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A TURÁN-TYPE THEOREM FOR LARGE-DISTANCE GRAPHS

IN EUCLIDEAN SPACES, AND RELATED

ISODIAMETRIC PROBLEMS

M. DOLEŽAL, J. HLADKÝ, J. KOLÁŘ, T. MITSIS, C. PELEKIS and V. VLASÁK

Abstract. A large-distance graph is a measurable graph whose vertex set is a

measurable subset of Rd, and two vertices are connected by an edge if and only if
their distance is larger that 2. We address questions from extremal graph theory in

the setting of large-distance graphs, focusing in particular on upper-bounds on the

measures of vertices and edges of Kr-free large-distance graphs. Our main result
states that if A ⊂ R2 is a measurable set such that the large-distance graph on A

does not contain any complete subgraph on three vertices then the 2-dimensional

Lebesgue measure of A is at most 2π.

The results presented in this extended abstract are motivated by the following
classical question from extremal graph theory. Let k ≥ 3 be a given natural
number. If we know the number |V | of vertices in a simple graph G = (V,E)
which does not contain a complete subgraph on k vertices G = (V,E), what can
we say about the relationship between the number |E| of edges in G and the
number of vertices in G? The answer is provided by Turán’s folklore result.

Theorem 1 (Turán [8]). Let k ≥ 3 be a fixed natural number. Let G = (V,E)
be a graph which does not contain any complete subgraph on k vertices. Then

|E| ≤ 1

2

(
1− 1

k − 1

)
· |V |2.

We shall be interested in a measure-theoretic counterpart of Turán’s theorem.
Instead of simple graphs, we consider the so called large-distance graphs whose
underlying set is a subset of the Euclidean space Rd for some natural number d,
and where two vertices are connected by an edge whenever they are far apart.
This is covered by the following definition.

Definition 1 (Large-distance graphs). Let A be a measurable subset of Rd.
Then we define the large-distance graph GA corresponding to A as follows: The
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vertex set of GA is the set A. The edge set EA of GA is defined by

EA = {(p, q) ∈ A×A : ‖p− q‖ > 2}.
Let us emphasize that the precise value of the distance threshold (which is set

to 2 in the definition above) is not important. Only a very simple rescaling would
be needed in order to reformulate all of our results for any other choice of the
distance threshold.

Graphs (finite, or infinite such as here) with edges defined by similar metric
conditions arise naturally in many real-life scenarios. For example, a finite version
of large-distance graphs could be used for planning new train lines. Vertices would
be cities and edges would then represent distant pairs of cities, where a high-speed
train line would be desirable. A lot of research has been done on so-called distance
graphs where two points of a subset of Rd are connected by an edge if and only
if their distance equals 1, see e.g. [7]. Recall also that considering the (d − 1)-
dimensional unit sphere Sd−1 in Rd instead of an arbitrary subset A of Rd and
changing the distance threshold in Definition 1 to some α < 2, leads to the so
called Borsuk graph (see [5, p. 30], or [4]).

The main object of our study in large-distance graphs is introduced in the
following.

Definition 2 (H-free large-distance graphs). Suppose that A ⊂ Rd is mea-
surable and let H = (V (H), E(H)) be a finite, simple, graph on k ≥ 2 labeled
vertices, whose labels are represented by the set {1, . . . , k}. Let GA be the large-
distance graph corresponding to A, and let GA〈H〉 ⊂ Ak be the set consisting of all
k-tuples, (p1, . . . , pk), of points in A for which (pi, pj) ∈ EA whenever ij ∈ E(H).
We say that GA is H-free if GA〈H〉 = ∅.

Similarly to the motivating question from extremal graph theory mentioned
above, we ask the following. Let k ≥ 3 and d ≥ 2 be given natural numbers. If
we are given a set A ⊂ Rd for which GA is Kk-free, what can we say about the
relationship between the 2d-dimensional Lebesgue measure of the edge set EA and
the d-dimensional Lebesgue measure of A? The answer is provided by a result of
Bollobás.

Theorem 2 (Bollobás [1]). Let k ≥ 3 be a given natural number. Let A ⊂ Rd

be a measurable set for which GA is Kk-free. Then the 2d-dimensional Lebesgue

measure of the edge set EA is at most
(

1− 1
k−1

)
· λd(A)2.

We provide a short proof of Theorem 2 using ideas from the theory of graphons
which additionally allows us to characterize those sets for which the inequality
reduces to an equality.

Now, given Theorem 2, we ask for absolute bounds on the “size” of the vertex-
set and edge-set of a Kk-free large-distance graph. We refer to this problem as the
Clique-isodiametric problem.

Problem 3 (Clique-isodiametric problem). Suppose that we are given k, d ∈ N.
Find

Vd,k = sup
A
λd(A) and Ed,k = sup

A
e(GA),
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where the suprema range over all measurable sets A ⊂ Rd for which GA is Kk-free.

Note that, while the problem in the finite setting is nontrivial only for k≥3,
Problem 3 is interesting even in the easiest case when k = 2. Indeed, the solu-
tion of this special case is very well known as the isodiametric inequality (see [3,
Theorem 2.4] or [2, Theorem 11.2.1]):

Theorem 4 (Isodiametric inequality). Let A ⊂ Rd be a measurable set and let
diam(A) denote its diameter. Then

λd(A) ≤
(

diam(A)

2

)d

ωd ,

where ωd denotes the d-dimensional Lebesgue measure of the unit ball in Rd.

By the isodiametric inequality, it immediately follows that for k = 2, the optimal
upper bound for the d-dimensional Lebesgue measure of the set A from Problem 3
equals ωd.

Unfortunately, we are not able to find a general solution to Problem 3, so we
treat only the simplest case of d = 2 and k = 3. It turns out that the answer to
the problem is very natural and predictable: the optimal upper bound is attained
by the disjoint union of two unit balls that are far apart. However, the proof is
very far from being trivial and contains some tedious computations. A precise
formulation of the result follows.

Theorem 5. Let A ⊂ R2 be a measurable set such that the corresponding large-
distance graph GA is triangle-free. Then the 2-dimensional Lebesgue measure of A
is at most 2π.

To prove this theorem, we distinguish three cases depending on the diameter
diam(A) of the set A. The cases where either diam(A) ≤ 2

√
2 or diam(A) ≥ 4 are

easy. In the last case where 2
√

2 < diam(A) < 4 we proceed as follows. Suppose,
without loss of generality, that A is compact and find two points p, q ∈ A whose
distance realizes the diameter of A. Then A is the disjoint union of the following
three subsets: the set of points from A that are in a distance > 2 from p, the set
of points from A that are in a distance > 2 from q, and the intersection of A and
of the two balls centered in p and q, respectively, with radius 2. The measure of
the intersection of the two balls centered in p and q, respectively, with radius 2
can be easily computed (it depends on diam(A), of course). The most difficult
part is to obtain upper bounds on the measure of the set of those points from A
that are in a distance > 2 from p (or from q). To this end, we use the observation
that the diameter of such a set is at most 2, and that such a set is contained
in an annulus with inner radius 2 and outer radius diam(A). Then we prove an
analogous result to the isodiametric inequality but with the additional assumption
that the set under consideration is contained in the annulus. Finally, summing all
the obtained upper bounds yields the result. Although we believe that some ideas
from our proof could be useful even in the cases k > 3 or d > 2, we were not able
to straightforwardly adapt our argument to this more general setting.

By combining Theorems 2 and 5, we obtain the following result.
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Theorem 6. Let A ⊂ R2 be a measurable set such that the large-distance
graph GA does not contain any complete subgraph on three vertices. Then the
4-dimensional Lebesgue measure of the edge set EA is at most 2π2.

As already mentioned, the proof of Theorem 5 is based on an isodiametric
inequality on the annulus that might be interesting on its own. The precise for-
mulation follows.

Theorem 7 (Isodiametric inequality on the annulus). Let R ∈ [2
√

2, 4] and
consider the set D := D(0, R) r D(0, 2)o ⊂ R2. Assume that A is a measurable
subset of D such that diam(A) ≤ 2. Then

λ2(A) ≤ R2 arcsin
(a
R

)
− 4 arcsin

(a
2

)
+ 2 arccos(a),

where a =
√

−R4+16R2

8(R2+2) .

The proof of Theorem 7 employs, among other things, Pólya’s circular sym-
metrisation (see [6]) and allows to transform the set into a “well-behaved” and
“maximal” subset of the annulus, D, whose diameter is less than or equal to 2 and
whose measure is easy to compute.

Let us end with some remarks. For d ≤ 4, we conjecture that a measurable
subset A ⊂ Rd for which GA is Kk-free satisfies λd(A) ≤ (k − 1) · ωd. In other
words, the extremal set of the clique-isodiametric problem is the union of k − 1
many unit balls that are at sufficiently large distance apart. Let us remark that
for k = 3 and d ≥ 5, the optimal upper bound in Problem 3 is, maybe a little bit
surprisingly, strictly larger than the volume of the union of two disjoint unit balls.
Indeed, first notice that the radius of a 2-ball that circumscribes an equilateral
triangle whose sides are equal to 2 is equal to 2/

√
3. Now it is easy to see that any

d-ball of radius 2/
√

3 (for arbitrary d ≥ 2) is a set for which the corresponding

large-distance graph isK3-free. The volume of such a d-ball is equal to
(
2/
√

3
)d·ωd.

Now it is not difficult to verify that 2ωd <
(
2/
√

3
)d ·ωd, when d ≥ 5, and therefore

the optimal triangle-free set is not a disjoint union of two unit balls that are at
sufficiently large distance. We do not have a conjecture for the optimal set in
higher dimensions.
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