TREE PIVOT-MINORS AND LINEAR RANK-WIDTH

K. K. DABROWSKI, F. DROSS, J. JEONG, M. M. KANTÉ, O-J. KWON, S-I. OUM and D. PAULUSMA

Abstract

Treewidth and its linear variant path-width play a central role for the graph minor relation. Rank-width and linear rank-width do the same for the graph pivot-minor relation. Robertson and Seymour (1983) proved that for every tree T there exists a constant c_{T} such that every graph of path-width at least c_{T} contains T as a minor. Motivated by this result, we examine whether for every tree T there exists a constant d_{T} such that every graph of linear rank-width at least d_{T} contains T as a pivot-minor. We show that this is false if T is not a caterpillar, but true if T is the claw.

1. Introduction

In order to increase our understanding of graph classes and their properties, it is natural to consider some notion of "width" and to research what properties a class of graphs whose width is bounded by a constant may have. In particular, this has been done in the context of graph containment problems, where the aim is to determine whether one graph appears as a "pattern" inside some other graph. Here, the definition of a pattern depends on the type of graph operations that we are allowed to use. For instance, a graph G contains a graph H as a minor if H can be obtained from G via a sequence of vertex deletions, edge deletions and edge contractions.

The notions of treewidth and its linear variant path-width are the most wellknown width parameters. An important reason for this is their relevance in graph minor theory. In particular, Robertson and Seymour proved the following classical result.

Theorem $1.1([\mathbf{2 2}])$. For every tree T, there exists a constant c_{T} such that every graph of path-width at least c_{T} contains T as a minor.

We focus on the notion of linear rank-width, which can be seen as the linearisation of the notion of rank-width. The latter notion was introduced by Oum and Seymour [21] and expresses the minimum width k of a tree-like structure

Received June 7, 2019.
2010 Mathematics Subject Classification. Primary 05C75, 05 C83.
The first and seventh author were supported by the Leverhulme Trust (RPG-2016-258).
The fifth author was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. NRF-2018R1D1A1B07050294).
The sixth author was supported by IBS-R029-C1.
obtained by recursively splitting the vertex set of a graph in such a way that each cut induces a matrix of rank at most k (see Section 2 for a formal definition). Rank-width is more general than treewidth in the sense that every graph class of bounded treewidth has bounded rank-width, but there are classes for which the reverse does not hold [7]. The notion of rank-width has important algorithmic implications, as many NP-complete decision problems are known to be polynomialtime solvable not only for graph classes of bounded treewidth, but also for graph classes of bounded rank-width. Rank-width is equivalent to clique-width [21], another important and well-studied width parameter. Linear rank-width is equivalent to linear clique-width (see, for example, $[\mathbf{2 0}]$) and is closely related to the trellis-width of linear codes [14].

The problem of determining whether a given graph has linear rank-width at most k for some given integer k is NP-complete (this follows from a result of Kashyap [14]). On the positive side, Jeong, Kim and Oum [13] gave an FPT algorithm for deciding whether a graph has linear rank-width at most k, whereas Ganian [11], and Adler, Farley and Proskurowski [1] characterised the graphs of linear rank-width at most 1.

To increase our understanding of rank-width and linear rank-width, we may want to verify if classical results such as Theorem 1.1 stay valid when we replace treewidth by rank-width and path-width by linear rank-width. However, it is known that edge deletions and contractions may increase the rank-width and linear rank-width [6]. This means that such graph operations are not useful for dealing with these parameters. Hence, instead of working with minors, Oum [17] proposed the notions of vertex-minors and pivot-minors, two closely related notions, which were called ℓ-reductions and p-reductions, respectively, in [5]. In this paper we focus on pivot-minors.

In order to define pivot-minors we need some additional terminology. The local complementation at a vertex u in a graph G replaces every edge of the subgraph induced by the neighbours of u by a non-edge, and vice versa. Let $G * u$ be the resulting graph. An edge pivot is the operation that takes an edge $u v$, first applies a local complementation at u, then at v, and then at u again. We denote the resulting graph $G \wedge u v=G * u * v * u$. As $G * u * v * u=G * v * u * v$, we observe that $G \wedge u v=G \wedge v u$. Alternatively, we can define the pivot of an edge $u v$ as follows. Let S_{u} be the set of all neighbours of u non-adjacent to v, let S_{v} be the set of all neighbours of v non-adjacent to u and let $S_{u v}$ be the set of common neighbours of u and v. First, we replace every edge between any two vertices in distinct sets from $\left\{S_{u}, S_{v}, S_{u v}\right\}$ by a non-edge and vice versa. Second, we delete every edge between u and S_{u} and add every edge between u and S_{v}, and similarly, delete every edge between v and S_{v} and add every edge between v and S_{u}. A graph G contains a graph H as a pivot-minor if H can be obtained from G by a sequence of vertex deletions and edge pivots.

Oum [18] showed that, for every positive constant k, the class of graphs of rank-width at most k is well-quasi-ordered under the pivot-minor relation. Kwon and Oum [15] proved that every graph of rank-width at most k is a pivot-minor of a graph of treewidth at most $2 k$, and that a graph of linear rank-width at most k is
a pivot-minor of a graph of path-width at most $k+1$. Geelen and Oum [12] characterized circle graphs in terms of forbidden pivot-minors. Oum [19] conjectured that for each fixed bipartite circle graph H, every graph G of sufficiently large rank-width contains H as a pivot-minor. In our previous paper [9], we proved that deciding whether a given graph G contains a given graph H as a pivot-minor is NP-complete, and we initiated a systematic study into the complexity of this problem when H is fixed and only G is part of the input.

In this paper we focus on the question of whether there exists an analogue to Theorem 1.1 for linear rank-width in terms of pivot-minors. Our first result provides a negative answer to this question. Here, a caterpillar is a tree that contains a path P, such that every vertex not on P has a neighbour on P. We prove the following.

Theorem 1.2. If T is a tree that is not a caterpillar, then the class of T-pivot-minor-free graphs has unbounded linear rank-width.

Due to Theorem 1.2, we may replace "tree" by "caterpillar" in our research question.

Question 1. Is it true that for every caterpillar T, there exists a constant d_{T} such that every graph of linear rank-width at least c_{T} contains T as a pivot-minor?

Question 1 turns out to be a challenging question, which remains largely unresolved. However, we have an affirmative answer if T is the claw (the 4 -vertex star).

Theorem 1.3. Every claw-pivot-minor-free graph has linear rank-width at most 141.

2. Linear Rank-width

Let G be a graph. Let A_{G} denote the adjacency matrix of G over the binary field. The cut-rank function of G is the function cutrk ${ }_{G}: 2^{V(G)} \rightarrow \mathbb{N}_{0}$ such that for each $X \subseteq V(G)$,

$$
\operatorname{cutrk}_{G}(X):=\operatorname{rank}\left(A_{G}[X, V(G) \backslash X]\right)
$$

where we compute the rank over the binary field. An ordering $\left(x_{1}, \ldots, x_{n}\right)$ of the vertex set $V(G)$ is called a linear ordering of G. The width of a linear ordering $\left(x_{1}, \ldots, x_{n}\right)$ of G is defined as $\max _{1 \leq i \leq n}\left\{\operatorname{cutrk}_{G}\left(\left\{x_{1}, \ldots, x_{i}\right\}\right)\right\}$. The linear rankwidth of G, denoted by $\operatorname{lrw}(G)$, is defined as the minimum width over all linear orderings of G.

3. Proof sketch of Theorem 1.2

We introduce a class \mathcal{C} of graphs containing graphs that look like the graph H in Figure 1. We show that \mathcal{C} has unbounded linear rank-width and also that any tree that is not a caterpillar cannot be a pivot-minor of a graph in \mathcal{C}. Formally, we define \mathcal{C} as the set of graphs that can be obtained from a tree T by subdividing each edge exactly once, and then taking a local complementation on every vertex

Figure 1. The construction of a graph H in \mathcal{C}.
that was originally included in T. We need to show two statements: (i) \mathcal{C} has unbounded linear rank-width, and (ii) any tree that is not a caterpillar cannot be a pivot-minor of a graph in \mathcal{C}. Statement (i) can be deduced from the known facts that trees have unbounded linear rank-width due to Adler and Kanté [2], and that local complementations preserve linear rank-width. To prove (ii), we need a more involved argument using the notion of split decompositions.

Split decompositions, introduced by Cunningham [8], provide a tree-like structure of a graph with respect to its splits. A vertex subset A is complete to a vertex subset B if every vertex in A is adjacent to all vertices in B. A split (X, Y) in a graph G is a partition of $V(G)$ such that $|X|,|Y| \geq 2$ and the neighbourhood $N_{G}(X) \cap Y$ of X in Y is complete to the neighbourhood $N_{G}(Y) \cap X$ of Y in X. If a graph G admits a split (X, Y), we construct a new graph D on the vertex set $V(G) \cup\left\{x_{1}, y_{1}\right\}$ for some new vertices x_{1} and y_{1} such that (1) for vertices x, y with $\{x, y\} \subseteq X$ or $\{x, y\} \subseteq Y, x y \in E(G)$ if and only if $x y \in E(D)$, (2) $x_{1} y_{1}$ is a new edge called a marked edge, and no vertex in X has a neighbour in Y, (3) x_{1} is adjacent to every vertex of $N_{G}(Y) \cap X$ and y_{1} is adjacent to every vertex in $N_{G}(X) \cap Y$.

The marked edge $x_{1} y_{1}$ in D represents the fact that we decompose along a split given by $D-\left\{x_{1}, y_{1}\right\}$ in G. This graph D is called a simple decomposition of G. A split decomposition of a connected graph G is a graph D defined inductively to be either G or a graph obtained from a split decomposition D^{\prime} of G by replacing a bag of D^{\prime} with its simple decomposition, where a bag of D^{\prime} is a connected component obtained by removing all marked edges. See Figure 2 for an example.

Figure 2. An example of a split decomposition of a graph G. Marked edges are dashed and each B_{i} is a bag.

Bouchet [4] investigated how a split decomposition can be modified when applying a local complementation at a vertex in the original graph. What is more important for us is that edge pivots can also be realised using local complementations. It is well known that for an edge $u v$ in a graph, there is a unique path from u to v in its split decomposition such that this path starts and ends with an unmarked edge, and unmarked edges and marked edges appear alternately. Now, to obtain a split decomposition of a graph $G \wedge u v$, it is sufficient to apply edge pivots on unmarked edges on this path in each bag; see [3, Section 2.2] for detailed arguments. We mainly use the two observations that a bag that is a complete graph does not change when pivoting an edge, and a bag that is a star remains a star after pivoting an edge.

Now, graphs in our class \mathcal{C} have the following type of split decompositions: the underlying decomposition tree is a subdivision of some tree, where each bag incident with at least three marked edges is a complete graph and every other bag is a star with exactly three vertices, whose centre is not incident with a marked edge. Therefore, any edge pivot can only change the shape of a star bag. And, if we remove a (real) vertex in some star bag, either the two components after removing this bag are disconnected, or these two decompositions are merged in such a way that neighbouring complete bags are merged into one complete bag. By this observation, we can deduce that every pivot-minor of a graph in \mathcal{C} also has a split decomposition where each bag incident with at least three marked edges is a complete graph, and any other bag is a star graph or a complete graph (this is possible by removing all vertices of one part except one real vertex).

One subdivision of $K_{1,3}$ is the unique tree obstruction for being a caterpillar. But its split decomposition has a star bag incident with at least three marked edges. This means that it cannot be obtained as a pivot-minor of any graph in \mathcal{C}. This concludes our proof sketch of Theorem 1.2.

4. Proof sketch of Theorem 1.3

We may observe that every connected claw-pivot-minor-free graph is $\left(3 P_{1}, W_{4}\right)$ free. Therefore, it is sufficient to concentrate on $\left(3 P_{1}, W_{4}\right)$-free graphs. We can further show that taking the complement of a graph may increase its linear rankwidth by at most 1 . Since K_{3} and $P_{1}+2 P_{2}$ are the complements of $3 P_{1}$ and W_{4}, respectively, it is sufficient to show that $(*)$ every connected ($K_{3}, P_{1}+2 P_{2}$)-free graph has linear rank-width at most 140.

Let G be a $\left(K_{3}, P_{1}+2 P_{2}\right)$-free graph. We prove that if we delete all but one vertex from each set of pairwise false twins, this does not decrease the linear rankwidth of G by more than 1 . So, we may assume that G has no false twins. The proof of ($*$) consists of three parts: (1) Every connected bipartite ($P_{1}+2 P_{2}$)free graph containing no false twins has linear rank-width at most 4. (2) Every connected non-bipartite $\left(K_{3}, C_{5}, P_{1}+2 P_{2}\right)$-free graph containing no false twins has linear rank-width at most 3. (3) Every connected ($K_{3}, P_{1}+2 P_{2}$)-free graph containing C_{5} and no false twins has linear rank-width at most 139.

Since a given graph has no false twins, the proof of (1) follows from Lozin [16], and (2) follows from $[\mathbf{1 0}]$. We note that these results are proven for clique-width (and for rank-width). However, after some careful reformulations, we can prove that they also hold for linear rank-width. In particular, the proof for part (3) is somewhat different. We prove the following statement $(* *)$. Let G be a graph with partition (V_{1}, V_{2}, V_{3}) such that each V_{i} is independent, for every $a \in V_{1}, b \in$ $V_{2}, c \in V_{3}$, the set $\{a, b, c\}$ is neither a clique nor an independent set, and all of $G\left[V_{1} \cup V_{2}\right], G\left[V_{2} \cup V_{3}\right], G\left[V_{3} \cup V_{1}\right]$ are $2 P_{2}$-free (such graphs are also known as bipartite chain graphs). Then G has linear rank-width at most 9 . Briefly speaking, $2 P_{2}$-free bipartite graphs admit a natural ordering of vertices, and because of the second assumption, the orderings of V_{1}, V_{2}, V_{3} have to be "compatible". Thus, we can explicitly give an ordering of the vertices in such a way that complications only occur in the small layer.

Starting from a C_{5}, we classify all the vertices with respect to their neighbours on the C_{5}. The bipartite complementation takes two disjoint subsets A and B, and flips the adjacency relations between A and B. It is known that a bipartite complementation may change the linear rank-width by at most 2 . We prove that by applying bipartite complementations at most 65 times, we can make the graph into a graph each of whose components is a 3-partite graph with the conditions in $(* *)$. In this way we can show that the original connected graph (without false twins) has linear rank-width at most 139.

References

1. Adler I., Farley A. M. and Proskurowski A., Obstructions for linear rank-width at most 1, Discrete Appl. Math. 168 (2014), 3-13.
2. Adler I. and Kanté M. M., Linear rank-width and linear clique-width of trees, Theoret. Comput. Sci. 589 (2015), 87-98.
3. Adler I., Kanté M. M. and Kwon O., Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm, Algorithmica 78 (2017), 342-377.
4. Bouchet A., Transforming trees by successive local complementations, J. Graph Theory 12 (1988), 195-207.
5. Bouchet A., Circle graph obstructions, J. Combin. Theory Ser. B 60 (1994), 107-144.
6. Courcelle B., Clique-width and edge contraction, Inform. Process. Lett. 114 (2014), 42-44.
7. Courcelle B. and Olariu S., Upper bounds to the clique width of graphs, Discrete Appl. Math. 101 (2000), 77-114.
8. Cunningham W. H., Decomposition of directed graphs, SIAM J. Algebr. Discrete Methods 3 (1982), 214-228.
9. Dabrowski K. K., Dross F., Jeong J., Kanté M. M., Kwon O., Oum S. and Paulusma D., Computing small pivot-minors, in: Proc. WG 2018, Lecture Notes in Comput. Sci. 1159, 2018, 125-138.
10. Dabrowski K. K., Dross F. and Paulusma D., Colouring diamond-free graphs, J. Comput. System Sci. 89 (2017), 410-431.
11. Ganian R., Thread graphs, linear rank-width and their algorithmic applications, in: Proc. IWOCA 2010, Lecture Notes in Comput. Sci. 6460, 2011, 38-42.
12. Geelen J. and Oum S., Circle graph obstructions under pivoting, J. Graph Theory 61 (2009), 1-11.
13. Jeong J., Kim E. J. and Oum S., The "art of trellis decoding" is fixed-parameter tractable, IEEE Trans. Inform. Theory 63 (2017), 7178-7205.
14. Kashyap N., Matroid pathwidth and code trellis complexity, SIAM J. Discrete Math. 22 (2008), 256-272
15. Kwon O. and Oum S., Graphs of small rank-width are pivot-minors of graphs of small tree-width, Discrete Appl. Math. 168 (2014), 108-118.
16. Lozin V. V., E-free bipartite graphs, Diskretn. Anal. Issled. Oper. Ser. 17 (2000), 49-66.
17. Oum S., Rank-width and vertex-minors, J. Combin. Theory Ser. B 95 (2005), 79-100.
18. Oum S., Rank-width and well-quasi-ordering, SIAM J. Discrete Math. 22 (2008), 666-682.
19. Oum S., Excluding a bipartite circle graph from line graphs, J. Graph Theory 60 (2009), 183-203.
20. Oum S., Rank-width: Algorithmic and structural results, Discrete Appl. Math. 231 (2017), 15-24.
21. Oum S. and Seymour P. D., Approximating clique-width and branch-width, J. Combin. Theory Ser. B 96 (2006), 514-528.
22. Robertson, N. and Seymour, P.D., Graph minors. I. Excluding a forest, J. Combin. Theory Ser. B 35 (1983), 39-61.
K. K. Dabrowski, Department of Computer Science, Durham University, UK,
e-mail: konrad.dabrowski@durham.ac.uk
F. Dross, Université Côte d'Azur, I3S, CNRS, Inria, France
e-mail: francois.dross@inria.fr
J. Jeong, Department of Mathematical Sciences, KAIST, Korea,
e-mail: jjisu@kaist.ac.kr
M. M. Kanté, Université Clermont Auvergne, LIMOS, CNRS, Aubière, France, e-mail: mamadou.kante@uca.fr

O-j. Kwon, Department of Mathematics, Incheon National University, Korea, e-mail: ojoungkwon@gmail.com

S-i. Oum, Discrete Mathematics Group, Institute for Basic Science (IBS), Korea Department of Mathematical Sciences, KAIST, Korea,
e-mail: sangil@ibs.re.kr
D. Paulusma, Department of Computer Science, Durham University, UK,
e-mail: daniel.paulusma@durham.ac.uk

