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BIJECTIONS FOR GENERALIZED TAMARI INTERVALS

VIA ORIENTATIONS

É. FUSY and A. HUMBERT

Abstract. We introduce two bijections for generalized Tamari intervals, which

were recently introduced by Préville-Ratelle and Viennot, and proved to be in bi-

jection with rooted non-separable maps by Fang and Préville-Ratelle. Our first
construction proceeds via separating decompositions on quadrangulations and can

be seen as an extension of the Bernardi-Bonichon bijection between Tamari inter-

vals and minimal Schnyder woods. Our second construction directly exploits the
Bernardi-Bonichon bijection and the point of view of generalized Tamari intervals as

a special case of classical Tamari intervals (synchronized Tamari intervals); it yields

a trivariate generating function expression that interpolates between generalized
Tamari intervals and classical Tamari intervals.

1. Introduction

The ν-Tamari lattice Tam(ν) (for ν an arbitrary directed walk with steps in
{N,E}) has been recently introduced by Préville-Ratelle and Viennot [16], and
further studies in [7, 8], with connections to geometric combinatorics. It is a lat-
tice on the set of directed walks weakly above ν and with same endpoints as ν,
and it generalizes the Tamari lattice [18] (in size n, case where ν is NE replicated
n times) and the m-Tamari lattices [1] (in size n, case where ν is NEm replicated
n times).

The enumeration of intervals (i.e., pairs formed by two elements x, x′ with
x ≤ x′) in Tamari lattices has attracted a lot of attention [9, 5, 4], due in par-
ticular to their (conjectural) connections to dimensions of diagonal coinvariant
spaces [1], and to their bijective connections to planar maps [2], as well as intrigu-
ing symmetry properties [15]. Regarding ν-Tamari lattices, if we let Iν be the
set of intervals in Tam(ν), then it has recently been shown by Fang and Préville-
Ratelle [11] that Gn := ∪ν∈{N,E}nIν (generalized Tamari intervals of size n) is

in bijection with the set Nn of rooted non-separable maps1 with n + 2 edges,
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1A map is a connected multigraph embedded on the sphere up to deformation, a rooted map is a

map with a marked corner, and a map is called non-separable (or 2-connected) if it is either the
loop-map, or has no loop and at least 2 vertices need to be deleted to disconnect it.
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and more precisely that Gi,j :=
∑
ν∈S(NiEj) Iν is in bijection with the set Ni,j

of rooted non-separable maps with i + 2 vertices and j + 2 faces (it is known [6]

that |Nn| = 2(3n+3)!
(n+2)!(2n+3)! and |Ni,j | = (2i+j+1)!(2j+i+1)!

(i+1)!(j+1)!(2i+1)!(2j+1)! ). They have a first

recursive bijection based on parallel decompositions with a catalytic variable, and
then make the bijection more explicit via certain auxiliary labeled trees.

In this article, we give two new bijections between Gi,j and Ni,j . Each one relies
on seeing Gi,j as included in a certain superfamily, and specializing a bijection in-
volving oriented maps. In our first bijection (Section 3) we see Gi,j as a subfamily
of non-intersecting triples of lattice paths (a so-called Baxter family) and specialize
a bijection (closely related to the one in [14]) with so-called separating decompo-
sitions on rooted simple quadrangulations. In our second bijection (Section 4) we
see Gi,j as a subfamily of classical Tamari intervals of size i+ j + 1 (synchronized
intervals), to which we apply the Bernardi-Bonichon bijection [2] (with minimal
Schnyder woods, on rooted triangulations) combined with a bijection [3] to certain
tree-structures on which we can characterize the property of being synchronized.

Several parameters can be tracked by the first construction, which gives a model
of maps for intervals in the m-Tamari lattices, and reveals certain symmetry prop-
erties on Gi,j . The second construction yields a trivariate generating function
expression that interpolates between the bivariate generating function of general-
ized Tamari intervals and the univariate generating function of classical Tamari
intervals (see Corollary 1 and paragraph after).

2. The ν-Tamari lattice, and generalized Tamari intervals

We recall [16] the definitions of ν-Tamari lattices and intervals, and how they
relate to the classical Tamari lattice. We consider walks in N2 starting at the
origin and having steps North or East (these can be identified with words on the
alphabet {N,E}). For two such walks γ, γ′, we say that γ′ is above γ if γ and γ′

have the same endpoint, and no East step of γ is strictly above the East step of
γ′ in the same vertical column. A Dyck walk of length 2n is thus a walk γ that is
above (NE)n. More generally, for ν a walk ending at (i, j), we let Wν be the set
of walks above ν. For γ ∈ Wν and for p = (x, y) a point on γ, we let x′ ≥ x be
the abscissa of the North step of ν from ordinate y to y + 1 (with the convention
that x′ = i if y = j), and we let `(p) := x′ − x. If p is preceded by E and followed
by N we let p′ be the next point after p along γ such that `(p′) = `(p), and we
let pushp(γ) be the walk γ′ obtained from γ by moving the E preceding p to be
just after p′ (see Figure 1 for an example); we say that γ′ covers γ. The Tamari
lattice for ν is defined as Tam(ν) = (Wν ,≤) where ≤ is the transitive closure of
the covering relation. The classical Tamari lattice Tamn corresponds to the special
case Tamn = Tam((NE)n), and more generally for m ≥ 1 the m-Tamari lattice

Tam(m)
n corresponds to the special case Tam(m)

n = Tam((NEm)n) .
Interestingly, for ν of length n, Tam(ν) can also be obtained as a sublattice

of Tamn+1. For γ = Eα0NEα1 . . . NEαn a Dyck walk of length 2n, the canopy-
word of γ is the word can(γ) = (w0, . . . , wn) ∈ {0, 1}n+1 such that for r ∈ [0..n],
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Figure 1. A covering relation in Tam(ν) for ν = EENNEENNE.

wr = 1αr=0 (note that we always have w0 = 1 and wn = 0). Then Tam(ν)
identifies to the sublattice of Tamn+1 induced by the Dyck walks whose canopy-
word is equal to 0ν1 (this crucially relies on the fact that if γ ≤ γ′ in Tamn then
can(γ) ≤ can(γ′)).

Note that Gi,j is the set of triples (ν, γ, γ′) such that ν ends at (i, j), and γ ≤ γ′
in Tam(ν); By a classical correspondence from maps to quadrangulations, Ni,j
is in bijection with the set Qi,j of rooted bicolored quadrangulations with i + 2
black vertices and j+ 2 white vertices (a quadrangulation is a simple map with all
faces of degree 4, bicolored means that vertices are black or white so that all edges
connect vertices of different color, and the vertex at the root-corner is black).

We now make two important remarks based on properties shown in [16] (each
remark is associated with a bijection described later, respectively in Section 3 and
Section 4, the second remark is also used in the bijection in [11]).
(i) Since γ ≤ γ′ in Tam(ν) implies that γ′ is above γ, Gi,j is a subfamily of the
family Ri,j of triples of walks (ν, γ, γ′) such that ν ends at (i, j), and γ′ is above
γ itself above ν.
(ii) On the other hand, let In be the set of intervals in Tamn (classical Tamari
intervals, on Dyck words). An interval (γ, γ′) ∈ In is called synchronized if
can(γ) = can(γ′). Let Sn ⊂ In be the set of synchronized Tamari intervals of
size n. Then the above sublattice characterization of Tam(ν) implies that Gn is
in bijection with Sn+1. More generally, if we let Si,j be the set of synchronized
intervals such that the common canopy-word has i+ 1 zeros and j + 1 ones, then
Gi,j is in bijection with Si,j .

3. Bijection using separating decompositions

Several bijections are known between Ri,j and other combinatorial families (a
survey is given in [13]). Our aim here is to pick one such bijection and show that
it specializes nicely to the subfamily Gi,j ⊂ Ri,j . We pick the bijection from [14]
for separating decompositions, but have to slightly modify it so that it specializes
well.

For Q ∈ Qi,j , we let s, s′, t, t′ be the outer vertices in clockwise order around
the outer face, with s the one at the root. A separating decomposition of Q
is given by an orientation and coloration (blue or red) of each edge of Q such
that all edges incident to s (resp. t) are ingoing blue (resp. ingoing red), and
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Figure 2. (a) Local rule of separating decompositions for vertices /∈ {s, t}. (b) A separating
decomposition. (c) The blue tree with the indication of red and blue indegrees at white vertices.

(d) The corresponding (by Φ′) triple of walks.

every vertex v /∈ {s, t} has outdegree 2 and satisfies the local conditions shown
in Figure 2(a). It can be shown [10] that the blue edges form a spanning tree of
Q\t and the red edges form a spanning tree of Q\s. We let Sepi,j be the set of
pairs S = (Q,X) where Q ∈ Qi,j , and X is a separating decomposition of Q. A
separating decomposition is called minimal if it has no clockwise cycle. A general
property of outdegree-constrained orientations of planar maps [12] ensures that
each rooted quadrangulation has a unique minimal separating decomposition, so
that Qi,j identifies to the subfamily of minimal separating decompositions from
Sepi,j . We now recall the bijection Φ between Sepi,j andRi,j described in [14]. For
S ∈ Sepi,j we let Tblue be the blue tree, and let v0, . . . , vj+1 be the white vertices
ordered according to the first visit in a clockwise walk around Tblue starting at the
root, and we let αk be the number of ingoing red edges at vk, for k ∈ [1..j + 1].

Then Φ(S) is the triple of walks (γlow, γmid, γup) (written here as binary words)
as follows: the walk γlow is obtained from a clockwise walk around Tblue, where
we write an N each time – except for the last two occurences – we follow an edge
◦ − • getting closer to the root and write an E each time we follow an edge ◦ − •
away from the root; the walk γmid is obtained from a clockwise walk around Tblue,
where we write an N each time – except for the first and last occurence – we follow
an edge •−◦ away from the root and write an E each time we follow an edge •−◦
getting closer to the root; the walk γup is Eα1NEα2 . . . NEαj+1 .

We slightly modify the mapping as follows (see Figure 2 for an example): Φ′(S)
is the triple (γlow, γmid, γup) of walks where γmid and γup are obtained as above,
and γlow = Eβ0NEβ1 . . . NEβj , with βr the number of ingoing blue edges at vr
for r ∈ [0..j].

Theorem 1. For i, j ≥ 0, the mapping Φ′ is a bijection between Sepi,j and Ri,j.
In addition, for S ∈ Sepi,j, S is minimal iff Φ′(S) ∈ Gi,j, hence Φ′ specializes into
a bijection between Qi,j and Gi,j.
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This bijection easily yields a linear time random generator for Gi,j (using a
bijection between Qi,j and unrooted ternary trees [17, 3]), and it also has the
advantage to preserve several parameters.

Further parameter-correspondence. Precisely, for (ν, γ, γ′) ∈ Ri,j and r ∈
{0..j} we let ar (resp. br) be the number of horizontal steps of ν (resp. γ′) at
height r. For (p, q) ∈ N2 we let m(p, q) := #{r ∈ [1..j] | br−1 = p and ar = q}.
Then clearly in the bijection Φ′, a0 is mapped to the degree of s′ minus 2, bj is
mapped to the degree of t′ minus 2, and m(p, q) corresponds to the number of
inner white vertices that have p ingoing red edges and q ingoing blue edges.

A model of maps for intervals in Tam(m)
n . In particular, for m ≥ 1, if we let

Q(m)
n be the subfamily of Qmn,n where each inner white vertex has m ingoing blue

edges in the minimal separating decomposition, and s′ has no ingoing blue edge,

then Φ′ specializes into a bijection between Q(m)
n and intervals of Tam(m)

n . It is

known [5] (the case m = 1 was discovered in [9]) that the number I
(m)
n of intervals

in Tam(m)
n is given by the beautiful formula

(1) I(m)
n =

m+ 1

n(mn+ 1)

(
(m+ 1)2n+m

n− 1

)
.

It is shown in [14] that Q(1)
n is in bijection (via contraction of the blue edges

directed toward a white vertex) with rooted triangulations (simple planar maps
with all faces of degree 3) with n+3 vertices, endowed with their minimal Schnyder
wood. Under this correspondence one can check that our bijection coincides with
the one by Bernardi and Bonichon [2] (recalled and exploited in the next section)
between In and rooted triangulations with n+3 vertices. It would be interesting to
provide a bijective proof of (1), working for all m ≥ 1, based on such an approach
(edge-contractions or similar operations to obtain maps or hypermaps amenable
to bijective enumeration).

An involution on Sepi,j and Gi,j. There is a natural involution τ on Sepi,j :
move the root-corner to t and switch edge-colors. Via Φ′, τ induces an involution
on Ri,j whose effect is to swap a0 and bj and to swap m(p, q) and m(q, p). Note
that τ preserves minimality, hence it induces an involution on Gi,j , which reveals
some symmetry properties. In particular, for λ = 1`12`2 . . . , µ = 1m12m2 . . . two
integer partitions of i in at most j + 1 parts, if we let gi,j [a, b, λ, µ] be the number
of elements in Gi,j such that a0 = a, bj = b, and for each k ≥ 1 there are `k (resp.
mk) values r ∈ [1..j] such that ar = k (resp. br−1 = k), then by the involution
we have gi,j [a, b, λ, µ] = gi,j [b, a, µ, λ]. In particular there are as many intervals in

Tam(m)
n as intervals (γlow, γmid, γup) in Gmn,n such that γup = (EmN)n.

4. Bijection using Schnyder woods

For T a rooted triangulation, the outer vertices are called uB , uG, uR in clockwise
order, with uB the one incident to the root-corner. A Schnyder wood of T is an
orientation and coloration (in blue, green or red) of every inner edge of T so that all
edges incident to uB , uG, uR are ingoing of color blue (resp. green, red), and every
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inner vertex has outdegree 3 and satisfies the local condition shown in Figure 3.
A Schnyder wood induces a coloring of the corners: a corner at an inner vertex v
receives the color of the ‘opposite’ outgoing edge at v, and a corner at an outer
vertex v receives the color of v. It can be checked that around each inner face there
is one corner in each color and these occur as blue, green, red in clockwise order.
It is known that the local conditions of Schnyder woods imply that the graph in
every color is a tree spanning all the internal vertices (plus the outer vertex of the
same color, the root-vertex of the tree). A Schnyder wood is called minimal if it
has no clockwise cycle; any rooted triangulation has a unique minimal Schnyder
wood [12].
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Figure 3. (a) Local rule for inner vertices in Schnyder woods. (b) A Schnyder wood with n+ 3
vertices (n = 6). (c) The blue tree with the indication of red indegrees at vertices. (d) The

corresponding pair of Dyck walks in Pn.

Let Pn be the set of pairs (γ, γ′) of Dyck paths of length 2n such that γ′ is
above γ. The Bernardi-Bonichon construction [2] starts from a triangulation with
n + 3 vertices endowed with a Schnyder wood, and outputs a pair (γ, γ′) ∈ Pn.
Precisely (see Figure 3 for an example), we let Tblue be the blue tree of the Schnyder
wood plus the outer edge {uB , uR}, and let v0, . . . , vn = uR be the vertices of
Tblue\{uB} ordered according to the first visit in a clockwise walk around Tblue
starting at uB . Then γ is obtained as the contour walk of Tblue\{uB , uR} and
γ′ is NEα1NEα2 . . . NEαn , with αr the number of ingoing red edges at vr for
r ∈ [1..n]. Bernardi and Bonichon show [2] that this gives a bijection between
Schnyder woods on triangulations with n+ 3 vertices and Pn; and they show that
it specializes into a bijection between minimal Schnyder woods with n+ 3 vertices
and In ⊂ Pn (our Theorem 1 can be seen as an extension of this statement to
separating decompositions).

On the other hand, minimal Schnyder woods are themselves known to be in
bijection to certain tree structures [3]. A 3-mobile is a (non-rooted) plane tree
T where vertices have degree in {1, 3} (those of degree 3 are called nodes, edges
incident to leaves are called legs), the nodes are colored black or white so that
adjacent nodes have different colors, all leaves are adjacent to black nodes, and
the edges are colored blue, green or red such that around each node the incident
edges in clockwise order are blue, green and red. Let Tn be the set of 3-mobiles
with n white nodes. From a rooted triangulation M on n + 3 vertices, endowed
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with its minimal Schnyder wood, one builds a 3-mobile T ∈ Tn as follows (see
Figure 4): orient the outer cycle clockwise, insert a black vertex bf in each inner
face f of M , and then for each edge e = u → v, with f, f ′ the faces on the left
and on the right of e, create a new edge {u, bf} (if f is an inner face) and create a
new pending edge (called a leg) at bf ′ pointing (but not reaching) to v; and finally
erase the outer vertices and all the edges of M . Each edge of T gets the color of
the corresponding corner of M .

Composing both constructions, we get a bijection between In and Tn. Let
(γ, γ′) ∈ In, with n ≥ 1. For (b, b′) ∈ {(0, 0), (0, 1), (1, 1)} we say that a position
r ∈ [0..n] is of type (b, b′) if there is b (resp. b′) at position r in can(γ) (resp. in
can(γ′)). Let T ∈ Tn, with n ≥ 1. A black node of T whose blue edge is a leg is
said to be of type (0, 0) (resp. type (1, 1)) if its red edge is a leg (resp. its green
edge is a leg) and is said to be of type (0, 1) otherwise (only its blue edge is a leg).

uB

uRuG

Figure 4. Left: A rooted triangulation endowed with its minimal Schnyder wood (colors are

indicated at corners). Right: the corresponding 3-mobile.

Theorem 2. Let n ≥ 1. In the (composed) bijection between In and Tn, for
(b, b′) ∈ {(0, 0), (0, 1), (1, 1)} each position of type (b, b′) corresponds to a black
node of type (b, b′).

Let i, j, k ≥ 0, and n = i + j + k + 1. We denote by a[i, j, k] the number of
intervals in In having i + 1 positions of type (1, 1), j + 1 positions of type (0, 0)
and k positions of type (0, 1), and we let F (x, y, z) :=

∑
i,j,k a[i, j, k]xi+1yj+1zk be

the associated generating function. Note that F (x, y, 0) =
∑
i,j |Si,j |xi+1yj+1 =∑

i,j |Gi,j |xi+1yj+1.

Corollary 1. The generating function F ≡ F (x, y, z) is given by

F = xR+ yG+ zRG− (x+ zG)(y + zR)(1 +R)2(1 +G)2,

where R,G are the trivariate series (in x, y, z) specified by the system{
R = (y + zR)(1 +R)(1 +G)2,
G = (x+ zG)(1 +G)(1 +R)2.

In particular F (x, y, 0) coincides (upon setting G = u/(1−u) and R = v/(1−v))
with the known expression [6, Eq. 2.3] of the bivariate series

∑
i,j |Qi,j |xi+1yj+1,
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and we recover |Gi,j | = |Qi,j |; and t + F (t, t, t) coincides (upon setting G = R =
θ/(1 − θ)) with the known expression [19, Eq. 4.9] of the series counting rooted
simple triangulations by the number of vertices minus 2.
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