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GUARDING ISOMETRIC SUBGRAPHS

AND LAZY COPS AND ROBBERS

S. GONZÁLEZ HERMOSILLO DE LA MAZA and B. MOHAR

Abstract. In the game of Cops and Robbers, one of the most useful results is that

an isometric path in a graph can be guarded by one cop. In this paper, we introduce
the concept of wide shadow on a graph, and use it to provide a short proof of the

characterization of 1-guardable graphs. As an application, we show that 3 cops can

capture a robber in any planar graph with the added restriction that at most two
cops can move simultaneously, proving a conjecture of Yang and strenghtening a

classical result by Aigner and Fromme.

1. Introduction

The game of cops and robbers on graphs was introduced by Nowakowski and Win-
kler [9] and Quillot [11]. The game is played on a graph G by two players, the cop
and robber. At the beggining, the cop chooses a vertex as his starting position,
and after that the robber chooses his initial position. The players then move in
alternate turns, and in each turn a player might stay at their current position,
or move to a neighbour of their current position. The cop wins if he eventually
occupies the same vertex as the robber, a situation we will refer to as capturing
the robber, while the robber wins if he is able to indefinitely prevent this from
happening. A graph where the cop has a winning strategy is called a cop-win
graph.

The game was generalized by Aigner and Fromme in [1] to allow more than a
single cop to play, and they defined the cop-number of a graph G, which we will
denote by c(G), to be the smallest integer k such that k cops can guarantee the
robber’s capture on G regardless of his strategy. Since for any graph G we have
c(G) ≤ |V (G)|, the cop-number is well defined for every finite graph. Moreover, for
any graph G we have c(G) ≤ γ(G), where γ(G) denotes the domination number
of G.

A lot of research has been done studying the connections between a graph’s
topological properties and its cop-number (see [4] for a survey and [5] for more
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insight). The first result of this type is due to Aigner and Fromme [1], who showed
that c(G) ≤ 3 for any connected planar graph G. The main tool they used was a
lemma showing that a cop can guard an isometric path in the graph.

Due to the importance and usefulness of this result, there has been interest in
extending it to larger classes of graphs. Recenty, it was generalized to isometric
trees in [3] and to “vertebrate graphs”, a family of graphs including trees, in [8].
Our Theorem 2.2 generalizes this results and provides a characterization of the
graphs that can be guarded by a cop whenever they appear as isometric subgraphs
of a larger graph.

In [10], Offner and Ojakian introduced a variation of the game where only one
cop is allowed to move at each turn, and refered to it as the one-active-cop game.
Shortly after, this variation was introduced with different names, like lazy cops and
robber [2], and the one-cop-moves game [6]. In this paper we follow the naming
in [6], and define the k-cops-move number of a graph, ck(G), as the smallest integer
such that ck(G) cops guarantee the robber’s capture in G with the restriction that
at most k cops can change their position each turn.

Sullivan et al. [12] showed that every graph G on at most eight vertices satisfies
c1(G) ≤ 2, and that there is a unique graph on nine vertices with c1(G) = 3.
For several classes of planar graphs we have c1(G) = c(G), so they posed the
question of whether there exists a planar graph G with c1(G) ≥ 4. Gao and Yang
constructed a planar graph for which c1(G) ≥ 4 in [6], and Yang [13] conjectured
that c2(G) ≤ 3 for any planar graph.

We introduce the concept of wide shadow and use it to obtain a short self-
contained proof of Theorem 2.2, as well as to prove that c2(G) ≤ 3 for any planar
graph, verifying Yang’s conjecture.

All graphs in this paper are connected unless stated otherwise. Let G be a
graph and X,Y ⊆ V (G). We will use d(X,Y ) to denote the length of a shortest
(X,Y )-path in G. In the case X has one vertex, we will write d(x, Y ) instead of
d({x} , Y ). The analogous will be done when Y or both sets consist of a single
vertex.

2. Guarding isometric subgraphs using wide shadows

Let G be a graph, and let H be an isometric subgraph of G. For v ∈ V (G) and
x ∈ V (H), let Hv(x) = {y ∈ V (H) : d(x, y) ≤ d(x, v)}. We define the wide shadow
of v on H to be the set SH(v) =

⋂
x∈V (H)Hv(x).

In general, the wide shadow of a vertex on an isometric subgraph H may be
empty, but this is not the case when H is a Helly graph.

A family of sets S has the Helly property if for every T ⊆ S we have the following
property: if X1 ∩ X2 6= ∅ for every X1, X2 ∈ T , then ∩T 6= ∅. Let Nk[u] =
{v ∈ V (G) : d(v, y) ≤ k}. A graph is a Helly graph if the family

{
Nk[u] : u ∈ V (G),

k ≥ 0
}

has the Helly property. In particular, trees are Helly graphs.

Lemma 2.1. Let G be a graph and H an isometric subgraph of G. If H is a
Helly graph, then:
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(i) for every v ∈ V (G), SH(v) 6= ∅;
(ii) for every uv ∈ E(G), and every x ∈ SH(u), we have d(x, SH(v)) ≤ 1.

Proof. Part (i) follows from the definition of Helly Graph and the triangle in-
equality. For part (ii), let uv ∈ E(G). Notice that for every x ∈ V (H), we
have d(x, u) − 1 ≤ d(x, v) ≤ d(x, u) + 1. This implies Hv(x) ∩ NH [y] 6= ∅ for
every x ∈ V (H) and y ∈ SH(u), so we have SH(v) ∩ NH [y] 6= ∅ for every
y ∈ SH(u). It follows that every vertex y ∈ SH(u) either y ∈ SH(v) or there
exists x ∈ NH(y) ∩ SH(v), hence d(y, SH(v)) ≤ 1, completing the proof. �

Let G be a graph, H a subgraph of G and k a positive integer. We say that H
is k-guardable in G if, after finitely many moves, k cops can move on vertices of
H in such a way that, if the robber enters H, then he will be captured in the next
turn. The high-level idea is that one can k-guard a subgraph H if there are k cops
in vertices of H and, from their positions, every vertex in H can be reached by a
cop “at least as quickly as the robber”. Using the concept of wide shadow we are
able to characterize the class of 1-guardable graphs.

Theorem 2.2. A graph H is 1-guardable if and only if H is a Helly graph.

In order to prove Theorem 2.4, we need the concept of a bypath. Let G be a
graph, H a subgraph of G, and P = v1v2 . . . vk an isometric path in H. A path
B = b1b2 . . . bt (t ≥ 3) contained inH is called a bypath of P inH ifB∩P = {b1, bt},
and the path P〈B〉 = Pb1BbtP is also an isometric path in H. A path P is bypath-
free in H if H contains no bypath of P .

We say that an induced subgraph H is k-leisurely-guardable if it is k-guardable,
and there exists a k-guarding strategy of H for a set of cops C = {C1, C2, . . . , Ck}
such that, after a finite number of moves, there is a turn where either the robber
enters H or at least one Ci can stay still and H is still being k-guarded by C. In
the case of paths, we can find the conditions under which they can be 1-leisurely
guarded.

Lemma 2.3. Let G be a planar graph and P an isometric path in G. If P is
bypath-free in G, then P is 1-leisurely-guardable.

Proof. After a finite number of moves, we can get one cop C to move to a vertex
in the wide shadow of the robber on P . Once C is in SP (R), she will stay still if
she is in SP (R) after the robber’s turn, and will move when her position after the
robber’s turn is not in the wide shadow of the robber. By Lemma 2.1, the cop can
always get back in the wide shadow of R with a single move. By staying in the
wide shadow of the robber, the cop can 1-guard P .

If P has length `, with ` ≤ 2, the cop can guard it without moving by simply
staying at some vertex of P , so we may assume ` ≥ 3. Since P is bypath-free
in G, we have |SP (R)| ≥ 2, so the robber can only move at most ` consecutive
times without entering P and forcing the cop to move to stay in his wide shadow.
Hence, after at most ` turns, the robber will either enter P or the cop can stay
still and be 1-guarding P , so P is 1-leisurely-guardable. �

Theorem 2.4. c2(G) ≤ 3 for every planar graph G.
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Sketch of Proof. The proof follows the idea of moving the cops in such way
that, after a finite number of turns, the set of vertices which the robber can enter
without being captured, which we call the robber’s territory, is reduced.

1. Place three cops on one vertex v.
2. Move one cop to guard a path P in the robber’s territory which is isometric

and bypath-free. Since P is bypath-free, the cop can leisurely-guard the
path.

3. Move a second cop to guard a path Q that has initial and terminal vertices
are in P , at least one intermediate vertex in the robber’s territory, and
which is isometric in the robber’s territory.

4. Since P is being leisurely-guarded, we can use the turns when that cop stays
put to move the third cop to a path R whose initial and terminal vertices
are in P and Q with at least one vertex in the robber’s territory. The path
R should be chosen so that, the first turn the cops are guarding the three
paths, the the robber’s territory has been restricted in such way that at
least one of the paths surrounding the robber’s territory is being leisurely
guarded.

5. Release the cop which is guarding a path not adjacent to the robber’s
territory.

6. Repeat from 4 until the robber’s territory is empty.

�
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