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MAJORITY COLORING OF INFINITE DIGRAPHS

M. ANHOLCER, B. BOSEK and J. GRYTCZUK

Abstract. Let D be a finite or infinite digraph. A majority coloring of D is a

vertex coloring such that at least half of the out-neighbors of every vertex v have

different color than v. Let µ(D) denote the least number of colors needed for a
majority coloring of D. It is known that µ(D) ≤ 4 for any finite digraph D, and

µ(D) ≤ 2 if D is acyclic. We prove that µ(D) ≤ 5 for any countably infinite digraph

D, and µ(D) ≤ 3 if D does not contain finite directed cycles. We also state a twin
supposition to the famous Unfriendly Partition Conjecture.

1. Introduction

A majority coloring of a graph G is a vertex coloring such that the neighbors of
any vertex v colored differently than v constitute at least half of all the neighbors
of v. In other words, at least half of the edges incident to v are properly colored.
The least number of colors needed for a majority coloring of G is denoted as µ(G).

A folklore result in graph theory asserts that every finite graph G satisfies
µ(G) ≤ 2. The proof is very simple: just take a 2-coloring that minimizes the
number of monochromatic edges (see [7]). For infinite graphs the problem is
much harder. It was proved by Shelah and Milner [9] that every infinite graph
G satisfies µ(G) ≤ 3, and that there are uncountable graphs for which equality
holds. However, the Unfriendly Partition Conjecture states that every countable
graph satisfies µ(G) ≤ 2 (see [1]). It has been confirmed in several special cases,
in particular when G does not contain an infinite path [4], or a subdivision of an
infinite clique [3],[4].

Majority coloring of directed graphs was introduced recently in [6]. Definition
is the same, except that the majority condition concerns out-neighbors of vertices.
Formally, a coloring of digraph D is a majority coloring if the out-neighbors of any
vertex v colored differently than v constitute at least half of all the out-neighbors
of v. It was proved in [6] that µ(D) ≤ 4 for every finite digraph D. The proof is
also quite easy. First, notice that every acyclic digraph (with no directed cycles) is
majority 2-colorable (apply greedy coloring to linear ordering of the vertices of D
in which all out-neighbors of a given vertex are to the left). Next, split the edges of
D into two acyclic digraphs, and then take the product coloring. It is conjectured
in [6] that every finite digraph D satisfies µ(D) ≤ 3. This is best possible since
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a majority coloring of an odd directed cycle must be a proper coloring of the
underlying undirected graph.

In this paper we study majority coloring of countably infinite digraphs. Our
main results asserts that µ(D) ≤ 5 for any countable digraph D, and µ(D) ≤ 3 if
D is acyclic (does not contain finite directed cycles). In analogy to the Unfriendly
Partition Conjecture for undirected graphs we state the following conjecture for
digraphs.

Conjecture 1. Every countable digraph D satisfies µ(D) ≤ 3. If D is acyclic,
then µ(D) ≤ 2.

Other open problems are presented in the final section of the paper.

2. Results

We will need the following lemma.

Lemma 2.1. Let D be a locally finite acyclic digraph. Suppose that each vertex
v is assigned with a pair of two real numbers (rv(1), rv(2)) satisfying condition:

(1) rv(1) + rv(2) ≥ d+(v).

Then there is a coloring c : V (D)→ {1, 2} such that for every vertex v, the color
c(v) appears on at most rv(c(v)) out-neighbors of v. In particular, every locally
finite acyclic digraph D satisfies µ(D) ≤ 2.

Proof. First we prove the lemma for finite acyclic digraphs by induction on the
number of vertices of D. It is obvious that the assertion holds for a single vertex.
Let D be a digraph with at least two vertices, and let u be a vertex with no in-
neighbors. Let D′ = D − u be a digraph obtained from D by deleting vertex u.
Notice that D′ satisfies condition (1) with the same numbers rv(i), with v 6= u,
i = 1, 2. So, we may apply induction to D′ to get a coloring satisfying assertion of
the lemma. Let nu(1) and nu(2) denote the number of out-neighbors of u in color
1 and 2 in this coloring, respectively. By condition (1), either nu(1) ≤ ru(1), or
nu(2) ≤ ru(2). Hence, by choosing appropriate color for vertex u, we may extend
the coloring to whole digraph D.

The assertion for infinite digraphs follows easily by compactness. A majority
2-coloring of D is obtained when rv(1) = rv(2) for every vertex v. �

We now deal with an opposite case, when all vertices in a digraph D have
infinite out-degrees. We prove a slightly more general lemma.

Lemma 2.2. Let V be a countable set, and let A1, A2, . . . be a collection of
infinite subsets of V . There is a 2-coloring of V such that each color appears
infinitely many times in each set Ai. In particular, every countable digraph in
which all vertices have infinite out-degree is majority 2-colorable.

Proof. We will make use of the “back-and-forth” argument, similar to the one
asserting that the set of rationals is countable. Let V = {v1, v2, . . . } be any numer-
ation of the elements of set V . This enumeration induces a linear order on every
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set Ai in a natural way. Consider the sequences S = 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . .
consisting of finite blocks of initial positive integers. Let si denote the i-th term of
sequence S. We will color the elements of V in consecutive steps, accordingly to
the sequences S, as follows. In the first step we enter the first set A1 and color its
first element by color 1. In each subsequent step si we enter the set Asi and color
the first uncolored vertex with a color different than the color applied last time we
entered Asi . Notice that after each step the number of colored vertices in each set
Ai is finite. Also, the procedure guarantees that each set Ai is entered infinitely
many times. Hence, in each set Ai the number of color changes is infinite. This
proves the first part of the lemma. Second part follows easily by taking as Ai’s
the family of closed out-neighborhoods of vertices in a given digraph. �

Now we are ready to prove one of the aforementioned results. We will need some
notation. Let D be a digraph on countable set of vertices V . For a vertex v ∈ V ,
let N+(v) denote the set of out-neighbors of v. Denote by d+(v) the cardinality
of the set N+(v). For a subset X of V and any vertex v ∈ V , denote by d+X(v)
the cardinality of the set N+(v) ∩X.

Theorem 2.3. Every countable acyclic digraph D satisfies µ(D) ≤ 3.

Proof. Let D be a digraph on countable set of vertices V . Let F be the subset
of V consisting of all vertices with d+(v) finite, and let I = V rF . Next, split the
set I into two subset sets I = A ∪ B as follows: A = {v ∈ I : d+F (v) = ∞} and

B = I rA. So, each vertex v ∈ B satisfies d+I (v) =∞.
Now we define a coloring of V by colors {1, 2, 3} in the following way. First,

color every vertex v ∈ A by color 3. The rest of vertices will be colored by colors
1, 2, so majority condition for vertices v ∈ A will be satisfied by d+F (v) =∞. Next
consider a family of sets Bv = {v} ∪ (N+(v)∩B) indexed by those vertices v ∈ B
for which Bv is infinite. We color the union of sets Bv by 1, 2 accordingly to Lemma
2.2. Hence majority condition is satisfied for these vertices v. If some vertices of
B are left uncolored, color them arbitrarily by 1, 2. For such vertices majority
condition is also satisfied, since each of them has infinitely many out-neighbors in
the set A (which is colored by 3). We are left with completing the coloring on the
set F . We will use Lemma 2.1. Let nv(i) denote the number of out-neighbors of
v ∈ F in color i, where i = 1, 2, 3. Put

(2) rv(i) =
1

2
d+(v)− 1

2
nv(3)− nv(i),

for i = 1, 2. Clearly, we have rv(1) + rv(2) = d+F (v), so we may produce a coloring
of a subdigraph induced by F satisfying the assertion of Lemma 2.1. This coloring
guarantees that majority condition is satisfied for each vertex v ∈ F . The proof is
complete. �

Now we prove a similar result for general countable digraphs. The proof goes
along similar lines. We will use the following lemma, which is a special case of the
result in [2]. We include a proof for completeness.
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Lemma 2.4. Let D be a locally finite digraph. Suppose that each vertex v
is assigned with a quadruple of real numbers (rv(1), rv(2), rv(4), rv(4)) satisfying
condition:

(3) rv(1) + rv(2) + rv(3) + rv(4) ≥ 2d+(v).

Then there is a coloring c : V (D) → {1, 2, 3, 4} such that for every vertex v, the
color c(v) appears on at most rv(c(v)) out-neighbors of v. In particular, every
locally finite digraph D satisfies µ(D) ≤ 4.

Proof. Let us call the number rv(i) the rank of color i at vertex v. In finite
case the proof goes by induction on the number of vertices in D. It is not hard to
check that the theorem is true for one-vertex digraph. Indeed, by condition (3),
at least one color rank is non-negative, and we may use it to color the only vertex
in the digraph. So, let n ≥ 2, and assume that the assertion of the theorem is
true for all digraphs with at most n− 1 vertices. Let D be a digraph on n vertices
satisfying the assumptions of the theorem. Let u be any vertex of D. Consider
a new digraph D′ obtained by deleting vertex u with color ranks r′v(i), v 6= u,
modified as follows. Let a and b be two colors with highest ranks ru(a), ru(b) at
vertex u. For each in-coming neighbor v of u, decrease the ranks rv(a) and rv(b)
by one, so r′v(i) = rv(i) − 1 for i ∈ {a, b}. All the remaining color ranks are left
unchanged: r′v(i) = rv(i) if i /∈ {a, b}, or if v is not an in-coming neighbor of u.

We claim that digraph D′ with modified color ranks r′v(i) still satisfies condi-
tion (3). Indeed, for each in-coming neighbor v of u, both sides of (3) decreased
by exactly two (since the out-degree d+(u) decreased by exactly one). In all other
cases nothing changed. So, by the inductive assumption there is a coloring of D′

satisfying the assertion of the theorem with ranks r′v(i).
We now extend this coloring to the deleted vertex u in the following way. First

notice that

(4) ru(a) + ru(b) ≥ d+(u).

Indeed, by the maximality of ranks of colors a and b at vertex u, the inequality
ru(a) + ru(b) < d+(u) would imply

∑
i∈{1,2,3,4} ru(i) < 2d+(u), contrary to the

assumption. Let nu(a) and nu(b) denote the number of out-neighbors of u colored
with colors a and b, respectively. Obviously, nu(a) + nu(b) ≤ d+(u). Hence, by
(4), at least one of the following inequalities must be satisfied:

(5) ru(a) ≥ nu(a) or ru(b) ≥ nu(b).

We choose a color whose rank satisfies one of these inequalities, and assign that
color to u.

We claim that the extended coloring satisfies the assertion of the theorem. First,
let v be arbitrary in-coming neighbor of u. Let x denote the color assigned to v in
coloring of D′. If x is one of the colors a or b, then the number of out-neighbors
of v in D′ colored with x is at most r′v(x) = rv(x) − 1, by inductive assumption.
Thus, their number in D after coloring the vertex u is still bounded by rv(x). If
x is neither equal to a, nor to b, then the constraint is fulfilled even more. If v is
an arbitrary out-neighbor of u, or any other vertex of D′, then the corresponding
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constraint holds by induction, since out-neighborhoods and color ranks for such
vertices remained unchanged in D′. Finally, for the vertex u we have chosen color
a or b so that the corresponding inequality of (5) is satisfied. This completes the
proof in finite case.

If D is infinite, the assertion follows by compactness. A majority 4-coloring of
D is obtained when rv(1) = rv(2) = rv(3) = rv(4) for every vertex v. �

Using Lemma 2.4 we may now prove an upper bound for µ(D) for general
countable digraphs.

Theorem 2.5. Every countable digraph D satisfies µ(D) ≤ 5.

Proof. The reasoning goes similarly as in the proof of Theorem 2.3. With the
same notation, let D be a countable digraph on vertex set V , and let F be the
subset of V consisting of all vertices with finite out-degree d+(v). Let I = V r F
be split similarly into two subsets I = A∪B, where A = {v ∈ I : d+F (v) =∞} and

B = I rA. So, each vertex v ∈ B satisfies d+I (v) =∞.
Define a coloring of V by colors {1, 2, 3, 4, 5} in the following way. First, color

every vertex v ∈ A by color 5. The rest of vertices will be colored by colors 1, 2, 3, 4,
so majority condition for vertices v ∈ A will be satisfied by d+F (v) =∞. Next color
the set B as in the proof of Theorem 2.3 by colors 1, 2 using Lemma 2.2. Clearly,
majority condition is satisfied for all vertices v ∈ B. To complete the coloring on
the set F we use Lemma 2.4. Let nv(i) denote the number of out-neighbors of
v ∈ F in color i, where i = 1, 2, 3, 4, 5. Put

(6) rv(i) =
1

2
d+(v)− 1

4
nv(5)− nv(i),

for i = 1, 2, 3, 4. Clearly, we have rv(1) + rv(2) + rv(3) + rv(4) = d+F (v), so we
may produce a coloring of a subdigraph induced by F satisfying the assertion of
Lemma 2.4. This coloring guarantees that majority condition is satisfied for each
vertex v ∈ F . The proof is complete. �

3. Discussion

We conclude the paper with some remarks and open problems. It is natural to
expect that, similarly as it is for undirected graphs, Theorem 2.5 remains true for
arbitrary infinite digraphs.

Conjecture 2. Every infinite digraph satisfies µ(D) ≤ 5.

Suppose that each vertex v of a digraph D is assigned a set (list) of colors L(v).
A vertex coloring c of digraph D is a coloring from lists L(v) if c(v) ∈ L(v) for
every vertex v. Let µ`(D) denote the least cardinal k such that digraph D has a
majority coloring from arbitrary lists of size k. Clearly, µ(D) ≤ µ`(D). In [2] we
proved that µ`(D) ≤ 4 for every finite digraph D. For infinite digraphs we do not
know if there is any finite upper bound.

Conjecture 3. There is an integer K such that µ`(D) ≤ K for every countable
digraph D.
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A similar conjecture can be stated for undirected graphs.

Conjecture 4. There is an integer N such that µ`(G) ≤ N for every countable
graph G.

References

1. Aharoni R., Milner E. C. and Prikry K., Unfriendly partitions of a graph, J. Combin. Theory

Ser. B 50 (1990), 1–10.
2. Anholcer M., Bosek B. and Grytczuk J., Majority choosability of digraphs, Electron. J.

Combin. 24 (2017), #P3.57.

3. Berger E., Unfriendly partitions for graphs not containing a subdivision of an infinite clique,
Combinatorica 37 (2017), 157–166.

4. Bruhn H., Diestel R., Georgakopoulos A. and Sprüssel P., Every rayless graph has an un-

friendly partition, Combinatorica 30 (2010), 521–532.
5. Cowan R. and Emerson W., Unfriendly Partitions, http://www.openproblemgarden.org/.

6. Kreutzer S., Oum S., Seymour P., van der Zypen D. and Wood D. R., Majority Colouring

of Digraphs, Electron. J. Combin. 24(2) (2017), #P2.25.
7. Lovász L., On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966), 237–238.

8. Seymour P., On the two-colouring of hypergraphs, Q. J. Math 25 (1974), 303–311.
9. Shelah S. and Milner E. C., Graphs with no unfriendly partitions, in: A tribute to Paul

Erdös, Cambridge Univ. Press, Cambridge, 1990, 373–384.

10. van der Zypen D., Majority coloring for directed graphs, http://mathoverflow.net/.

M. Anholcer, Faculty of Informatics and Electronic Economy, Poznań University of Economics
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