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NEW PROPERTIES OF PROLONGATIONS
OF LINEAR CONNECTIONS ON WEIL BUNDLES

B. V. NKOU, B. G. R. BOSSOTO anp E. OKASSA

ABSTRACT. Let M be a paracompact smooth manifold, A be a Weil algebra and
MA be the associated Weil bundle. If V is a linear connection on M, we give
equivalent definition and the properties of the prolongation V4 to M# equivalent
to the prolongation defined by Morimoto. When (M, g) is a pseudo-riemannian
manifold, we show that the symmetric tensor g# of type (0,2) defined by Okassa
is nondegenerated. At the end, we show that, if V is a Levi-Civita connection on
(M, g), then V4 is torsion-free and g4 is parallel with respect to V4.

1. INTRODUCTION

In what follows, we denote A a local algebra (in the sense of André Weil) or simply
Weil algebra, M a smooth manifold, C°° (M) the algebra of smooth functions on
M and M# the manifold of infinitely near points of kind A [10]. The triplet
(MA, 7, M) is a bundle called bundle of infinitely near points or simply Weil
bundle.

If f: M — R is a smooth function, then the application

fAaMA = A e e,

is also a smooth function. The set C°°(M#, A) of smooth functions on M4 with

values in A is a commutative algebra over A with unit and the application
C(M) = C=(M*, A), e 4
is an injective homomorphism of algebras. Then, we have
(f+9t=r+gt - NP=x0h (gt =01t
The map
C®(M*) x A — C>®°(M4, A), (Fia) = F-a: & F(€)-a
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is bilinear and induces one and only one linear map
0: C®(MY) @ A — C® (M4, A).
When (Gq)a=12,..,dim 4 is & basis of A and (a})a=1,2,....dim 4 is a dual basis of the
basis (@q)a=1,2,....dim 4, the application
dim A
o CR(MAA) = AR C®(MY), v Y aa® (a0 ),
a=1
is an isomorphism of A-algebras. That isomorphism does not depend of a chosen
basis and the application

N C®(M) = A C®(MY),  f o (f4)

is a homomorphism of algebras.
If (U, ) is a local chart of M with local coordinate system (1, ..., &), the
map
GUUA S AT e (€)oo ()
is a bijection from U# onto an open set of A”. In addition, if (U;, ;)ies is an
atlas of M4, then (U, p);cr is also an A-atlas of M4 [2].

K2

1.1. Vector fields on M4

In [6], we presented another characterization of a vector field on M# through
the above theorem and also gave a writing of a vector field on M# in coordinate
neighborhood system.

Thus, we have the next two theorems.

Theorem 1. The following assertions are equivalent:

1. A vector field on M is a differentiable section of the tangent bundle
(TMA, Tppa, MA).

2. A wvector field on M# is a derivation of C>(M™).

3. A wector field on M* is a derivation of C=(MA, A) which is A-linear.

4. A wector field on M is a linear map X : C°(M) — C=(M*, A) such that

X(f-9)=X(f)-g"+ [*-X(g9)  forany f,g € C=(M).
We verify that the C°° (M4, A)-module X(M*) of vector fields on M4 is a Lie
algebra over A.

Theorem 2. The map
X(MA) x X(MA) — (M), (X,Y) = [X,Y]=XoY —YoX,
is skew-symmetric A-bilinear and defines a structure of A-Lie algebra over X(M™).
In the following, we look at a vector field as an A-linear map

X: C®(MA,A) — C®(M4, A)
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such that
X(p-9)=X(p) v+ X(¥) forany p,v € C®(M*, A),

that is to say,
X (M) = Dery[C®(M4, A)].

1.2. Prolongations to M* of vector fields on M

Proposition 3. If 0: C*°(M) — C>®°(M) is a vector field on M, then there
exists one and only one A-linear derivation

04 C° (M2, A) — C®(M*, A)
such that 04(f4) = [G(f)]A for any f € C*(M). Thus, if 0,601,052 are vector
fields on M and f € C*°(M), then we have

1) (Bi+6) =08 105 (F-0) =f2-0" and [01,65)" = [67,65].

2. PROLONGATION OF LINEAR CONNECTIONS ON WEIL BUNDLES

In this section, if V [3] is a linear connection on M, we give equivalent definition
and the properties of the prolongation V4 to M4 equivalent to the prolongation V
defined by Morimoto [5]. When (M, g) is a pseudo-riemannian manifold, we show
that the symmetric tensor g of type (0,2) defined by Okassa is nondegenerated
[7]. At the end, we show that if V is a Levi-Civita connection on (M, g), then V4
is torsion-free and g# is parallel with respect to V4.

According to [6], if X: M4 — TM# is a vector field on M4 and U is a
coordinate neighborhood of M with the coordinate neighborhood (z1,...,z,),

then there exist some functions f; € C>° (U4, A) for i = 1,...,n such that
n Pl A
Xpa=Sfi( ) .
lUA ;f ( 81;1-)
When (U, ¢) is a local chart and (x1,...,x,) his local coordinate system, then
the map

UAg)Any f'_)(g(xl)v,g(xn))v

is a diffeomorphism from U4 onto an open set of A”. As

P A
. 0o A 0o A
(&EJ L O (U4, 4) = C®(UA, A)

A
= (i) . IfUGTgMA, we

A
is such that (8%1-) (z4') = &;5, we can denote B

0
J oz

= 0
v= Z”(ﬂff‘)] Il

i=1

can write

13
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If X € X(M#) = Ders[C>®(M#, A)], we have

- 9
Xlpa =Y fizx
i=1 O
with f; € C°(U4, A) for i = 1,2,...,n.

2.1. Equivalent definitions of derivation laws in X(M*).

In this subsection, we give the definitions of a derivation law in X(M%) =
Derg[C™(M#)] and a derivation law in X(M4) = Der4[C=(M*, A)].
Let R be an algebra over a commutative field K. We recall that a derivation law
in a R-module P is a map

D: Derg(R) — Endg(P)
such that:

1. D is R-linear;
2. For any d € Derg(R), the K-endomorphism Dg;: P — P satisfies

Dqy(r-p) =d(r) - p+r- Da(p)
for any r € R and any p € P, see [4].

We also recall that a derivation law in the C'°°(M)-module X (M) = Derg[C>°(M)]
of vector fields on M is a map

D: X(M) = Derg[C*°(M)] — Endg[X(M) = Derg[C*(M)]]
such that:

1. D is C°°(M)-linear;
2. For any 0 € X(M), the R-endomorphism Dy: X(M) — X(M) satisfies

Do(f-p) =0(f) -+ f- Do)
for any f € C°(M), and any u € X(M4).

Derivation law defines a linear connection on M, see [9].

Definition 1. A derivation law in X(M4) = Derg[C>°(M*)] is a map
D: X(M*) = Derg[C>(M*)] — Endg [X(M*) = Derg [C*°(M*)]]
such that:

1. D is C>®°(M*)-linear;
2. For any X € X(M*), the R-endomorphism Dy : X(M*) — X(M*4) satisfies

Dx(F-Y)=X(F)-Y + F-Dx(Y)
for any F' € C™(M*) and any Y € X(M4).
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ANOTHER DEFINITION.

In what follows, we denote X(M4) = Der,[C° (M4, A)].
We denote End4[X(M#)] the set of A-endomorphisms of X(M4), i.e., the set of
maps from X(M#) into X(M4) which are linear over A.

Proposition 4. The set Enda[X(M#)] is a C®° (M4, A)-module.

Definition 2. A derivation law in X(M*) = Dera[C™(M#, A)] is a map
D: X(M*) — Endy [X(M*)]
such that
1. D is C®°(M*#, A)-linear;
2. For any X € X(M%), the A-endomorphism Dy : X(M#) — X(M*) verifies
Dx(p-Y)=X(p) Y +¢-Dx(Y)
for any ¢ € C°(M#) and any Y € X(M*4).

2.2. The new statement of the Morimoto’s prolongation
of a linear connection on M

Theorem 5. If V is a linear connection on M, then there exists one and only
one linear application

VA X(MA) = Enda[X(M?Y)], X — V4,
such that
Voan® = (Von)*
for any 0,m € X(M).

Proof. If X € X(M*#) = Dera[C>=(M*4, A), then
dim A dim A

X(fN= > X(ajof" an= > X(ajof")  aa
a=1

a=1
with X’ € X(M*4) = Dera[C®(M4)].
Let
V: X(M*) = Derg[C*(M*)] — Endg [X(M*) = Derg[C*>(M*)]]
be the Morimoto’s prolongation to M# of the linear connection V on M. We

denote

VA X(M?) = Dera[C®(M*, A)] — End [X(M*) = Der4[C™(M*, A)]]
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the same derivation law in X(M#) = Ders[C>(M#, A)]. Thus, for any 6, n €
X(M), we have

dim A dim A

Vi ] = 3 (Vi) (@ o i) - aa = 32 [Vioay 0] (a0 1) - aa
a=1 a=1
dim A

=" [(Ven)*] (af 0 f4) - aa
d?;A

= > [(Vem ] (as o f*) - aq

a=1

= [(Vem)*] (S
for any f € C*°(M), hence,
Vaan™ = (Von)?.

3. PROLONGATION OF TENSORS TO M#

We denote T77(M#) the O (M4, A)-module of tensors of type (p,q) on M4, i.e.,
the C>°(M*4, A)-module of multilinear applications of

[ (M) = @ (a0 X (M)
and
W (M) = {8 € 27 (X (M), @ yya 0y X (M)
8101, Sabg) = I+ F8 (0n,- . 0) }
is a C>°(M#, A)-module. Let
v: C®(M) — C®(M*,4),  f—fY% (M) —x (M), 0-—0"

Theorem 6. The map
ke TPI(MA) — WP (MA) , a—aory?: (01,...,0,) >« (9{‘,...,9A) ,

q

is an isomorphism of C°° (M4, A)-modules.

Proof. 1. For any ay, ay € T?9(M#), we have
[H (041 + 042)] (91, . ,Qq) = [041 + Ozg] (914, . ,0A>

=0 (07,...,0]) + a2 (67,...,07)
= [w(a)] (b1, ..., 0g) + [r (a2)] (61, ..., b;)

= [k (1) + K (a2)] (01,...,0,).
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2. For any a € TP4(M*4) and any ¢ € C(M*4, A), we have
[KJ (‘po‘)] (917 .- '50!1) = [9004] (9147 o 30:14)
= p« (914,...,0:14)
=@l (@)](0r,...,0q).
O
Lemma 7. Any a € WP4(M#) has a restriction at any open set U of M, i.e.,
if
O1luv=021v...=0q U,
then
(0% (91, e ,Gq) |UA: 0.

Proof. Let € € UA. Let xg = 74 (&) € U be origin of &.
There exist a function f € C* (M) and an open neighborhood V of zy, V C U,
such that f =0 on V and f =1 on CU.

For any = € U, (f0;)(z) = f(z)-0;(x) = 6;(x) and for any =z € (U,
(f6;) (x) = f(x)-0; (x) = 6; (x); then f0; =0; for any i = 1,2,...,q.
We have f4 =0on V4 and f4 =1 on CUA. Thus

[ (01, .., 09)] (§) = [a (f261, - ., fqbq)] (€)
=[1© - 17O [ (01,09 (6)
As ¢ is whichever in U4, we get

a(@l,...,ﬁq) |UA: 0.

For an open neighborhood U of M, we have
ap: [X (U] - D 1,y X (U?)
with
ay (01 |U7~-~79q |U) :Ot(el,...,oq) |UA .
Proposition 8. For a coordinate neighborhood U C M with the coordinate
system (z1,...,7,) and o € WP (M), then the map
) A9 A
Buas [X (U] = @l a X (U7)
such that

A A 9
(2 () o () ) ()

is C (UA, A) -multilinear. Therefore, Bya is a tensor of type (p,q) on UA.
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Proof. We verify there exists a tensor [3: [% (MA)]q — ®€’°°(MA,A):£ (MA)
such that Bjya = Bya. Thus
B0, .00) pa = Biua (01 [ua, ..., 05 lua)
= BUA (9114 IUA? ceey 9:14 |UA)

' zmm‘“(afh)Aw-vg(P?q)A(af,»q)A

i1

> o) s ((55) o (a) )

il,.<.7’Lq

- 300 () e ()

ilﬁ...,lq

0 0
_ 1 q
=y Zpilaxil,...,zpiqami
ZOZU(91 |U>~-'79q ‘U)
:a(el’...70q)|UA .
As U is whichever, we deduce that
B(O,....00) =a(b,....0,).
O
Proof of the theorem. [0 ()] (01,...,04) = a (67, ...,07
%(MA), we have
B(OF,...,00) =ar(0y,...,0,),

i.e., for any as € WP9(MA), there exists one and only one o € TP4(M*) such
that

), foro/: [X(M)]? —

©eo (M4,4)

a(07,...,00) =ar(01,...,0,).

O

Theorem 9. If a € TPY(M) is a tensor of type (p,q) on M, then there exists
one and only one tensor a® of type (p,q) on M4 such that o o9 = (é)’y) o .

Corollary 10. If « is a tensor of type (0,p) (of type (1,p), respectively), then
there exists one and only one tensor a of type (0,p) (of type (1, p), respectively),
such that

a (08,08 =[a(0,....0.)]"
for all 61,...,6,.
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4. PROLONGATION OF THE LEVI-CIVITA CONNECTION

In this section, we consider (M, g) a pseudo-riemannian manifold. In what follows
we study the prolongation of connections to M4 deduced from the Levi-Civita
connection on M.

Proposition 11 ([7]). Let g: X(M) x X(M) — C>°(M) be a symmetric tensor
of type (0,2) on M. There exists one and only one symmetric tensor g of type
(0,2) on M# with value in A such that g* (a-n?,b-04) =ab-[g(n, 0)]A for any
a,be A and n,0 € X(M).

Following [1], we state

Proposition 12. If (M, g) is a pseudo-riemannian manifold, then there exists
one and only one O (M*, A)-nondegenerated symmetric bilinear form

g X(MA) x X(M?) — C= (M4, A)
such that for any vector fields n and 6 on M,
gt (n*,0%) = [2(n,0)]",
where ™ and 64 mean prolongations to M of vector fields n and 6.

Proof. It is a matter here to show only the nondegeneracy of g4, the proof is
done in the same way as in [1]. O

Therefore, g# is a pseudo-riemannian manifold on M4 and confers to M#, the
structure of a pseudo-riemannian manifold.

Let M be a smooth manifold endowed with a linear connection V. We denote
Ty and Ry the torsion and the curvature, of V, respectively. If V4 is the prolon-
gation of V to M4, Tya and Rya denote the torsion and the curvature of V4,
respectively.

Proposition 13. We have Tya = (TV)A

Proof. (TV)A 1 X (M) x X (M#) — X (M) is the unique tensor of type (1,2)
such that (Tg)™ (67,04 = [T (61,65)]". We have

Ty (X,Y) =V4Y - VX — [X,Y].

Then
Tya (67,05) = vg‘fe;‘ - vg‘;e){‘ — (674, 65']
= (Vo,05)" — (Vo,00)" —[01,02]"
— (V02 — Vo,00 — [01,605))" = [T (61,65)]",
hence,
Toa = (Tg)"
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Proposition 14. We have Ry = (Ry)™.

Proof. (RV)A DX (MA) x X (MA) x X (M#*) — X (M*) is the unique tensor
of type (1,3) such that (Ry)”" (67,604,04) = [Ry (61,02,05))". We have:
Rya (XY, 2) = V& (V¥ Z) = V3 (VX Z) = VixyZ

Then
Roa (07,04,08) = Vi (v;,?eg‘) ~ Vi (vg‘feg‘) Vi g8
=Via (Vo,05)" — Vioa (Vo,05)" — Vioy 021205
= [Vo, (Vau0)]* — [V, (Vo,05)]" = [V, 0,165
= [Ry (61,02,05)]",
hence,

Rya = (Ry)™.
O
Proposition 15. If h: X (M) x X (M) — C*> (M) is a tensor of type (0,2),
then Vb4 = (Vgh)™.
Proof. h: % (MA) x X (MA) — O (MA,A) is a tensor of type (0,2) such
that h* (071,04 = [h (61,62)]". As
Voh: X (M) x X (M) = C*™ (M)
is a tensor of type (0,2) on M, then there exists
(Voh)™ : X (M4) x X (M4) — C= (M4, A)
such that
(Voh) " (67',63) = [(Voh) (61,62)]" .
Indeed, we have
(Veah®) (X,Y) =0 [h (X,Y)] — h* (VEa X, Y) — h* (X, VLY
for any X,Y € X (M*), then for 61,05 € X (M), we have
(Vi h?) (01,05) = 04 [h (07,05))] — ™ (V5 07),05) — b (07, V05"
= [0[h (61, 02)] — h (Vbi,02) — h (61, Vo))"

= [(Veh) (61,602)]"

hence,
Vi = (Voh)?.
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Lemma 16. The map 74: X (M) x X (M)xX (M) — C>* (M), (0,01,05) —
(Vag) (61,02) is a tensor of type (0,3). Moreover, the map Tya: X (M*)xX (M#)x
X (MA) — O™ (MA,A), (X,)11,Y5) — (Vfgg‘l) (Y1,Y5) is also a tensor of type
(0,3) and 144 = (Tg)A.

Proof. For any 0,6,,05 € X (M) and for fi, fa, f3 € C (M), we have
79 (f10, f201, f302) = (V(s,0)9) (f201, f302)

= f10[g (f201,h02)] — g (V1,0 f201, hb2) — g (f201, Vy,0h02)
= f1-0(f2f3) - g (01,02) + fifafs - g (01,02) — g ((f10) (f2) - O
+f1Vb1, h02) —1g (f201, (f10) (f3) 02+ f3f1Veb2)
= f1-0(f2f3)-9 (01,02)+ fifofs g (01,02)— f10 (f2)-g (61,02)
—f2f3f19(Vob1,02) = fof16 (h)-g(01,02) — f2 f3f19(01,V 02)
= f1faf374(0,01,602).
As 7,4 is a tensor of type (0,3), then there exists a tensor of type (0,3)
()" : X (MA) x X (M4) x X (M4) = 0 (M4, A)
such that (Tg)A (64,09,64) = [(Vog) (61, 02)]A. Thus, we have
()" (6°.61.63) = (Viag) (61'.65)
= [(Vog) (61,65)"
what implies

A
Tga = (14)" .

O

Proposition 17. If (M,g) is a pseudo-riemannian manifold with canonical
connection V, then (MA, gA) is a pseudo-riemannian manfold with canonical con-
nection V4, i.e., Tga =0 and Vi g? =0 for any X € X (MA).

Proof. Let V4 be the prolongation of V. As Tga = (TV)A and since Ty = 0,
then T'ga = 0. We also have 7,4 (X,Y1,Y3) = (V;“(gA) (Y1,Ys) for any X, Y1,Ys €
X (M4). As Vgg = 0, then (7,)" = 0 = 7,4 what implies (V4¢%) (V1,Y2) = 0
for any X,Y1,Ys € %(MA), hence, V4 g4 = 0 for any X € X(MA). O
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