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TREE PIVOT-MINORS AND LINEAR RANK-WIDTH

K. K. DABROWSKI, F. DROSS, J. JEONG, M. M. KANTÉ, O-J. KWON, S-I. OUM
and D. PAULUSMA

Abstract. Treewidth and its linear variant path-width play a central role for the

graph minor relation. Rank-width and linear rank-width do the same for the graph
pivot-minor relation. Robertson and Seymour (1983) proved that for every tree T

there exists a constant cT such that every graph of path-width at least cT contains T

as a minor. Motivated by this result, we examine whether for every tree T there
exists a constant dT such that every graph of linear rank-width at least dT contains T

as a pivot-minor. We show that this is false if T is not a caterpillar, but true if T

is the claw.

1. Introduction

In order to increase our understanding of graph classes and their properties, it
is natural to consider some notion of “width” and to research what properties a
class of graphs whose width is bounded by a constant may have. In particular,
this has been done in the context of graph containment problems, where the aim is
to determine whether one graph appears as a “pattern” inside some other graph.
Here, the definition of a pattern depends on the type of graph operations that we
are allowed to use. For instance, a graph G contains a graph H as a minor if H
can be obtained from G via a sequence of vertex deletions, edge deletions and edge
contractions.

The notions of treewidth and its linear variant path-width are the most well-
known width parameters. An important reason for this is their relevance in graph
minor theory. In particular, Robertson and Seymour proved the following classical
result.

Theorem 1.1 ([22]). For every tree T , there exists a constant cT such that
every graph of path-width at least cT contains T as a minor.

We focus on the notion of linear rank-width, which can be seen as the lineari-
sation of the notion of rank-width. The latter notion was introduced by Oum
and Seymour [21] and expresses the minimum width k of a tree-like structure
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obtained by recursively splitting the vertex set of a graph in such a way that each
cut induces a matrix of rank at most k (see Section 2 for a formal definition).
Rank-width is more general than treewidth in the sense that every graph class
of bounded treewidth has bounded rank-width, but there are classes for which
the reverse does not hold [7]. The notion of rank-width has important algorithmic
implications, as many NP-complete decision problems are known to be polynomial-
time solvable not only for graph classes of bounded treewidth, but also for graph
classes of bounded rank-width. Rank-width is equivalent to clique-width [21],
another important and well-studied width parameter. Linear rank-width is equiv-
alent to linear clique-width (see, for example, [20]) and is closely related to the
trellis-width of linear codes [14].

The problem of determining whether a given graph has linear rank-width at
most k for some given integer k is NP-complete (this follows from a result of
Kashyap [14]). On the positive side, Jeong, Kim and Oum [13] gave an FPT
algorithm for deciding whether a graph has linear rank-width at most k, whereas
Ganian [11], and Adler, Farley and Proskurowski [1] characterised the graphs of
linear rank-width at most 1.

To increase our understanding of rank-width and linear rank-width, we may
want to verify if classical results such as Theorem 1.1 stay valid when we replace
treewidth by rank-width and path-width by linear rank-width. However, it is
known that edge deletions and contractions may increase the rank-width and linear
rank-width [6]. This means that such graph operations are not useful for dealing
with these parameters. Hence, instead of working with minors, Oum [17] proposed
the notions of vertex-minors and pivot-minors, two closely related notions, which
were called `-reductions and p-reductions, respectively, in [5]. In this paper we
focus on pivot-minors.

In order to define pivot-minors we need some additional terminology. The local
complementation at a vertex u in a graph G replaces every edge of the subgraph
induced by the neighbours of u by a non-edge, and vice versa. Let G ∗ u be the
resulting graph. An edge pivot is the operation that takes an edge uv, first applies
a local complementation at u, then at v, and then at u again. We denote the
resulting graph G∧uv = G∗u∗v∗u. As G∗u∗v∗u = G∗v∗u∗v, we observe that
G ∧ uv = G ∧ vu. Alternatively, we can define the pivot of an edge uv as follows.
Let Su be the set of all neighbours of u non-adjacent to v, let Sv be the set of all
neighbours of v non-adjacent to u and let Suv be the set of common neighbours
of u and v. First, we replace every edge between any two vertices in distinct sets
from {Su, Sv, Suv} by a non-edge and vice versa. Second, we delete every edge
between u and Su and add every edge between u and Sv, and similarly, delete
every edge between v and Sv and add every edge between v and Su. A graph G
contains a graph H as a pivot-minor if H can be obtained from G by a sequence
of vertex deletions and edge pivots.

Oum [18] showed that, for every positive constant k, the class of graphs of
rank-width at most k is well-quasi-ordered under the pivot-minor relation. Kwon
and Oum [15] proved that every graph of rank-width at most k is a pivot-minor of
a graph of treewidth at most 2k, and that a graph of linear rank-width at most k is
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a pivot-minor of a graph of path-width at most k + 1. Geelen and Oum [12] char-
acterized circle graphs in terms of forbidden pivot-minors. Oum [19] conjectured
that for each fixed bipartite circle graph H, every graph G of sufficiently large
rank-width contains H as a pivot-minor. In our previous paper [9], we proved
that deciding whether a given graph G contains a given graph H as a pivot-minor
is NP-complete, and we initiated a systematic study into the complexity of this
problem when H is fixed and only G is part of the input.

In this paper we focus on the question of whether there exists an analogue
to Theorem 1.1 for linear rank-width in terms of pivot-minors. Our first result
provides a negative answer to this question. Here, a caterpillar is a tree that
contains a path P , such that every vertex not on P has a neighbour on P . We
prove the following.

Theorem 1.2. If T is a tree that is not a caterpillar, then the class of T -pivot-
minor-free graphs has unbounded linear rank-width.

Due to Theorem 1.2, we may replace “tree” by “caterpillar” in our research
question.

Question 1. Is it true that for every caterpillar T , there exists a constant dT
such that every graph of linear rank-width at least cT contains T as a pivot-minor?

Question 1 turns out to be a challenging question, which remains largely un-
resolved. However, we have an affirmative answer if T is the claw (the 4-vertex
star).

Theorem 1.3. Every claw-pivot-minor-free graph has linear rank-width at most
141.

2. Linear rank-width

Let G be a graph. Let AG denote the adjacency matrix of G over the binary field.
The cut-rank function of G is the function cutrkG : 2V (G) → N0 such that for each
X ⊆ V (G),

cutrkG(X) : = rank(AG[X,V (G) rX]),

where we compute the rank over the binary field. An ordering (x1, . . . , xn) of the
vertex set V (G) is called a linear ordering of G. The width of a linear ordering
(x1, . . . , xn) of G is defined as max1≤i≤n{cutrkG({x1, . . . , xi})}. The linear rank-
width of G, denoted by lrw(G), is defined as the minimum width over all linear
orderings of G.

3. Proof sketch of Theorem 1.2

We introduce a class C of graphs containing graphs that look like the graph H in
Figure 1. We show that C has unbounded linear rank-width and also that any tree
that is not a caterpillar cannot be a pivot-minor of a graph in C. Formally, we
define C as the set of graphs that can be obtained from a tree T by subdividing
each edge exactly once, and then taking a local complementation on every vertex
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G H

Figure 1. The construction of a graph H in C.

that was originally included in T . We need to show two statements: (i) C has
unbounded linear rank-width, and (ii) any tree that is not a caterpillar cannot be
a pivot-minor of a graph in C. Statement (i) can be deduced from the known facts
that trees have unbounded linear rank-width due to Adler and Kanté [2], and that
local complementations preserve linear rank-width. To prove (ii), we need a more
involved argument using the notion of split decompositions.

Split decompositions, introduced by Cunningham [8], provide a tree-like struc-
ture of a graph with respect to its splits. A vertex subset A is complete to a vertex
subset B if every vertex in A is adjacent to all vertices in B. A split (X,Y ) in
a graph G is a partition of V (G) such that |X|, |Y | ≥ 2 and the neighbourhood
NG(X) ∩ Y of X in Y is complete to the neighbourhood NG(Y ) ∩X of Y in X.
If a graph G admits a split (X,Y ), we construct a new graph D on the vertex
set V (G)∪ {x1, y1} for some new vertices x1 and y1 such that (1) for vertices x, y
with {x, y} ⊆ X or {x, y} ⊆ Y , xy ∈ E(G) if and only if xy ∈ E(D), (2) x1y1 is a
new edge called a marked edge, and no vertex in X has a neighbour in Y , (3) x1

is adjacent to every vertex of NG(Y ) ∩ X and y1 is adjacent to every vertex in
NG(X) ∩ Y .

The marked edge x1y1 in D represents the fact that we decompose along a split
given by D−{x1, y1} in G. This graph D is called a simple decomposition of G. A
split decomposition of a connected graph G is a graph D defined inductively to be
either G or a graph obtained from a split decomposition D′ of G by replacing a bag
of D′ with its simple decomposition, where a bag of D′ is a connected component
obtained by removing all marked edges. See Figure 2 for an example.

B1 B2

B4

B3

B5

G

Figure 2. An example of a split decomposition of a graph G. Marked edges are dashed and

each Bi is a bag.
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Bouchet [4] investigated how a split decomposition can be modified when ap-
plying a local complementation at a vertex in the original graph. What is more
important for us is that edge pivots can also be realised using local complemen-
tations. It is well known that for an edge uv in a graph, there is a unique path
from u to v in its split decomposition such that this path starts and ends with an
unmarked edge, and unmarked edges and marked edges appear alternately. Now,
to obtain a split decomposition of a graph G∧uv, it is sufficient to apply edge piv-
ots on unmarked edges on this path in each bag; see [3, Section 2.2] for detailed
arguments. We mainly use the two observations that a bag that is a complete
graph does not change when pivoting an edge, and a bag that is a star remains a
star after pivoting an edge.

Now, graphs in our class C have the following type of split decompositions:
the underlying decomposition tree is a subdivision of some tree, where each bag
incident with at least three marked edges is a complete graph and every other bag
is a star with exactly three vertices, whose centre is not incident with a marked
edge. Therefore, any edge pivot can only change the shape of a star bag. And,
if we remove a (real) vertex in some star bag, either the two components after
removing this bag are disconnected, or these two decompositions are merged in
such a way that neighbouring complete bags are merged into one complete bag.
By this observation, we can deduce that every pivot-minor of a graph in C also has
a split decomposition where each bag incident with at least three marked edges is
a complete graph, and any other bag is a star graph or a complete graph (this is
possible by removing all vertices of one part except one real vertex).

One subdivision of K1,3 is the unique tree obstruction for being a caterpillar.
But its split decomposition has a star bag incident with at least three marked
edges. This means that it cannot be obtained as a pivot-minor of any graph in C.
This concludes our proof sketch of Theorem 1.2.

4. Proof sketch of Theorem 1.3

We may observe that every connected claw-pivot-minor-free graph is (3P1,W4)-
free. Therefore, it is sufficient to concentrate on (3P1,W4)-free graphs. We can
further show that taking the complement of a graph may increase its linear rank-
width by at most 1. Since K3 and P1 + 2P2 are the complements of 3P1 and W4,
respectively, it is sufficient to show that (∗) every connected (K3, P1 + 2P2)-free
graph has linear rank-width at most 140.

Let G be a (K3, P1 + 2P2)-free graph. We prove that if we delete all but one
vertex from each set of pairwise false twins, this does not decrease the linear rank-
width of G by more than 1. So, we may assume that G has no false twins. The
proof of (∗) consists of three parts: (1) Every connected bipartite (P1 + 2P2)-
free graph containing no false twins has linear rank-width at most 4. (2) Every
connected non-bipartite (K3, C5, P1 + 2P2)-free graph containing no false twins
has linear rank-width at most 3. (3) Every connected (K3, P1 + 2P2)-free graph
containing C5 and no false twins has linear rank-width at most 139.
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Since a given graph has no false twins, the proof of (1) follows from Lozin [16],
and (2) follows from [10]. We note that these results are proven for clique-width
(and for rank-width). However, after some careful reformulations, we can prove
that they also hold for linear rank-width. In particular, the proof for part (3) is
somewhat different. We prove the following statement (∗∗). Let G be a graph
with partition (V1, V2, V3) such that each Vi is independent, for every a ∈ V1, b ∈
V2, c ∈ V3, the set {a, b, c} is neither a clique nor an independent set, and all
of G[V1 ∪ V2], G[V2 ∪ V3], G[V3 ∪ V1] are 2P2-free (such graphs are also known as
bipartite chain graphs). Then G has linear rank-width at most 9. Briefly speaking,
2P2-free bipartite graphs admit a natural ordering of vertices, and because of the
second assumption, the orderings of V1, V2, V3 have to be “compatible”. Thus, we
can explicitly give an ordering of the vertices in such a way that complications
only occur in the small layer.

Starting from a C5, we classify all the vertices with respect to their neighbours
on the C5. The bipartite complementation takes two disjoint subsets A and B,
and flips the adjacency relations between A and B. It is known that a bipartite
complementation may change the linear rank-width by at most 2. We prove that
by applying bipartite complementations at most 65 times, we can make the graph
into a graph each of whose components is a 3-partite graph with the conditions
in (∗∗). In this way we can show that the original connected graph (without false
twins) has linear rank-width at most 139.
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