Dushnik-Miller dimension d + 1 can be represented as the contact complex of
stairs in Rd.

2. Truncated stair contact complexes

In the following, V is a finite set. We denote by Subsets(V ) the set of subsets of V .
An (abstract) simplicial complex ∆ is a subset of Subsets(V ) closed by inclusion
(i.e., ∀X ∈ ∆,∀Y ⊆ X,Y ∈ ∆). We call faces the elements of ∆ and facets the
maximal faces of ∆ according to the inclusion order.

Definition 2.1 (Ossona de Mendez [13]). Given a linear order ≤ on a set V ,
an element x ∈ V , and a set F ⊆ V , we say that x dominates F in ≤, and we
denote it F ≤ x, if f ≤ x for every f ∈ F . A d-representation R on a set V is
a set of d linear orders ≤1, . . . ,≤d on V . Given a d-representation R, an element
x ∈ V , and a set F ⊆ V , we say that x dominates F in R if x dominates F in
some order ≤i∈ R. We define Σ(R) as the set of subsets F of V such that every
v ∈ V dominates F in R. The set Σ(R) is called the supremum section of R.
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The Dushnik-Miller dimension of a simplicial complex is defined as the Dushnik-
Miller dimension of its inclusion poset. Ossona de Mendez [13] proved that a
simplicial complex ∆ is of Dushnik-Miller dimension at most d if and only if there
exists a d-representation R on its vertex set V such that ∆ ⊆ Σ(R). It is easy to
show that if R is a d-representation on a set V , then Σ(R) is a simplicial complex.
An example is the following 3-representation on {a, b, c, d, e}:

a <1 b <1 e <1 d <1 c

c <2 b <2 a <2 d <2 e

e <3 d <3 c <3 b <3 a

The corresponding complex Σ(R) is characterized by its facets {a, b}, {b, c, d}, and
{b, d, e}. For example {a, b, c} is not in Σ(R) as b does not dominate {a, b, c} in
any order.

For any finite set F of points in Rd, we define the point pF ∈ Rd as follows:
pFi = maxx∈F xi for every i ∈ [[1, d]]. Let p ∈ Rd, we define Ip = {z ∈ Rd :

pi ≤ zi ∀i ∈ [[1, d]]} and I̊p = {z ∈ Rd : pi < zi ∀i ∈ [[1, d]]}. In other words, Ip
denotes the (closed) positive orthant of Rd whose corner is p and I̊p denotes its
open version. Given a subset A of Rd, Ac denotes the complementary of A in Rd.
Given a set of points P of Rd, we say that P is in general position if no two points
of P share the same coordinate for any direction. In the rest of this article, points
will always be in general position.

Definition 2.2. A truncated stair system S is given by a set P of points of Rd

and a function F : P → Subsets(P). Let x ∈ P, we define the (closed) truncated

stair S(x,P,F) and the open truncated stair S̊(x,P,F) of x according to the
truncated stair system S = (P,F) by

S(x,P,F) = Ix
⋂

z∈F(x)

(I̊z)c S̊(x,P,F) = I̊x
⋂

z∈F(x)

(Iz)c

When there is no confusion possible, we would write S(x) instead of S(x,P,F).

Remark furthermore that S(x,P,F) is closed and that S̊(x,P,F) is open for every
x ∈ P.

We say that a truncated stair system S = (P,F) is a truncated stair packing if

for every pair (x, y) of distinct elements of P, S̊(x,P,F)
⋂
S̊(y,P,F) = ∅. Given

a truncated stair packing S, we define the contact complex ∆(S) of S as the
abstract simplicial complex on the vertex set P where F ⊆ P is a face of ∆(S)
if
⋂

x∈F S(x,P,F) 6= ∅. We say that a truncated stair packing S = (P,F) is a
truncated stair tiling if for every x ∈ P, Ix ⊆

⋃
y∈P S(y,P,F).

A truncated stair packing can be seen as an arrangement of non-overlapping
truncated stairs. An example is given in Figure 1.

Lemma 2.3. If F ∈ ∆(P,F), then pF ∈
⋂

x∈F S(x,P,F).

Due to lack of space, complete proofs are not provided in this extended abstract.
According to the previous lemma, we have a different characterization of faces

of ∆(P,F). Indeed F ∈ ∆(P,F) if and only if pF ∈
⋂

x∈F S(x,P,F).
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Figure 1. An example of a truncated stair packing. An arc from y to x

means that y ∈ F(x).

Definition 2.4. Let P be a set of points of Rd and ≤ a linear order on P. We
define the function F≤ : P → Subsets(P) by F≤(x) = {z ∈ P : z < x}. We define
the ordered truncated stair system (P,≤) as the truncated stair system (P,F≤).
We say that a truncated stair system S = (P,F) is an ordered truncated stair
system if there exists an order ≤ on P such that S = (P,≤).

Remark that ordered truncated stair systems are particular cases of truncated
stair systems. These kind of truncated stair systems have good property and we
will see that they are connected to supremum sections.

Lemma 2.5. Any ordered truncated stair system is a truncated stair tiling.

3. Dushnik-Miller dimension of ordered truncated stair systems

Lemma 3.1. Let P be a set of points of Rd and let R = (≤1, . . . ,≤d+1) be
a (d + 1)-representation on P. If for every p and q ∈ P and every i ∈ [[1, d]],
pi ≤ qi ⇐⇒ p ≤i q, then Σ(R) = ∆(P,≤d+1).

Proof. Let F ∈ Σ(R). We define the point p as pF . Let us check that pF ∈⋂
x∈F S(x). Let x ∈ F . As xi ≤ maxu∈F ui = pFi for every i, then pF ∈ Ix.

Let z ∈ P such that z <d+1 x. Suppose by contradiction that pF 6∈ (I̊z)c. Then

pF ∈ I̊z and zi < pFi = maxu∈F ui for all i ∈ [[1, d]]. Thus for every i, there exists
u ∈ F such that z <i u. As z <d+1 x, we conclude that z does not dominate F in

R which contradicts the fact that F ∈ Σ(R). Therefore pF ∈ (I̊z)c and pF ∈ S(x).
We conclude that

⋂
x∈F S(x) is not empty and thus F ∈ ∆(P,≤d+1).

Consider a set F ⊆ P such that
⋂

x∈F S(x) is not empty and p ∈
⋂

x∈F S(x).
Towards a contradiction, consider a point z that does no dominate F in R. There
exists x ∈ F such that z <d+1 x. As p ∈ S(x) and z <d+1 x, then p ∈ (I̊z)c. Then
there exists i ∈ [[1, d]] such that zi ≥ pi. For every y ∈ F , p ∈ Iy and thus pi ≥ yi.
We conclude that zi ≥ maxu∈F ui. Thus z ≥i u for every u ∈ F and z dominates
F in the order ≤i, a contradiction. We conclude that F ∈ Σ(R). �

With the help of Lemma 3.1, we prove the following theorem.



DUSHNIK-MILLER DIMENSION OF STAIR CONTACT COMPLEXES 831

Theorem 3.2. Let ∆ be a complex on a vertex set V . Then ∆ is the contact
complex of an ordered truncated stair system of Rd if only if there exists a (d+ 1)-
representation R on V such that ∆ = Σ(R).

4. Dushnik-Miller dimension of truncated stair tilings

The work done for ordered truncated stair tilings allows us to study truncated stair
tilings. Nevertheless, the characterization proven here needs another property,
called removal property.

Definition 4.1. Let (P,F) be a truncated stair system. The truncated stair
system (P r {x},F ′) obtained after the removal of an element x of P is defined
as follows:

F ′(y) =

{
F(y)

⋃
F(y) r {x} if x ∈ F(y)

F(y) otherwise

We say that the truncated stair tiling (P,F) has the removal property if any
truncated stair system obtained after a sequence of removal is still a truncated
stair tiling.

Lemma 4.2. Let P be a set of points of Rd and ≤ be a linear order on P.
Then the truncated stair system (P,≤) = (P,F≤) has the removal property.

Lemma 4.3. Let (P,F) be a truncated stair tiling which has the removal prop-
erty. Then there exists a partial order ≤ on P such that ∆(P,F) = ∆(P,≤).

Sketch of proof. We define a binary relation ≤ on P defined by x ≤ y if and
only if x ∈ F(y). Let us show that this relation is acyclic. Suppose that there
exists a cycle C in this relation. We define (C,F ′) the truncated stair system
obtained after the removal of elements not in C. By the removal property of
(P,F), the truncated stair tiling (C,F ′) is a truncated stair tiling. Consider the
point p = (p1, . . . , pd) ∈ Rd defined by: pi = 1 + maxu∈C ui for every i ∈ [[1, d]].
As (C,F ′) is a truncated stair tiling and as p ∈ Ix for every x ∈ C, then there
exists x ∈ C such that p ∈ S(x,P,F ′). As C is a cycle, there exists y ∈ C such

that y ∈ F ′(x). Thus p ∈ (I̊y)c: there exists i ∈ [[1, d]] such that pi ≤ yi. This
contradicts the definition of p. We conclude that the relation ≤ is acyclic.

By considering any transitive closure ≤′ of ≤, we show that S(y,P,F) =
S(y,P,≤′) for every y ∈ P. �

The removal property is important in this proof as there exists truncated stair
tilings which have not the removal property. It is for instance the case of the
following truncated stair system: x = (3, 0, 1), y = (1, 3, 0), z = (0, 1, 3) and
w = (2, 2, 2) where the function F is defined by F(x) = {y, w}, F(y) = {z, w},
F(z) = {x,w} and F(w) = ∅.

Thanks to Lemma 4.2, Lemma 2.5 and Theorem 3.2, we can prove the following
theorem.
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Theorem 4.4. Let ∆ be a complex on a vertex set V . Then ∆ is the contact
complex of a truncated stair tiling of Rd which has the removal property if only if
there exists a (d + 1)-representation R on V such that ∆ = Σ(R).

5. Dushnik-Miller dimension and stair systems

We introduce here a variant of the definition of stair systems. This one is more
geometrical as it does not need an order or a function like in the previous defini-
tions.

Let y ∈ Rd, we define the negative orthant Jy and the open negative orthant

J̊y which are subsets of Rd as follows Jy = {u ∈ Rd : ui ≤ yi ∀i ∈ [[1, d]]} and

J̊y = {u ∈ Rd : ui < yi ∀i ∈ [[1, d]]}.

Definition 5.1. A stair sytem S is given by a set P of points of Rd and a
function C : P → Subsets(Rd) such that C(x) is finite for every x ∈ P. Let x ∈ P,

we define the (closed) stair R(x,P, C) and the open stair R̊(x,P, C) of x according
to the stair system S = (P, C) by

R(x,P, C) =
⋃

y∈C(x)

Ix
⋂

Jy R̊(x,P, C) =
⋃

y∈C(x)

I̊x
⋂

J̊y

We say that (P, C) is a stair packing if the sets R̊(x,P, C) are disjoint.

When there will be no confusion possible, we would write R(x) instead of
R(x,P, C). An example of a stair packing is given in Figure 2.

x

y

z

Figure 2. An example of a stair packing.

Definition 5.2. Let (P, C) be a stair packing. We define the contact complex
of P, denoted ∆(P, C) as follows: a subset F of P is a face of ∆(P, C) if and only
if
⋂

x∈F R(x) is not empty.
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Remark that ∆(P, C) is a simplicial complex. Furthermore remark that this
definition generalizes the previous definition of a truncated stair system.

Theorem 5.3. Let ∆ be a simplicial complex of Dushnik-Miller dimension at
most d + 1. Then ∆ is the contact complex of a stair system in Rd.

Sketch of proof. There exists a d + 1-representation R = (≤1, . . . ,≤d+1) on
V , the vertex set of ∆, such that ∆ ⊆ Σ(R). According to Lemma 3.1, there
exists an embedding P of V such that P is in general position and such that
Σ(R) = ∆(P,≤d+1).

Let us define a stair on P as follows. For every vertex x ∈ P, we define
R(x) =

⋃
F∈∆: x∈F Ix

⋂
JpF . We show by contradiction that (P, C) is a stair

packing. We conclude by proving by double inclusion that ∆ = ∆(P, C). �

6. Conclusion

According to Theorem 5.3, we conclude that the class of Dushnik-Miller dimension
at most d+1 complexes is included in the class of contact complexes of stair packing
in Rd. The reciprocal of this theorem is a question that arises naturally. Finally,
the case where the point set P is not in general position, in all the three results,
seems interesting but more involved.
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