NEW PROPERTIES OF PROLONGATIONS OF LINEAR CONNECTIONS ON WEIL BUNDLES

B. V. NKOU, B. G. R. BOSSOTO AND E. OKASSA

ABSTRACT. Let M be a paracompact smooth manifold, A be a Weil algebra and M^A be the associated Weil bundle. If ∇ is a linear connection on M, we give equivalent definition and the properties of the prolongation ∇^A to M^A equivalent to the prolongation defined by Morimoto. When (M, \mathbf{g}) is a pseudo-riemannian manifold, we show that the symmetric tensor \mathbf{g}^A of type (0,2) defined by Okassa is nondegenerated. At the end, we show that, if ∇ is a Levi-Civita connection on (M, \mathbf{g}) , then ∇^A is torsion-free and \mathbf{g}^A is parallel with respect to ∇^A .

1. Introduction

In what follows, we denote A a local algebra (in the sense of André Weil) or simply Weil algebra, M a smooth manifold, $C^{\infty}(M)$ the algebra of smooth functions on M and M^A the manifold of infinitely near points of kind A [10]. The triplet (M^A, π, M) is a bundle called bundle of infinitely near points or simply Weil bundle.

If $f: M \to \mathbb{R}$ is a smooth function, then the application

$$f^A \colon M^A \to A, \qquad \xi \mapsto \xi(f),$$

is also a smooth function. The set $C^{\infty}(M^A,A)$ of smooth functions on M^A with values in A is a commutative algebra over A with unit and the application

$$C^{\infty}(M) \to C^{\infty}(M^A, A), \quad f \mapsto f^A,$$

is an injective homomorphism of algebras. Then, we have

$$(f+g)^A = f^A + g^A;$$
 $(\lambda \cdot f)^A = \lambda \cdot f^A;$ $(f \cdot g)^A = f^A \cdot g^A.$

The map

$$C^{\infty}(M^A) \times A \to C^{\infty}(M^A, A), \qquad (F, a) \mapsto F \cdot a \colon \xi \mapsto F(\xi) \cdot a$$

Received September 25, 2014.

2010 Mathematics Subject Classification. Primary 58A20, 58A32.

Key words and phrases. Weil bundle; near point; Weil algebra; Levi-Civita connexion.

is bilinear and induces one and only one linear map

$$\sigma \colon C^{\infty}(M^A) \otimes A \to C^{\infty}(M^A, A).$$

When $(a_{\alpha})_{\alpha=1,2,...,\dim A}$ is a basis of A and $(a_{\alpha}^*)_{\alpha=1,2,...,\dim A}$ is a dual basis of the basis $(a_{\alpha})_{\alpha=1,2,...,\dim A}$, the application

$$\sigma^{-1} \colon C^{\infty}(M^A, A) \to A \otimes C^{\infty}(M^A), \qquad \varphi \mapsto \sum_{\alpha = 1}^{\dim A} a_{\alpha} \otimes (a_{\alpha}^* \circ \varphi),$$

is an isomorphism of A-algebras. That isomorphism does not depend of a chosen basis and the application

$$\gamma \colon C^{\infty}(M) \to A \otimes C^{\infty}(M^A), \qquad f \mapsto \sigma^{-1}(f^A)$$

is a homomorphism of algebras.

If (U,φ) is a local chart of M with local coordinate system (x_1,\ldots,x_n) , the map

$$\varphi^A \colon U^A \to A^n, \qquad \xi \mapsto (\xi(x_1), \dots, \xi(x_n))$$

is a bijection from U^A onto an open set of A^n . In addition, if $(U_i, \varphi_i)_{i \in I}$ is an atlas of M^A , then $(U_i^A, \varphi_i^A)_{i \in I}$ is also an A-atlas of M^A [2].

1.1. Vector fields on M^A

In [6], we presented another characterization of a vector field on M^A through the above theorem and also gave a writing of a vector field on M^A in coordinate neighborhood system.

Thus, we have the next two theorems.

Theorem 1. The following assertions are equivalent:

- 1. A vector field on M^A is a differentiable section of the tangent bundle (TM^A, π_{M^A}, M^A) .
- 2. A vector field on M^A is a derivation of $C^{\infty}(M^A)$.
- 3. A vector field on M^A is a derivation of $C^{\infty}(M^A, A)$ which is A-linear.
- 4. A vector field on M^A is a linear map $X: C^{\infty}(M) \to C^{\infty}(M^A, A)$ such that

$$X(f \cdot g) = X(f) \cdot g^A + f^A \cdot X(g)$$
 for any $f, g \in C^{\infty}(M)$.

We verify that the $C^{\infty}(M^A,A)$ -module $\mathfrak{X}(M^A)$ of vector fields on M^A is a Lie algebra over A.

Theorem 2. The map

$$\mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \to \mathfrak{X}(M^A), \qquad (X,Y) \mapsto [X,Y] = X \circ Y - Y \circ X,$$

is skew-symmetric A-bilinear and defines a structure of A-Lie algebra over $\mathfrak{X}(M^A)$.

In the following, we look at a vector field as an A-linear map

$$X \colon C^{\infty}(M^A, A) \to C^{\infty}(M^A, A)$$

such that

$$X(\varphi \cdot \psi) = X(\varphi) \cdot \psi + \varphi \cdot X(\psi)$$
 for any $\varphi, \psi \in C^{\infty}(M^A, A)$,

that is to say,

$$\mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)].$$

1.2. Prolongations to M^A of vector fields on M

Proposition 3. If $\theta: C^{\infty}(M) \to C^{\infty}(M)$ is a vector field on M, then there exists one and only one A-linear derivation

$$\theta^A \colon C^{\infty}(M^A, A) \to C^{\infty}(M^A, A)$$

such that $\theta^A(f^A) = [\theta(f)]^A$ for any $f \in C^{\infty}(M)$. Thus, if $\theta, \theta_1, \theta_2$ are vector fields on M and $f \in C^{\infty}(M)$, then we have

(1)
$$(\theta_1 + \theta_2)^A = \theta_1^A + \theta_2^A$$
; $(f \cdot \theta)^A = f^A \cdot \theta^A$ and $[\theta_1, \theta_2]^A = [\theta_1^A, \theta_2^A]$.

2. Prolongation of linear connections on Weil bundles

In this section, if ∇ [3] is a linear connection on M, we give equivalent definition and the properties of the prolongation ∇^A to M^A equivalent to the prolongation $\overline{\nabla}$ defined by Morimoto [5]. When (M, \mathbf{g}) is a pseudo-riemannian manifold, we show that the symmetric tensor \mathbf{g}^A of type (0, 2) defined by Okassa is nondegenerated [7]. At the end, we show that if ∇ is a Levi-Civita connection on (M, \mathbf{g}) , then ∇^A is torsion-free and \mathbf{g}^A is parallel with respect to ∇^A .

According to [6], if $X: M^A \to TM^A$ is a vector field on M^A and U is a coordinate neighborhood of M with the coordinate neighborhood (x_1, \ldots, x_n) , then there exist some functions $f_i \in C^{\infty}(U^A, A)$ for $i = 1, \ldots, n$ such that

$$X_{|U^A} = \sum_{i=1}^n f_i \left(\frac{\partial}{\partial x_i}\right)^A.$$

When (U,φ) is a local chart and (x_1,\ldots,x_n) his local coordinate system, then the map

$$U^A \to A^n, \qquad \xi \mapsto (\xi(x_1), \dots, \xi(x_n)),$$

is a diffeomorphism from U^A onto an open set of A^n . As

$$\left(\frac{\partial}{\partial x_i}\right)^A: C^\infty(U^A, A) \to C^\infty(U^A, A)$$

is such that $\left(\frac{\partial}{\partial x_i}\right)^A(x_j^A) = \delta_{ij}$, we can denote $\frac{\partial}{\partial x_i^A} = \left(\frac{\partial}{\partial x_i}\right)^A$. If $v \in T_\xi M^A$, we can write

$$v = \sum_{i=1}^{n} v(x_i^A) \left| \frac{\partial}{\partial x_i^A} \right|_{\varepsilon}.$$

If $X \in \mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)]$, we have

$$X|_{U^A} = \sum_{i=1}^n f_i \frac{\partial}{\partial x_i^A}$$

with $f_i \in C^{\infty}(U^A, A)$ for i = 1, 2, ..., n.

2.1. Equivalent definitions of derivation laws in $\mathfrak{X}(M^A)$.

In this subsection, we give the definitions of a derivation law in $\mathfrak{X}(M^A) = \operatorname{Der}_{\mathbb{R}}[C^{\infty}(M^A)]$ and a derivation law in $\mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)]$. Let R be an algebra over a commutative field \mathbb{K} . We recall that a derivation law in a R-module P is a map

$$D \colon \operatorname{Der}_{\mathbb{K}}(R) \to \operatorname{End}_{\mathbb{K}}(P)$$

such that:

- 1. D is R-linear;
- 2. For any $d \in \operatorname{Der}_{\mathbb{K}}(R)$, the K-endomorphism $D_d \colon P \to P$ satisfies

$$D_d(r \cdot p) = d(r) \cdot p + r \cdot D_d(p)$$

for any $r \in R$ and any $p \in P$, see [4].

We also recall that a derivation law in the $C^{\infty}(M)$ -module $\mathfrak{X}(M) = \mathrm{Der}_{\mathbb{R}}[C^{\infty}(M)]$ of vector fields on M is a map

$$D\colon \mathfrak{X}(M)=\mathrm{Der}_{\mathbb{R}}[C^{\infty}(M)]\to \mathrm{End}_{\mathbb{R}}[\mathfrak{X}(M)=\mathrm{Der}_{\mathbb{R}}[C^{\infty}(M)]]$$

such that:

- 1. D is $C^{\infty}(M)$ -linear;
- 2. For any $\theta \in \mathfrak{X}(M)$, the \mathbb{R} -endomorphism $D_{\theta} \colon \mathfrak{X}(M) \to \mathfrak{X}(M)$ satisfies

$$D_{\theta}(f \cdot \mu) = \theta(f) \cdot \mu + f \cdot D_{\theta}(\mu)$$

for any $f \in C^{\infty}(M)$, and any $\mu \in \mathfrak{X}(M^A)$.

Derivation law defines a linear connection on M, see [9].

Definition 1. A derivation law in $\mathfrak{X}(M^A) = \operatorname{Der}_{\mathbb{R}}[C^{\infty}(M^A)]$ is a map

$$D \colon \mathfrak{X}(M^A) = \mathrm{Der}_{\mathbb{R}}[C^{\infty}(M^A)] \to \mathrm{End}_{\mathbb{R}}\left[\mathfrak{X}(M^A) = \mathrm{Der}_{\mathbb{R}}\left[C^{\infty}(M^A)\right]\right]$$

such that:

- 1. D is $C^{\infty}(M^A)$ -linear;
- 2. For any $X \in \mathfrak{X}(M^A)$, the \mathbb{R} -endomorphism $D_X \colon \mathfrak{X}(M^A) \to \mathfrak{X}(M^A)$ satisfies

$$D_X(F \cdot Y) = X(F) \cdot Y + F \cdot D_X(Y)$$

for any $F \in C^{\infty}(M^A)$ and any $Y \in \mathfrak{X}(M^A)$.

ANOTHER DEFINITION.

In what follows, we denote $\mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)]$. We denote Find $\mathfrak{P}(M^A)$ the set of A endomorphisms of $\mathfrak{P}(M^A)$

We denote $\operatorname{End}_A[\mathfrak{X}(M^A)]$ the set of A-endomorphisms of $\mathfrak{X}(M^A)$, i.e., the set of maps from $\mathfrak{X}(M^A)$ into $\mathfrak{X}(M^A)$ which are linear over A.

Proposition 4. The set $\operatorname{End}_A[\mathfrak{X}(M^A)]$ is a $C^{\infty}(M^A, A)$ -module.

Definition 2. A derivation law in $\mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)]$ is a map

$$D \colon \mathfrak{X}(M^A) \to \operatorname{End}_A \left[\mathfrak{X}(M^A) \right]$$

such that

- 1. D is $C^{\infty}(M^A, A)$ -linear;
- 2. For any $X \in \mathfrak{X}(M^A)$, the A-endomorphism $D_X : \mathfrak{X}(M^A) \to \mathfrak{X}(M^A)$ verifies

$$D_X(\varphi \cdot Y) = X(\varphi) \cdot Y + \varphi \cdot D_X(Y)$$

for any $\varphi \in C^{\infty}(M^A)$ and any $Y \in \mathfrak{X}(M^A)$.

2.2. The new statement of the Morimoto's prolongation of a linear connection on ${\cal M}$

Theorem 5. If ∇ is a linear connection on M, then there exists one and only one linear application

$$\nabla^A \colon \mathfrak{X}(M^A) \to \operatorname{End}_A[\mathfrak{X}(M^A)], \qquad X \mapsto \nabla^A_X,$$

such that

$$\nabla^{A}_{\theta^{A}}\eta^{A} = (\nabla_{\theta}\eta)^{A}$$

for any $\theta, \eta \in \mathfrak{X}(M)$.

Proof. If $X \in \mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)]$, then

$$X(f^A) = \sum_{\alpha=1}^{\dim A} X'(a_\alpha^* \circ f^A) \cdot a_\alpha = \sum_{\alpha=1}^{\dim A} X(a_\alpha^* \circ f^A) \cdot a_\alpha$$

with $X' \in \mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A)]$. Let

$$\overline{\nabla} \colon \mathfrak{X}(M^A) = \mathrm{Der}_{\mathbb{R}}[C^{\infty}(M^A)] \to \mathrm{End}_{\mathbb{R}}\left[\mathfrak{X}(M^A) = \mathrm{Der}_{\mathbb{R}}[C^{\infty}(M^A)]\right]$$

be the Morimoto's prolongation to M^A of the linear connection ∇ on M. We denote

$$\nabla^A \colon \mathfrak{X}(M^A) = \mathrm{Der}_A[C^\infty(M^A,A)] \to \mathrm{End}_A\left[\mathfrak{X}(M^A) = \mathrm{Der}_A[C^\infty(M^A,A)]\right]$$

the same derivation law in $\mathfrak{X}(M^A) = \operatorname{Der}_A[C^{\infty}(M^A, A)]$. Thus, for any $\theta, \eta \in \mathfrak{X}(M)$, we have

$$\left[\nabla_{\theta^{A}}^{A}\eta^{A}\right](f^{A}) = \sum_{\alpha=1}^{\dim A} \left[\nabla_{\theta^{A}}^{A}\eta^{A}\right]' \left(a_{\alpha}^{*} \circ f^{A}\right) \cdot a_{\alpha} = \sum_{\alpha=1}^{\dim A} \left[\nabla_{(\theta^{A})'}^{A}(\eta^{A})'\right] \left(a_{\alpha}^{*} \circ f^{A}\right) \cdot a_{\alpha}$$

$$= \sum_{\alpha=1}^{\dim A} \left[\left(\nabla_{\theta}\eta\right)^{A}\right]' \left(a_{\alpha}^{*} \circ f^{A}\right) \cdot a_{\alpha}$$

$$= \sum_{\alpha=1}^{\dim A} \left[\left(\nabla_{\theta}\eta\right)^{A}\right] \left(a_{\alpha}^{*} \circ f^{A}\right) \cdot a_{\alpha}$$

$$= \left[\left(\nabla_{\theta}\eta\right)^{A}\right] \left(f^{A}\right)$$

for any $f \in C^{\infty}(M)$, hence,

$$\nabla_{\theta^A}^A \eta^A = (\nabla_\theta \eta)^A.$$

3. Prolongation of tensors to \mathbf{M}^A

We denote $T^{p,q}(M^A)$ the $C^{\infty}(M^A, A)$ -module of tensors of type (p, q) on M^A , i.e., the $C^{\infty}(M^A, A)$ -module of multilinear applications of

$$\left[\mathfrak{X}\left(M^{A}\right)\right]^{q}\to\otimes_{C^{\infty}\left(M^{A},A\right)}^{p}\mathfrak{X}\left(M^{A}\right)$$

and

$$W^{p,q}\left(M^{A}\right) = \left\{\beta \in \mathfrak{L}^{q}\left(\mathfrak{X}\left(M\right), \otimes_{C^{\infty}\left(M^{A}, A\right)}^{p} \mathfrak{X}\left(M^{A}\right)\right) \mid \beta\left(f_{1}\theta_{1}, \dots, f_{q}\theta_{q}\right) = f_{1}^{A} \cdots f_{q}^{A}\beta\left(\theta_{1}, \dots, \theta_{q}\right)\right\}$$

is a $C^{\infty}(M^A, A)$ -module. Let

$$\gamma \colon C^{\infty}(M) \to C^{\infty}(M^A, A), \qquad f \to f^A; \ \mathfrak{X}(M) \to \mathfrak{X}(M^A), \qquad \theta \to \theta^A.$$

Theorem 6. The map

$$\kappa \colon T^{p,q}(M^A) \to W^{p,q}\left(M^A\right), \qquad \alpha \to \alpha \circ \gamma^q \colon (\theta_1, \dots, \theta_q) \to \alpha \left(\theta_1^A, \dots, \theta_q^A\right),$$
 is an isomorphism of $C^{\infty}(M^A, A)$ -modules.

Proof. 1. For any
$$\alpha_1, \alpha_2 \in T^{p,q}(M^A)$$
, we have
$$[\kappa (\alpha_1 + \alpha_2)] (\theta_1, \dots, \theta_q) = [\alpha_1 + \alpha_2] (\theta_1^A, \dots, \theta_q^A)$$

$$= \alpha_1 (\theta_1^A, \dots, \theta_q^A) + \alpha_2 (\theta_1^A, \dots, \theta_q^A)$$

$$= [\kappa (\alpha_1)] (\theta_1, \dots, \theta_q) + [\kappa (\alpha_2)] (\theta_1, \dots, \theta_q)$$

$$= [\kappa (\alpha_1) + \kappa (\alpha_2)] (\theta_1, \dots, \theta_q).$$

2. For any $\alpha \in T^{p,q}(M^A)$ and any $\varphi \in C^{\infty}(M^A, A)$, we have

$$\begin{aligned} \left[\kappa\left(\varphi\alpha\right)\right]\left(\theta_{1},\ldots,\theta_{q}\right) &= \left[\varphi\alpha\right]\left(\theta_{1}^{A},\ldots,\theta_{q}^{A}\right) \\ &= \varphi\alpha\left(\theta_{1}^{A},\ldots,\theta_{q}^{A}\right) \\ &= \varphi\left[\kappa\left(\alpha\right)\right]\left(\theta_{1},\ldots,\theta_{q}\right). \end{aligned}$$

Lemma 7. Any $\alpha \in W^{p,q}(M^A)$ has a restriction at any open set U of M, i.e., if

$$\theta_1 \mid_U = \theta_2 \mid_U \ldots = \theta_q \mid_U,$$

then

$$\alpha (\theta_1, \dots, \theta_q) \mid_{U^A} = 0.$$

Proof. Let $\xi \in U^A$. Let $x_0 = \pi_A(\xi) \in U$ be origin of ξ .

There exist a function $f \in C^{\infty}(M)$ and an open neighborhood V of $x_0, V \subset U$, such that f = 0 on V and f = 1 on $\mathcal{C}U$.

For any $x \in U$, $(f\theta_i)(x) = f(x) \cdot \theta_i(x) = \theta_i(x)$ and for any $x \in \mathcal{C}U$, $(f\theta_i)(x) = f(x) \cdot \theta_i(x) = \theta_i(x)$; then $f\theta_i = \theta_i$ for any $i = 1, 2, \ldots, q$.

We have $f^A = 0$ on V^A and $f^A = 1$ on CU^A . Thus

$$[\alpha (\theta_1, \dots, \theta_q)] (\xi) = [\alpha (f_1 \theta_1, \dots, f_q \theta_q)] (\xi)$$
$$= f_1^A (\xi) \cdots f_q^A (\xi) [\alpha (\theta_1, \dots, \theta_q)] (\xi).$$

As ξ is whichever in U^A , we get

$$\alpha (\theta_1, \dots, \theta_q) \mid_{U^A} = 0.$$

For an open neighborhood U of M, we have

$$\alpha_{U} \colon \left[\mathfrak{X} \left(U^{A} \right) \right]^{q} \to \otimes_{C^{\infty}(U^{A}, A)}^{p} \mathfrak{X} \left(U^{A} \right)$$

with

$$\alpha_U(\theta_1 \mid_U, \dots, \theta_q \mid_U) = \alpha(\theta_1, \dots, \theta_q) \mid_{U^A}.$$

Proposition 8. For a coordinate neighborhood $U \subset M$ with the coordinate system (x_1, \ldots, x_n) and $\alpha \in W^{p,q}(M^A)$, then the map

$$\beta_{U^A} : \left[\mathfrak{X} \left(U^A \right) \right]^q \to \otimes_{C^{\infty}(U^A, A)}^p \mathfrak{X} \left(U^A \right)$$

such that

$$\beta_{U^A} \left(\sum_{i_1} f_{i_1}^1 \left(\frac{\partial}{\partial x_{i_1}} \right)^A, \dots, \sum_{i_q} f_{i_q}^q \left(\frac{\partial}{\partial x_{i_q}} \right)^A \right) = \sum_{i_1, \dots, i_q} f_{i_1}^1 \cdots f_{i_q}^q \alpha_U \left(\frac{\partial}{\partial x_{i_1}}, \dots, \frac{\partial}{\partial x_{i_q}} \right)$$

is $C^{\infty}(U^A, A)$ -multilinear. Therefore, β_{U^A} is a tensor of type (p, q) on U^A .

Proof. We verify there exists a tensor β : $\left[\mathfrak{X}\left(M^{A}\right)\right]^{q} \to \otimes_{C^{\infty}(M^{A},A)}^{p}\mathfrak{X}\left(M^{A}\right)$ such that $\beta_{|U^{A}} = \beta_{U^{A}}$. Thus

$$\beta \left(\theta_{1}^{A}, \dots, \theta_{q}^{A}\right)_{|U^{A}} = \beta_{|U^{A}} \left(\theta_{1}^{A} \mid_{U^{A}}, \dots, \theta_{q}^{A} \mid_{U^{A}}\right)$$

$$= \beta_{U^{A}} \left(\theta_{1}^{A} \mid_{U^{A}}, \dots, \theta_{q}^{A} \mid_{U^{A}}\right)$$

$$= \beta_{U^{A}} \left(\sum_{i_{1}} \left(p_{i_{1}}^{1}\right)^{A} \left(\frac{\partial}{\partial x_{i_{1}}}\right)^{A}, \dots, \sum_{i_{q}} \left(p_{i_{q}}^{q}\right)^{A} \left(\frac{\partial}{\partial x_{i_{q}}}\right)^{A}\right)$$

$$= \sum_{i_{1}, \dots, i_{q}} \left(p_{i_{1}}^{1}\right)^{A} \cdots \left(p_{i_{q}}^{q}\right)^{A} \beta_{U^{A}} \left(\left(\frac{\partial}{\partial x_{i_{1}}}\right)^{A}, \dots, \left(\frac{\partial}{\partial x_{i_{q}}}\right)^{A}\right)$$

$$= \sum_{i_{1}, \dots, i_{q}} \left(p_{i_{1}}^{1}\right)^{A} \cdots \left(p_{i_{q}}^{q}\right)^{A} \alpha_{U} \left(\frac{\partial}{\partial x_{i_{1}}}, \dots, \frac{\partial}{\partial x_{i_{q}}}\right)$$

$$= \alpha_{U} \left(\sum_{i_{1}} p_{i_{1}}^{1} \frac{\partial}{\partial x_{i_{1}}}, \dots, \sum_{i_{q}} p_{i_{q}}^{q} \frac{\partial}{\partial x_{i_{q}}}\right)$$

$$= \alpha_{U} \left(\theta_{1} \mid_{U}, \dots, \theta_{q} \mid_{U}\right)$$

$$= \alpha \left(\theta_{1}, \dots, \theta_{q}\right)_{|_{U^{A}}}.$$

As U is whichever, we deduce that

$$\beta\left(\theta_{1}^{A},\ldots,\theta_{q}^{A}\right)=\alpha\left(\theta_{1},\ldots,\theta_{q}\right).$$

Proof of the theorem. $[\sigma(\alpha)](\theta_1,\ldots,\theta_q) = \alpha(\theta_1^A,\ldots,\theta_q^A)$, for $\alpha' \colon [\mathfrak{X}(M)]^q \to \bigotimes_{C^{\infty}(M^A,A)}^p \mathfrak{X}(M^A)$, we have

$$\beta\left(\theta_{1}^{A},\ldots,\theta_{q}^{A}\right)=\alpha\prime\left(\theta_{1},\ldots,\theta_{q}\right),$$

i.e., for any $\alpha' \in W^{p,q}(M^A)$, there exists one and only one $\alpha \in T^{p,q}(M^A)$ such that

$$\alpha\left(\theta_{1}^{A},\ldots,\theta_{q}^{A}\right)=\alpha\prime\left(\theta_{1},\ldots,\theta_{q}\right).$$

Theorem 9. If $\alpha \in T^{p,q}(M)$ is a tensor of type (p,q) on M, then there exists one and only one tensor α^A of type (p,q) on M^A such that $\alpha^A \circ \gamma^q = \binom{p}{\otimes \gamma} \circ \alpha$.

Corollary 10. If α is a tensor of type (0,p) (of type (1,p), respectively), then there exists one and only one tensor α^A of type (0,p) (of type (1,p), respectively), such that

$$\alpha\left(\theta_{1}^{A},\ldots,\theta_{q}^{A}\right)=\left[\alpha\left(\theta_{1},\ldots,\theta_{q}\right)\right]^{A}$$

for all $\theta_1, \ldots, \theta_q$.

4. Prolongation of the Levi-Civita connection

In this section, we consider (M, \mathbf{g}) a pseudo-riemannian manifold. In what follows we study the prolongation of connections to M^A deduced from the Levi-Civita connection on M.

Proposition 11 ([7]). Let $g: \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$ be a symmetric tensor of type (0,2) on M. There exists one and only one symmetric tensor g^A of type (0,2) on M^A with value in A such that $g^A(a \cdot \eta^A, b \cdot \theta^A) = ab \cdot [g(\eta, \theta)]^A$ for any $a, b \in A$ and $\eta, \theta \in \mathfrak{X}(M)$.

Following [1], we state

Proposition 12. If (M, g) is a pseudo-riemannian manifold, then there exists one and only one $C^{\infty}(M^A, A)$ -nondegenerated symmetric bilinear form

$$g^A \colon \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \to C^{\infty}(M^A, A)$$

such that for any vector fields η and θ on M,

$$g^{A}(\eta^{A}, \theta^{A}) = [g(\eta, \theta)]^{A},$$

where η^A and θ^A mean prolongations to M^A of vector fields η and θ .

Proof. It is a matter here to show only the nondegeneracy of g^A , the proof is done in the same way as in [1].

Therefore, g^A is a pseudo-riemannian manifold on M^A and confers to M^A , the structure of a pseudo-riemannian manifold.

Let M be a smooth manifold endowed with a linear connection ∇ . We denote T_{∇} and R_{∇} the torsion and the curvature, of ∇ , respectively. If ∇^A is the prolongation of ∇ to M^A , T_{∇^A} and R_{∇^A} denote the torsion and the curvature of ∇^A , respectively.

Proposition 13. We have $T_{\nabla^A} = (T_{\nabla})^A$.

Proof. $(T_{\nabla})^A : \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \to \mathfrak{X}(M^A)$ is the unique tensor of type (1,2) such that $(T_{\nabla})^A (\theta_1^A, \theta_2^A) = [T_{\nabla}(\theta_1, \theta_2)]^A$. We have

$$T_{\nabla^A}(X,Y) = \nabla_X^A Y - \nabla_Y^A X - [X,Y].$$

Then

$$\begin{split} T_{\nabla^{A}}\left(\theta_{1}^{A},\theta_{2}^{A}\right) &= \nabla_{\theta_{1}^{A}}^{A}\theta_{2}^{A} - \nabla_{\theta_{2}^{A}}^{A}\theta_{1}^{A} - \left[\theta_{1}^{A},\theta_{2}^{A}\right] \\ &= \left(\nabla_{\theta_{1}}\theta_{2}\right)^{A} - \left(\nabla_{\theta_{2}}\theta_{1}\right)^{A} - \left[\theta_{1},\theta_{2}\right]^{A} \\ &= \left(\nabla_{\theta_{1}}\theta_{2} - \nabla_{\theta_{2}}\theta_{1} - \left[\theta_{1},\theta_{2}\right]\right)^{A} = \left[T_{\nabla}\left(\theta_{1},\theta_{2}\right)\right]^{A}, \end{split}$$

hence,

$$T_{\nabla^A} = (T_{\nabla})^A \,.$$

Proposition 14. We have $R_{\nabla^A} = (R_{\nabla})^A$.

Proof. $(R_{\nabla})^A : \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \to \mathfrak{X}(M^A)$ is the unique tensor of type (1,3) such that $(R_{\nabla})^A (\theta_1^A, \theta_2^A, \theta_3^A) = [R_{\nabla}(\theta_1, \theta_2, \theta_3)]^A$. We have:

$$R_{\nabla^{A}}\left(X,Y,Z\right) = \nabla_{X}^{A}\left(\nabla_{Y}^{A}Z\right) - \nabla_{Y}^{A}\left(\nabla_{X}^{A}Z\right) - \nabla_{[X,Y]}^{A}Z$$

Then

$$\begin{split} R_{\nabla^A} \left(\theta_1^A, \theta_2^A, \theta_3^A \right) &= \nabla_{\theta_1^A}^A \left(\nabla_{\theta_2^A}^A \theta_3^A \right) - \nabla_{\theta_2^A}^A \left(\nabla_{\theta_1^A}^A \theta_3^A \right) - \nabla_{\left[\theta_1^A, \theta_2^A\right]}^A \theta_3^A \\ &= \nabla_{\theta_1^A}^A \left(\nabla_{\theta_2} \theta_3 \right)^A - \nabla_{\theta_2^A}^A \left(\nabla_{\theta_1} \theta_3 \right)^A - \nabla_{\left[\theta_1, \theta_2\right]^A}^A \theta_3^A \\ &= \left[\nabla_{\theta_1} \left(\nabla_{\theta_2} \theta_3 \right) \right]^A - \left[\nabla_{\theta_2} \left(\nabla_{\theta_1} \theta_3 \right) \right]^A - \left[\nabla_{\left[\theta_1, \theta_2\right]} \theta_3 \right]^A \\ &= \left[R_{\nabla} \left(\theta_1, \theta_2, \theta_3 \right) \right]^A, \end{split}$$

hence,

$$R_{\nabla^A} = (R_{\nabla})^A$$
.

Proposition 15. If $h: \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$ is a tensor of type (0,2), then $\nabla_{\theta A}^{A} h^{A} = (\nabla_{\theta} h)^{A}$.

Proof. $h^A: \mathfrak{X}\left(M^A\right) \times \mathfrak{X}\left(M^A\right) \to C^\infty\left(M^A, A\right)$ is a tensor of type (0, 2) such that $h^A\left(\theta_1^A, \theta_2^A\right) = \left[h\left(\theta_1, \theta_2\right)\right]^A$. As

$$\nabla_{\theta} h \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$$

is a tensor of type (0,2) on M, then there exists

$$\left(\nabla_{\theta}h\right)^{A}:\mathfrak{X}\left(M^{A}\right)\times\mathfrak{X}\left(M^{A}\right)\to C^{\infty}\left(M^{A},A\right)$$

such that

$$\left(\nabla_{\theta} h\right)^{A} \left(\theta_{1}^{A}, \theta_{2}^{A}\right) = \left[\left(\nabla_{\theta} h\right) \left(\theta_{1}, \theta_{2}\right)\right]^{A}.$$

Indeed, we have

$$\left(\nabla_{\theta^{A}}^{A}h^{A}\right)\left(X,Y\right) = \theta^{A}\left[h^{A}\left(X,Y\right)\right] - h^{A}\left(\nabla_{\theta^{A}}^{A}X,Y\right) - h^{A}\left(X,\nabla_{\theta^{A}}^{A}Y\right)$$

for any $X, Y \in \mathfrak{X}(M^A)$, then for $\theta_1, \theta_2 \in \mathfrak{X}(M)$, we have

$$\begin{split} \left(\nabla_{\theta^{A}}^{A}h^{A}\right)\left(\theta_{1}^{A},\theta_{2}^{A}\right) &= \theta^{A}\left[h^{A}\left(\theta_{1}^{A},\theta_{2}^{A}\right)\right] - h^{A}\left(\nabla_{\theta^{A}}^{A}\theta_{1}^{A},\theta_{2}^{A}\right) - h^{A}\left(\theta_{1}^{A},\nabla_{\theta^{A}}^{A}\theta_{2}^{A}\right) \\ &= \left[\theta\left[h\left(\theta_{1},\theta_{2}\right)\right] - h\left(\nabla_{\theta}\theta_{1},\theta_{2}\right) - h\left(\theta_{1},\nabla_{\theta}\theta_{2}\right)\right]^{A} \\ &= \left[\left(\nabla_{\theta}h\right)\left(\theta_{1},\theta_{2}\right)\right]^{A}, \end{split}$$

hence,

$$\nabla_{\theta^A}^A h^A = (\nabla_{\theta} h)^A.$$

Lemma 16. The map $\tau_g \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$, $(\theta, \theta_1, \theta_2) \mapsto (\nabla_{\theta}g)(\theta_1, \theta_2)$ is a tensor of type (0,3). Moreover, the map $\tau_{g^A} \colon \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \to C^{\infty}(M^A, A)$, $(X, Y_1, Y_2) \mapsto (\nabla_X^A g^A)(Y_1, Y_2)$ is also a tensor of type (0,3) and $\tau_{g^A} = (\tau_g)^A$.

Proof. For any $\theta, \theta_1, \theta_2 \in \mathfrak{X}(M)$ and for $f_1, f_2, f_3 \in C^{\infty}(M)$, we have $\tau_g\left(f_1\theta, f_2\theta_1, f_3\theta_2\right) = \left(\nabla_{(f_1\theta)}g\right)\left(f_2\theta_1, f_3\theta_2\right)$ $= f_1\theta\left[g\left(f_2\theta_1, h\theta_2\right)\right] - g\left(\nabla_{f_1\theta}f_2\theta_1, h\theta_2\right) - g\left(f_2\theta_1, \nabla_{f_1\theta}h\theta_2\right)$ $= f_1 \cdot \theta\left(f_2f_3\right) \cdot g\left(\theta_1, \theta_2\right) + f_1f_2f_3 \cdot g\left(\theta_1, \theta_2\right) - g\left((f_1\theta)\left(f_2\right) \cdot \theta_1\right)$ $+ f_1\nabla_{\theta}\theta_1, h\theta_2 - 1g\left(f_2\theta_1, (f_1\theta)\left(f_3\right) \cdot \theta_2 + f_3f_1\nabla_{\theta}\theta_2\right)$ $= f_1 \cdot \theta\left(f_2f_3\right) \cdot g\left(\theta_1, \theta_2\right) + f_1f_2f_3 \cdot g\left(\theta_1, \theta_2\right) - f_1\theta\left(f_2\right) \cdot g\left(\theta_1, \theta_2\right)$ $- f_2f_3f_1g(\nabla_{\theta}\theta_1, \theta_2) - f_2f_1\theta\left(h\right) \cdot g(\theta_1, \theta_2) - f_2f_3f_1g(\theta_1, \nabla_{\theta}\theta_2)$ $= f_1f_2f_3\tau_q\left(\theta, \theta_1, \theta_2\right).$

As τ_g is a tensor of type (0,3), then there exists a tensor of type (0,3)

$$(\tau_g)^A: \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \times \mathfrak{X}(M^A) \to C^\infty(M^A, A)$$

such that $(\tau_g)^A (\theta^A, \theta_1^A, \theta_2^A) = [(\nabla_\theta g) (\theta_1, \theta_2)]^A$. Thus, we have

$$\begin{split} \left(\tau_{g}\right)^{A}\left(\theta^{A},\theta_{1}^{A},\theta_{2}^{A}\right) &= \left(\nabla_{\theta^{A}}^{A}g^{A}\right)\left(\theta_{1}^{A},\theta_{2}^{A}\right) \\ &= \left[\left(\nabla_{\theta}g\right)\left(\theta_{1},\theta_{2}\right)\right]^{A} \end{split}$$

what implies

$$\tau_{g^A} = \left(\tau_g\right)^A.$$

Proposition 17. If (M,g) is a pseudo-riemannian manifold with canonical connection ∇ , then (M^A, g^A) is a pseudo-riemannian manifold with canonical connection ∇^A , i.e., $T_{\nabla^A} = 0$ and $\nabla^A_X g^A = 0$ for any $X \in \mathfrak{X}(M^A)$.

Proof. Let ∇^A be the prolongation of ∇ . As $T_{\nabla^A} = (T_{\nabla})^A$ and since $T_{\nabla} = 0$, then $T_{\nabla^A} = 0$. We also have $\tau_{g^A}(X, Y_1, Y_2) = (\nabla_X^A g^A)(Y_1, Y_2)$ for any $X, Y_1, Y_2 \in \mathfrak{X}(M^A)$. As $\nabla_{\theta}g = 0$, then $(\tau_g)^A = 0 = \tau_{g^A}$ what implies $(\nabla_X^A g^A)(Y_1, Y_2) = 0$ for any $X, Y_1, Y_2 \in \mathfrak{X}(M^A)$, hence, $\nabla_X^A g^A = 0$ for any $X \in \mathfrak{X}(M^A)$.

REFERENCES

- Bossoto, B.G.R., Structures de Jacobi sur une variété des points proches, Math. Vesnik. 62(2) (2010), 155–167.
- Bossoto, B. G. R., Okassa, E., Champs de vecteurs et formes différentielles sur une variété des points proches, Archivum mathematicum (Brno), 44 (2008), 159–171.

- Helgason, S., Differential Geometry and symmetric spaces, New York, Academic Press, 1962.
- Koszul, J. L., Ramanan, S., Lectures On Fibre Bundles and Differential Geometry, Tata Institute of Fundamental Research, Bombay 1960.
- Morimoto, A., Prolongation of connections to bundles of infinitely near points, J. Diff. Geom, 11 (1976), 479–498
- Nkou B. V., Bossoto, B. G. R., Okassa, E., Characterization of vector fields on Weil bundles, to appear.
- Okassa, E., Relèvements de structures symplectiques et pseudo-riemanniennes à des variétés de points proches, Nagoya Math. J. 115 (1989), 63-71.
- Prolongement des champs de vecteurs à des variétés des points prohes, Ann. Fac. Sci. Toulouse Math. VIII(3) (1986–1987), 346–366.
- 9. Pham-Ham-Mau-Quan, F., Introduction à la géométrie des variétés différentiables, Dunod Paris, 1969.
- Weil, A., Théorie des points proches sur les variétés différentiables, Colloq. Géom. Diff. Strasbourg (1953), 111–117
- B. V. Nkou, Marien Ngouabi University Brazzaville, Congo, e-mail: vannborhen@yahoo.fr
- B. G. R. Bossoto, Marien Ngouabi University Brazzaville, Congo, e-mail: bossotob@yahoo.fr
- E. Okassa, Marien Ngouabi University Brazzaville, Congo, e-mail: eugeneokassa@yahoo.fr