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ON SOME EXTREMAL RESULTS FOR ORDER TYPES

J. HAN, Y. KOHAYAKAWA, M. T. SALES and H. STAGNI

Abstract. A configuration is a finite set of points in the plane. Two configurations

A and B have the same order type if there exists a bijection between them preserv-

ing the orientation of every ordered triple. We investigate the following extremal
problem on embedding configurations in general position in integer grid. Given an

order type B, let ex(N,B) be the maximum integer m such that there exists a sub-

configuration of the integer grid [N ]2 of size m without a copy of B. An application
of the celebrated multidimensional Szemerédi’s theorem gives ex(N,B) = o(N2).

We first prove a subquadratic upper bound for all large order types B and large

N , namely, ex(N,B) ≤ N2−η for some η = η(B) > 0. Then we give improved
bounds for specific order types: we show that ex(N,B) = O(N) for the convex

order type B, and ex(N,B) = N3/2+o(1) for those B satisfying the so-called Erdős-

Hajnal property. Our approach is to study the inverse problem, that is, the smallest
N0 = N0(α,B) such that every α proportion of [N0]2 contains a copy of B.

1. Introduction and main results

A configuration is a finite set of points on the plane. Given an ordered triple
(x, y, z) ∈ (R2)3, we define the orientation χ(x, y, z) by the sign of the area of xyz,

χ(x, y, z) := sgn[xyz] = sgn

∣∣∣∣∣∣
x1 x2 1
y1 y2 1
z1 z2 1

∣∣∣∣∣∣ .
Thus χ(x, y, z) is positive when (x, y, z) is in couterclockwise orientation and neg-
ative when (x, y, z) is in clockwise orientation. Two configurations A and B have
the same order type or are isomorphic (denoted A ∼= B) if there exists a bijec-
tion ι : A → B such that χ(x, y, z) = χ(ι(x), ι(y), ι(z)) for all x, y, z ∈ A. More-
over, a configuration A contains a copy of order type B if there is B′ ⊆ A such
that B′ ∼= B. When there is no danger of confusion, we write B ⊆ A to mean that
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order type A contains a copy of order type B. For our purposes every order type
is in general position, that is, they never contain three collinear points.

The notion of order types captures much of the combinatorics of point sets in
the plane. For instance, if A and B are the vertices of a convex n-gon, then A ∼= B,
and, conversely, if A is such a convex configuration and A ∼= B, then B is also
convex. A more sophisticated example is the fact that the convex hull of an
n-point configuration can be computed in O(n log n) time, solely by means of
orientation queries and, in particular, it is determined by the order type of the
given configuration [16]. For a beautiful overview of combinatorial, geometric and
computation problems and results concerning order types, the reader is referred
to the recent monograph of Eppstein [4]. Another inspiring source discussing
classical problems and results involving order types that are related to the problems
investigated here is [2, Chapter 8].

Given an order type B, let gr(B) be given by

gr(B) = min{N ∈ N : B ⊆ [N ]2},

the minimum integer N such that the grid [N ]2 = {1, . . . , N}2 ⊆ Z2 contains a
copy of order type B. Since a class of equivalence of an order type in general
position is an open set, we obtain, by approximating a configuration over the
rational plane, that gr(B) always exists. Note that this is not the case if we
drop the assumption of configurations in general position (see [10, p. 33], or [4,
Section 13.1]).

The behavior of gr(B) has been studied since early last century. For instance,
Jarńık [13] showed that gr(B) = Θ(n3/2) for convex B of size n and Bereg et al. [1]
showed similar bounds for the ‘double circle’. For a general order type, Goodman,
Pollack and Sturmfels [8] proved that gr grows doubly exponentially for sufficiently
large n, in the sense that there exists constants c1 and c2 > 0 such that if A is an
order type of size n, then gr(A) ≤ exp(2c2n) and for every n there exists an order
type B with gr(B) ≥ exp(2c1n).

Here, we are interested in the following extremal problem concerning order
types in a grid. Let ex(N,B) be the maximum integer m such that there exists a
subconfiguration of [N ]2 of size m without a copy of B. Clearly, by the previous
paragraph, ex(N,B) = N2 for N < gr(B). The aim of this paper is to provide a
general upper bound for ex(N,B) for large order types B and sufficiently large N .

Since order types are preserved by affine transformations, one possible attempt
is to determine the maximum size of a configuration of [N ]2 without a homothetic
translation of a configuration B. This can be done by the multidimensional Sze-
merédi’s theorem [7, 9, 17, 18], which gives us ex(N,B) = o(N2). Unfortunately,
the bound provided by this approach is very weak. In order to see that, consider
the following inverse problem: Let N0(B,α) be the minimum integer N0 such that
if N ≥ N0, then every subset X ⊆ [N ]2 with |X| ≥ αN2 contains a copy of B. A
straightforward application of the multidimensional Szemerédi’s theorem implies
that N0(B,α) exists, but with an Ackermann-type upper bound. Our first result
provides a much better bound for N0(B,α).
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Theorem 1.1. Let B be an order type of size n in general position and 0 <
α < 1. Then

N0(B,α) ≤ (3 gr(B))3n log(1/α).

Since gr(B) is no more than doubly exponential in n, we obtain that in the
worst scenario N0(B,α) is doubly exponential in n and log(1/α). Also the upper
bound provided by Theorem 1.1 gives us a bound on ex(N,B) of the form N2−η,
where η = η(B) > 0.

Corollary 1.2. Let B be an order type of size n in general position. Then

ex(N,B) ≤ N2−η,

where η := (3n log(3 gr(B)))−1.

Proof. Write g := 3 gr(B) and let α = N−(3n log g)−1

. Thus, we have N =
g3n log(1/α) ≥ N0(B,α). By the definition of N0(B,α) we have ex(N,B) ≤ αN2.
Thus the corollary follows. �

We next show that, for some specific order types, we can get significantly im-
proved bounds. For convex configurations, we show that the extremal number is
linear in the side-length of the grid.

Theorem 1.3. Let B be the convex order type of size n. Then

ex(N,B) ≤ 2n+o(n)N.

The famous Erdős-Szekeres problem asks for the maximum number ES(N) of
points in general position which contain no copy of a convex N -gon. Erdős and
Szekeres [5] showed that this number is between 2N−2 ≤ ES(N) ≤

(
2N−4
N−2

)
+ 1.

A recent breakthrough due to Suk [20] gives ES(N) ≤ 2N+o(N). Let ES(N,B)
be the maximal size of a configuration in the plane with no copy of B and no
copy of a convex N -gon. We say that an order type B satisfies the Erdős-Hajnal
property with exponent c if ES(N,B) ≤ N c for every sufficiently large N . That is,
forbidding an extra order type B brings down the parameter ES(N) significantly.
This concept was introduced by Károlyi, Solymosi and Toth [14, 15] to generalize
the Erdős-Szekeres problem. They also give examples of order types that have the
Erdős-Hajnal property. As another example, we [11] showed that B-freeness is
efficiently testable for order types B that have the Erdős-Hajnal property.

We prove a stronger bound on ex(N,B) for order types B that satisfy the
Erdős-Hajnal property.

Theorem 1.4. Let the configuration B satisfy the Erdős-Hajnal property with
exponent c. Then there exists N0 such that for every N ≥ N0 we have

ex(N,B) ≤ 4N3/2(logN)2c+1.

In Section 2, we present the main idea of our method and give the proof of
Theorem 1.1. In Section 3, we prove Theorems 1.3 and 1.4. In what follows, we
make no attempt to optimize the calculations in our proofs.
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2. Main idea and proof of Theorem 1.1

2.1. A general approach for estimating N0(B,α)

Let B be an order type of size n in general position, 0 < α ≤ 1 a real number
and A a configuration, we say that A →α B if every α-proportion of A contains
a copy of B. That is, every subset A′ ⊆ A with |A′| ≥ α|A| contains a copy
of B. Given B and α, the problem of finding A such that A →α B is strongly
related to the parameter N0(B,α). The reason is the following averaging lemma,
which shows that a dense set on a grid contains a big proportion of any given
configuration.

Lemma 2.1 ([12]). Let N be an integer and A a configuration such that A ⊆
[N ]2. Then for every α-proportion X of [N ]2, there exists a translation A′ of A
such that X contains an α/4-proportion of A′, that is, |X ∩A′| ≥ α|A′|/4.

Applying Lemma 2.1 with a configuration A such that A →α/4 B and N =
gr(A) we obtain the following corollary.

Corollary 2.2. Let B be an order type and α > 0. If A is an order type such
that A→α/4 B, then N0(B,α) ≤ gr(A).

Thus, Corollary 2.2 gives us a general strategy for obtaining upper bounds
for N0(B,α). The strategy consists of two steps: given α > 0 and B, we first
construct a configuration A in the plane such that A →α B, and then we esti-
mate gr(A).

2.2. Iterative blow-ups and the proof of Theorem 1.1

We say that a configuration A is a k-blow-up of an n-point configuration B if there
exists a partition A = A1 ∪ · · · ∪ An with |A1| = · · · = |An| = k such that every
transversal is isomorphic to B, i.e., every set X = {x1, . . . , xn} with xi ∈ Ai is
isomorphic to B. A configuration A is a C-blow-up of an n-point configuration B
if A is a |C|-blow-up of B and every Ai ∼= C.

Since a class of equivalence of an order type in general position is open, there is
a simple way to construct blow-ups. Write B := {x1, . . . , xn} and let Bε(xi) be the
open ball of radius ε centered at xi. By considering ε sufficiently small, one can
notice that every transversal of Bε(x1)∪ · · · ∪Bε(xn) is isomorphic to B. Finally,
we can easily find a copy of any order type inside each Bε(xi), in particular C.
Therefore we obtain a C-blow-up of B.

Another remark is that this construction is not unique and therefore there
are more than one C-blow-ups of B. Because of this we let B ⊗ C be the set
of all C-blow-ups of B. We extend this notation for more than two configura-
tions. Let X1, . . . , Xd be d configurations with n1, . . . , nd points, respectively. We

define
⊗d

i=1Xi for d ≥ 2 as the set of order types A such that there exists a parti-

tion A = A1 . . . An1
with Aj ∈

⊗d
i=2Xi, j ∈ [n1] satisfying that every transversal

is isomorphic to X1.
For an order type B, the blow-up gives an example of configuration A such

that A→α B. Now we recall the following result from [12].
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Theorem 2.3 ([12]). Let B be a configuration in general position of size n ≥ 1,

0 < α < 1 a real number and d = dn log(1/α)e. Then for every A ∈
⊗d

i=1B we
have that A→α B.

Recall that every configuration can be embedded in a grid of doubly exponential
side-length. Therefore, Theorem 2.3 is enough to give an upper bound onN0(B,α).
However, one can improve the upper bound by constructing the blow-up manually
inside the grid. This is done by the following lemma, proved in [12].

Corollary 2.4 ([12]). Given an order type B in general position and d an inte-

ger, there exists a configuration A ∈
⊗d

i=1B satisfying that gr(A) ≤ (3 gr(B))2d−1.

Now Theorem 1.1 follows immediately from these auxiliary results.

Proof of Theorem 1.1. Given any order type B of size n ≥ 1 and α > 0, let

d = dn log(1/α)e. Take the configuration A ∈
⊗d

i=1B given by Corollary 2.4
satisfying that gr(A) ≤ (3 gr(B))2d−1. Since A →α B by Theorem 2.3, we obtain
by Corollary 2.2 that

N0(B,α) ≤ gr(A) ≤ (3 gr(B))2d−1 ≤ (3 gr(B))3n log(1/α). �

3. Specific order types

In Section 2 we discussed a general strategy to obtain upper bounds for N0(B,α).
The result can be significantly improved for certain order types. In this section
we give improved bounds for two particular cases: B convex and B satisfying the
Erdős-Hajnal property.

For B convex of size n, it turns out that A should be taken as a configuration
in general position of size 2n+o(n)/α. The reason is that any α-proportion of A
contains 2n+o(n) points and by the aforementioned result of Suk [20] it contains
a convex configuration of size n. Thus A →α B. To estimate gr(A) we use the
following result of Erdős, which relates to a puzzle by Dudeney (1917)1.

Theorem 3.1 ([19]). There exists a configuration A0 of m points in general
position such that gr(A) ≤ 2m.

Applying Corollary 2.2 to the configuration A0 given by the theorem above, we
obtain that N0(B,α) ≤ 2n+o(n)/α, which implies Theorem 1.3.

We now turn to the proof of Theorem 1.4. Thus, let a configuration B satisfying
the Erdős-Hajnal property be given. The idea is to construct a configuration A
with no large convex subsets that, at the same time, have reasonably small gr(A).
This can be achieved by the following result due to Duque, Fabila-Monroy and
Hidalgo-Toscano [6] on the grid parameter of the Erdős-Szekeres lower bound
construction.

Theorem 3.2 ([3]). The Erdős-Szekeres construction of n = 2t−2 points can
be realized in an integer grid of side-length O(n2(log n)3).

1The puzzle asks how to place 16 pawns on a chessboard, without allowing any lines of three

pawns.
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In the forthcoming full version of this paper we shall give another construction
with a simpler proof that can be used in the proof of Theorem 1.4. Here, we give
a proof of Theorem 1.4 based on Theorem 3.2.

Proof of Theorem 1.4. Let c ≥ 1 be the constant such that ES(N,B) ≤ N c for
every sufficiently large N . The Erdős-Szekeres construction is a configuration of
size n = 2t−2 with no convex sets of size t. Let A1 be the configuration given
by Theorem 3.2 with t = log((1/α)(log 1/α)2c), where α = α(N) will be chosen
in a moment. Then for every sufficiently small α, every α-proportion of A1 con-
tains α2t−2 = 1

4 (log(1/α))2c > tc ≥ ES(t, B) points. Therefore A1 →α B and we
conclude by Corollary 2.2 that

N0(B, 4α) ≤ gr(A1) = n2(log n)3 ≤ t322t ≤ (1/α)2(log(1/α))4c+2,

since α is small enough. Let α = (logN)2c+1/N1/2. Then, we have

N0(B, 4α) ≤ (1/α)2(log(1/α))4c+2 <
N(log(N1/2))4c+2

(logN)4c+2
< N.

By the definition of N0(B, 4α) we obtain ex(N,B) ≤ 4N3/2(logN)2c+1. �
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