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SYMBOLIC METHOD AND DIRECTED GRAPH
ENUMERATION

É. DE PANAFIEU and S. DOVGAL

Abstract. We introduce the arrow product, a systematic generating function tech-
nique for directed graph enumeration. It provides short proofs for previous results
of Gessel on the number of directed acyclic graphs and of Liskovets, Robinson
and Wright on the number of strongly connected directed graphs. We also recover
Robinson’s enumerative results on directed graphs where all strongly connected
components belong to a given family.

1. Introduction

The enumeration of two important digraph families, the Directed Acyclic Graphs
(DAGs) and the strongly connected digraphs, has been successfully approached at
least since 1969. Apparently, it was Liskovets [9, 10] who first deduced a recurrence
for the number of strongly connected digraphs and also introduced and studied
the concept of initially connected digraph, a helpful tool for their enumeration.
Subsequently, Wright [18] derived a simpler recurrence for strongly connected
digraphs and Liskovets [11] extended his techniques to the unlabeled case. Stanley
counted labeled DAGs in [17], and Robinson, in his paper [14], counted unlabeled
DAGs with a given number of sources, which was the culmination of a series of
publications he started in 1970 independently of Stanley. In the unlabeled case,
his approach is very much related to the Species Theory [1] which systematises the
usage of cycle index series. Robinson also announced [15] a simple combinatorial
explanation for the generating function of strongly connected digraphs in terms of
the cycle index function. Publications on the exact enumeration of digraphs slowed
down, until Gessel [3], in 1995, returned to the problem with a new approach,
based on graphic generating functions, and Robinson, independently, with a more
general approach [16]1. It allowed them to enumerate DAGs by marking sources
and sinks [4] and digraphs by marking source-like and sink-like components. The
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1The authors have discovered Robinson’s paper [16] after the body of this work was finished
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first English version paper we found containing the elegant expression for the
generating function of strongly connected digraphs recalled in Corollary 3.5 is [12].
It points to an earlier publication [11] in Russian, which contains the proof, see
also [16].

The symbolic method [1, 2] is a dictionary that translates combinatorial op-
erations into generating function relations. In particular, it allows to manipulate
the generating functions directly, avoiding working at the coefficient level. Our
contribution is twofold. Firstly, we describe a new operation, the arrow product
(Definition 2.2), which enriches the symbolic method. Secondly, we propose simple
proofs, similar to those of [16], for the generating functions of directed acyclic di-
graphs (DAGs), strongly connected graphs (SCCs), and digraphs where all SCCs
belong to a given family. Some variants are presented as well.

Similar techniques enabled precise description of simple graphs phase transition
(see e.g. [7]), so the techniques developed here might enable the study of digraphs
phase transition [13].

In this paper, we consider directed graphs (digraphs) with labeled vertices,
without loops or multiple edges. Two vertices u, v can be simultaneously linked
by both edges u → v and v → u. We also consider simple graphs which are
undirected graphs with neither multiple edges nor loops.

2. The symbolic approach

2.1. Definitions

Consider a sequence (an(w))
∞
n=0. Define the exponential generating function

(EGF) and the graphic generating function (GGF) (introduced in [3]) of the se-
quence (an(w))

∞
n=0 as

A(z, w) :=
∑
n≥0

an(w)
zn

n!
and A(z, w) :=

∑
n≥0

an(w)

(1 + w)(
n
2)

zn

n!
.

To distinguish EGF from GGF, the latter are written in bold characters. The
special generating functions of [16] correspond to GGFs with w = 1. The nth
coefficient of a series A(z) with respect to the variable z is denoted by [zn]A(z),
so A(z) =

∑
n≥0([x

n]A(x))zn.
The exponential Hadamard product of two series A(z) =

∑
n≥0 an

zn

n! and B(z) =∑
n≥0 bn

zn

n! is denoted by and defined as

A(z)�B(z) =
(∑

n≥0

an
zn

n!

)
�
(∑

n≥0

bn
zn

n!

)
:=
∑
n≥0

anbn
zn

n!
.

All Hadamard products are taken with respect to the variable z. The Hadamard
product can be used to convert between EGF and GGF (see Corollary 3.2). The ex-
ponential Hadamard product should not be confused with the ordinary Hadamard
product

∑
n([z

n]A(z))([zn]B(z))zn.
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If A is a certain family of digraphs or graphs, we can associate to it a sequence
of series (an(w))∞n=0, such that [wm]an(w) is equal to the number of elements in A
with n vertices and m directed edges. Consequently, we can associate both EGF
and GGF to the same family of digraphs or graphs.

An advantage of the symbolic method is its ability to keep track of a collection of
parameters in combinatorial objects. The two default parameters are the numbers
of vertices and edges, and the arguments z and w of a generating function F (z, w)
correspond to these parameters. As a generalization, we consider multivariate
generating functions

A(z, w,u) :=
∑
n,p

an,p(w)u
p z

n

n!
and A(z, w,u) :=

∑
n,p

an,p(w)u
p

(1 + w)(
n
2)

zn

n!
,

where u = (u1, · · · , ud) is the vector of variables, p = (p1, · · · , pd) denotes a vector
of parameters, and the notation up :=

∏
k u

pk

k is used. We say that the variable
uk marks its corresponding parameter pk, see [2].

2.2. Combinatorial operations

The next proposition recalls classic operations on EGFs (see [2]), which extend
naturally to GGFs.

Proposition 2.1. Consider two digraph (or graph) families A and B. The
EGF and GGF of the disjoint union of A and B are A(z, w) + B(z, w) and
A(z, w) + B(z, w). The EGF and GGF of the digraphs from A where one ver-
tex is distinguished are z∂zA(z) and z∂zA(z, w). The EGF of sets of digraphs
from A is eA(z,w). The EGF of pairs of digraphs (a, b) with a ∈ A and b ∈ B (re-
labeled so that the vertex labels of a and b are disjoint, see [2]) is A(z, w)B(z, w).
If a variable u marks the number of specific items in the EGF A(z, w, u) or the
GGF A(z, w, u) of the family A, then the EGF and GGF for the objects a ∈ A
which have a distinguished subset of these specific items are A(z, w, u + 1) and
A(z, w, u+1). Replacing u 7→ u−1 corresponds to an inclusion-exclusion process.

The next definition and proposition translate the combinatorial interpretation
of the product of GGFs, already mentioned by [16], into the symbolic method
framework. Gessel also used it implicitely in several proofs (e.g. [4]) at coeffi-
cient level, but did not express it at the generating function level. However, a
combinatorial interpretation of the exponential of GGFs can be found in [3, 5].

Definition 2.2. We define the arrow product of A and B as the family C of
pairs (a, b), with a ∈ A, b ∈ B (relabeled so that a and b have disjoint labels),
where an arbitrary number of edges oriented from vertices of a to vertices of b are
added (see Figure 1).

Proposition 2.3. The GGF of the arrow product of the families A and B is
equal to A(z, w)B(z, w).
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Figure 1. The arrow prod-
uct. The vertex labels have

been omitted.

Figure 2. Symbolic method
for DAG.

Figure 3. Marking a subset of
source-like SCC.

Proof. Consider two digraph families A and B, with associated sequences
(an(w)), (bn(w)). Then the sequence associated to the GGF A(z, w)B(z, w) is

cn(w) = (1 + w)(
n
2)n![zn]

(∑
k

ak(w)

(1 + w)(
k
2)

zk

k!

)(∑
`

b`(w)

(1 + w)(
`
2)

z`

`!

)
=

(
n

k

) ∑
k+`=n

(1 + w)k`ak(w)b`(w).

This series has the following combinatorial interpretation: it is the generating
function (the variable w marks the edges) of digraphs with n vertices, obtained by
• choosing digraphs a of size k in A, b of size ` in B, such that k + ` = n,
• choosing a subset of {1, . . . , n} for the labels of a (and b receives the com-

plementary set for its labels),
• for any vertices u in a, v in b, the oriented edge (u, v) is or not added.

Hence, (cn(w)) is the sequence associated to the arrow product of A and B. �

3. Generating functions from the symbolic method

We start by defining the building bricks for the symbolic method of directed graphs.

Proposition 3.1. The EGF of all graphs G(z, w), GGF of all digraphs D(z, w),
and GGF of sets Set(z, w) (labeled graphs that contain no edge) are

G(z, w) = D(z, w) =
∑
n≥0

(1 + w)(
n
2) z

n

n!
and Set(z, w) =

∑
n≥0

1

(1 + w)(
n
2)

zn

n!
.

Proof. Consider a graph with n vertices. Each unordered pair of distinct vertices
is either linked by an edge, or not. Thus, the sequence of series associated to the
family of graphs and its EGF are

gn(w) = (1 + w)(
n
2), G(z, w) =

∑
n≥0

gn(w)
zn

n!
=
∑
n≥0

(1 + w)(
n
2) z

n

n!
.

In a digraph with n vertices, each ordered pair of distinct vertices is either linked
by an oriented edge, or not. So the sequence of series associated to the family of
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digraphs and its GGF are

dn(w) = (1 + w)n(n−1), D(z, w) =
∑
n≥0

dn(w)

(1 + w)(
n
2)

zn

n!
=
∑
n≥0

(1 + w)(
n
2) z

n

n!
.

There is exactly one labeled graph without any edges, so the sequence of series
associated to the set family and its GGF are

setn(w) = 1, Set(z, w) =
∑
n≥0

1

(1 + w)(
n
2)

zn

n!
.

�

Corollary 3.2. The EGF and GGF of a family A are linked by the relations

A(z, w) = G(z)�A(z, w) and A(z) = Set(z, w)�A(z, w).

Proof. Consider a family A with sequence of series (an(w)). By definition of
the EGF, GGF and exponential Hadamard product, we have

G(z)�A(z) =

(∑
n

(1 + w)(
n
2) z

n

n!

)
�
∑
n

an(w)

(1 + w)(
n
2)

zn

n!
=
∑
n

an(w)
zn

n!
= A(z),

and similarly

Set(z)�A(z) =

(∑
n

1

(1 + w)(
n
2)

zn

n!

)
�
∑
n

an(w)
zn

n!
=
∑
n

an(w)

(1 + w)(
n
2)

zn

n!
= A(z).

�

3.1. Generating functions of various digraph families

The next proposition comes from [4, 14, 17]. We present a proof relying on the
arrow product.

Proposition 3.3. The GGF of directed acyclic graphs (DAGs) with an addi-
tional variable u marking the sources (i.e. there are no oriented edge pointing to
those vertices) is

DAG(z, w, u) =
Set((u− 1)z, w)

Set(−z, w)
.

Proof. The GGF of DAGs where each source is either marked, or left unmarked
by the variable u, is DAG(z, w, u+ 1) (see Theorem 2.1). Such a DAG is decom-
posed as the arrow product of a set (the marked sources) with a digraph (Figure 2),
so

DAG(z, w, u+ 1) = Set(zu,w)DAG(z, w).

Observe that DAG(z, w, 0) is the GGF of DAGs without any source. The only
DAG satisfying this property is the empty DAG, soDAG(z, w, 0) = 1. Taking u =
−1 gives 1 = Set(−z, w)DAG(z, w), so DAG(z, w) = 1/Set(−z, w). Replacing u
with u− 1 gives DAG(z, w, u) = Set((u− 1)z, w)/Set(−z, w). This second proof
also illustrates the translation into the generating function world of the inclusion-
exclusion principle. �
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Let us recall that the condensation of a digraph is the directed acyclic graph
(DAG) obtained from it by contracting each strongly connected component (SCC)
to a vertex. The SCCs of the digraph corresponding to sources of the condensation
are called source-like SCCs. The proof from Theorem 3.3 for expressing the gen-
erating function of DAGs with marked sources is now extended to digraphs with
marked source-like components and SCCs belonging to a given family (similar
proof published by [16]).

Theorem 3.4. Consider a nonempty family A of SCCs (the empty digraph
is not strongly connected by convention, so it cannot belong to A). The GGF of
digraphs where all SCCs belong to A is equal to

DA(z, w) =
1

Set(w, z)� e−A(z,w)
.

The GGF of the same digraph family where an additional variable u marks the
source-like components is

DA(z, w, u) =
Set(w, z)� e(u−1)A(z,w)

Set(w, z)� e−A(z,w)
.

Proof. The GGF of the digraph family considered, where each source-like com-
ponent is either marked, or left unmarked by the variable u, is DA(z, w, u + 1)
(see Theorem 2.1). Such a digraph is decomposed as the arrow product of a set of
SCCs from A (the marked source-like components) with a digraph, so

DA(z, w, u+ 1) =
(
Set(z, w)� euA(z,w)

)
DA(z, w).

Taking u = −1 gives

1 =
(
Set(z, w)� e−A(z,w)

)
DA(z, w), so DA(z, w) =

(
Set(z, w)� e−A(z,w)

)−1
.

Replacing u with u − 1 gives DA(z, w, u) =
(
Set(z, w)� e(u−1)A(z,w)

)
DA(z, w).

�

When the family A contains only the SCC with one vertex and no edges, so
A(z, w) = z, then DA(z, w) becomes the GGF of DAGs. Thus, Theorem 3.4
generalizes Theorem 3.3. Several interesting corollaries follow. The first one is our
new proof for the EGF of strongly connected digraphs (original result from [11,
12, 16]).

Corollary 3.5. The exponential generating function of strongly connected di-
graphs is equal to

SCC(z, w) = − log

(
G(z, w)� 1

G(z, w)

)
.

Proof. WhenA is the family of all SCCs, the first result of Theorem 3.4 becomes

D(z, w) =
1

Set(w, z)� e−SCC(z,w)
.
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By inversion and Hadamard product with G(z, w), we obtain

e−SCC(z,w) = G(z, w)� 1

D(z, w)
.

Replacing D(z, w) with G(z, w) (see Theorem 3.1) and taking the logarithm gives
the final result. �

This formula enables fast computation of the numbers of strongly connected
digraphs: O(nm log(n+m)) arithmetic operations to compute the array of SCCs
with at most n vertices and at most m edges, O(n log(n)) for the SCCs with at
most n vertices without edge constraint. The next corollary might prove useful to
investigate the birth of the giant SCC in random digraph, following [7].

Corollary 3.6. Consider a nonempty SCC family B. The GGF of digraphs
with a variable u marking the number of SCCs from B is

1

Set(w, z)� e(1−u)B(z,w)−SCC(z,w)
.

Proof. When A is the family of all SCCs, with an additional variable u marking
the SCCs from B, then A(z, w, u) = SCC(z, w)+(u−1)B(z, w), and the first result
of Theorem 3.4 finishes the proof. �

3.2. Initially connected digraphs

Initially connected digraphs are defined as digraphs where any vertex is reachable
from the vertex with label 1 via an oriented path. Their analysis has been linked to
the study of SCCs, so we provide or recall some results on them for completeness.

Lemma 3.7. For a given number of vertices and edges, initially connected di-
graphs with one distinguished vertex are in bijection with digraphs which have a
unique source-like component, and where one vertex of that component is distin-
guished.

Proof. Let A and B denote the two digraph families from the lemma. Consider
a digraph a ∈ A. Since a is initially connected, it contains exactly one source-
like SCC. If the distinguished vertex belongs to the source-like SCC, then a ∈ B.
Otherwise, by switching the distinguished vertex with the vertex of label 1, we
obtain a digraph from B. Reciprocally, if the distinguished vertex of a digraph
b ∈ B is in the same SCC as the vertex 1, then b ∈ A. Otherwise, a digraph from
A is obtained by switching those two vertices. �

The following lemma provides a relation between initially connected digraphs
and connected graphs ([8], proof also available in the conclusion of [7]).

Lemma 3.8. The GGF of initially connected digraphs is equal to the EGF of
connected graphs

IC(z, w) = C(z, w) = log(G(z, w)).
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4. Conclusion

Many digraph families can be enumerated using the techniques presented, e.g.
marking sinks in DAGs and sink-like SCCs in digraphs. The next challenge is
SCCs and DAGs asymptotics and, following [7], digraphs phase transition.
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