ASYMMETRIC RAMSEY PROPERTIES OF RANDOM GRAPHS INVOLVING CLIQUES AND CYCLES

A. LIEBENAU, L. MATTOS, W. MENDONÇA AND J. SKOKAN

ABSTRACT. We prove that for every $\ell, r > 3$, there exists $c > 0$ such that for $p \leq cn^{-1/m_2(K_r, C_{\ell})}$, with high probability there is a 2-edge-colouring of the random graph $\mathbf{G}_{n,p}$ with no monochromatic copy of K_r of the first colour and no monochromatic copy of C_{ℓ} of the second colour. This is a progress on a conjecture of Kohayakawa and Kreuter.

1. INTRODUCTION

We say that a graph G is a Ramsey graph for the pair of graphs (F, H) if, in every 2-edge-colouring of G , we can find either a copy of F in which all the edges have the first colour or a copy of H in which all the edges have the second colour. In this case, we write $G \to (F, H)$. When $F = H$, we simplify the notation by just writing $G \to F$. Ramsey's Theorem [[7](#page-4-1)] implies that, for every pair of graphs (F, H) , there exists a graph G such that $G \to (F, H)$.

A lot of research has been devoted to understand the structure of Ramsey graphs. For example, Erdős and Hajnal [[1](#page-4-2)] asked to determine positive integers k for which there exists G containing no copy of K_{k+1} and such that $G \to K_k$. Folkman [[2](#page-4-3)] proved that such G exists for all k. Nešetřil and Rödl $[6]$ $[6]$ $[6]$ proved a more general result which states that, for every F , there exists G with the same clique number as F such that $G \to F$. Rödl and Rucinski [[8](#page-4-5)] proved that the binomial random graph $\mathbf{G}_{n,p}$ with high probability (w.h.p.) is a Ramsey graph for F, for certain range of $p = p(F)$. More precisely, they showed the following.

Theorem 1 (Rödl, Ruciński, 1995). Let F be a graph containing a cycle. Then there exist positive constants c and C such that, for $p = p(n)$, we have

$$
\lim_{n \to \infty} \mathbb{P}[\mathbf{G}_{n,p} \to F] = \begin{cases} 0, & \text{if } p \leq cn^{-1/m_2(F)}; \\ 1, & \text{if } p \geq Cn^{-1/m_2(F)}, \end{cases}
$$

where

$$
m_2(F) = \max \left\{ \frac{e(F') - 1}{v(F') - 2} : F' \subseteq F, v(F') \ge 3 \right\}.
$$

Received June 8, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 05C80; Secondary 05C55.

L. Mattos and W. Mendonça were partially supported by CAPES – Coordination for the Improvement of Higher Education Personnel.

Therefore it is well understood when the random graph is a Ramsey graph for a fixed graph F. A natural generalisation of such a problem is to analyse for what values of $p = p(F, H)$ the random graph $\mathbf{G}_{n,p}$ is likely to be a Ramsey graph for a fixed pair of graphs (F, H) . In this direction, Kohayakawa and Kreuter [[3](#page-4-6)] conjectured the following.

Conjecture 2 (Kohayakawa, Kreuter, 1997). Let F and H be graphs with $m_2(F) \geq m_2(H) > 1$. Then there exist positive constants c and C such that, for $p = p(n)$, we have

$$
\lim_{n \to \infty} \mathbb{P}\big[\mathbf{G}_{n,p} \to (F,H)\big] = \begin{cases} 0, & \text{if } p \leq cn^{-1/m_2(F,H)}; \\ 1, & \text{if } p \geq Cn^{-1/m_2(F,H)}, \end{cases}
$$

where

$$
m_2(F, H) = \max \left\{ \frac{e(F')}{v(F') - 2 + 1/m_2(H)} : F' \subseteq F, e(F) \ge 1 \right\}
$$

Kohayakawa and Kreuter [[3](#page-4-6)] proved that the conjecture holds in the case where F and H are both cycles and Marciniszyn, Skokan, Spöhel and Steger [[4](#page-4-7)] proved that it holds when F and H are both complete graphs.

Here we establish the validity of Conjecture [2](#page-1-0) when F is a clique and H is a cycle by proving the following theorem.

Theorem 3. For all $\ell, r \geq 3$, there exists $c > 0$ such that for $p = p(n) \leq$ $cn^{-1/m_2(K_r, C_\ell)}$, we have

$$
\lim_{n \to \infty} \mathbb{P}\big[\mathbf{G}_{n,p} \to (K_r, C_\ell)\big] = 0.
$$

We then combine Theorem [3](#page-1-1) with the result from Mousset, Nenadov and Samotij $[5]$ $[5]$ $[5]$, who proved that, for any pair of graphs (F, H) as in the Conjecture [2,](#page-1-0) $\lim_{n \to \infty} \mathbb{P}\big[\mathbf{G}_{n,p} \to (F,H)\big] = 1$ for $p \ge Cn^{-1/m_2(F,H)}$.

2. Proof overview

In this section we shall give an overview of the proof of Theorem [3.](#page-1-1) Notice that we need to only consider case when $\ell, r \geq 4$; the remaining cases follow from [[3](#page-4-6)] and [[4](#page-4-7)].

Our proof strategy is similar to [[3](#page-4-6)] and [[4](#page-4-7)]. We first show that if $\mathbf{G}_{n,p} \to$ (K_r, C_ℓ) , for some $p \leq cn^{-1/m_2(K_r, C_\ell)}$ then w.h.p. we are able to execute a procedure on $\mathbf{G}_{n,p}$ which, w.h.p., will find some subgraph of $\mathbf{G}_{n,p}$ which is either very dense or it is very large and has a tree-like structure. We then show that $\mathbf{G}_{n,p}$, for that range of p, w.h.p., does not contain such subgraphs. While the overall strategy is similar to [[3](#page-4-6)] and [[4](#page-4-7)], the analysis of the procedure in the first step heavily depends on the pair (K_r, C_ℓ) . In this point, our work differs from previous work. In order to describe the procedure, we introduce some notation in the following.

Given a graph $G = (V, E)$, we denote by $\mathcal{G}(G)$ the hypergraph whose hyperedges correspond to copies of K_r and C_ℓ on G. More precisely, $V(\mathcal{G}(G)) = E(G)$ and

 $E(\mathcal{G}(G)) = \mathcal{E}_1 \cup \mathcal{E}_2$, where

$$
\mathcal{E}_1 = \{ E(F) : F \cong K_r, F \subseteq G \}
$$

$$
\mathcal{E}_2 = \{ E(F) : F \cong C_\ell, F \subseteq G \}
$$

Moreover, if H is a subhypergraph of $\mathcal{G}(G)$, we denote by $G(\mathcal{H})$ the underlying graph of G with edge set spanned by $\bigcup_{E \in E(H)} E$ and vertex set equal to $V(G)$. We also denote by $\mathcal{E}_i(\mathcal{H})$ the set of hyperedges of H belonging to \mathcal{E}_i . Then we have that $G \to (K_r, C_\ell)$ if, and only if, for every 2-colouring of the vertices of $\mathcal{G}(G)$, there exist a hyperedge $E \in \mathcal{E}_i(\mathcal{G})$, for some $i \in [2]$, such that every vertex in E has the colour i. We say that a hypergraph $\mathcal{H} \subseteq \mathcal{G}(G)$ is \star -critical if for any hyperedge $E \in \mathcal{E}_i(\mathcal{H}), i \in [2]$, and any hypervertex $e \in E$ there exists a hyperedge $F \in \mathcal{E}_{3-i}(\mathcal{H})$ such that $E \cap F = \{e\}$. The following simple (though maybe not immediately obvious) lemma connects Ramsey graphs to \star -critical hypergraphs.

Lemma 4. If $G \to (K_r, C_\ell)$, then there exist $\mathcal{H} \subseteq \mathcal{G}(G)$ which is \star -critical.

For a simple graph H, let $\lambda(H) = v(H) - \frac{e(H)}{m_2(K)}$ $\frac{e(H)}{m_2(K_r, C_{\ell})}$. Notice that the expected number of copies of H in $\mathbf{G}_{n,p}$, for $p \leq cn^{-1/m_2(K_r, C_{\ell})}$, is at most $c^{e(H)} \cdot n^{\lambda(H)}$. In some sense, $\lambda(H)$ may be compared to the density of H. The following lemma. roughly speaking, states that \star -critical hypergraphs generated by $\mathbf{G}_{n,p}$ that do not have too may hyperedges must generate dense subgraphs in $\mathbf{G}_{n,p}$.

Lemma 5. For all $\ell, r \geq 4$, there exist $\varepsilon_0, c > 0$ such that for $p = p(n) \leq$ $cn^{-1/m_2(K_r,C_\ell)}$, the following holds w.h.p. If $\mathcal{H} \subseteq \mathcal{G}(\mathbf{G}_{n,p})$ is \star -critical and has at most $\ell r^2 \log n$ hypervertices, then $\lambda(G(\mathcal{H})) \leq -\varepsilon_0$.

Algorithm [1,](#page-3-0) when applied to a \star -critical subhypergraph $\mathcal{G}_0 \subseteq \mathcal{G}(\mathbf{G}_{n,p})$, will create w.h.p. a sequence of subhypergraphs $\mathcal{H}_0 \subseteq \cdots \subseteq \mathcal{H}_i \subseteq \mathcal{G}_0$, each with a structure very close to a linear hypertree. The algorithm stops when the current hypergraph \mathcal{H}_i is already too large or when the underlying graph $G(\mathcal{H}_i)$ is too dense. The first condition is quantified by the number of steps of the algorithm and the last condition is quantified by $\lambda(G(\mathcal{H}_i))$.

So in a step $i \leq \log n$ with $\lambda(G(\mathcal{H}_i)) > -\varepsilon_0$, the Algorithm [1](#page-3-0) will generate a hypergraph $\mathcal{H}' \nsubseteq \mathcal{H}_i$ with $v(\mathcal{H}') \leq \ell r^2$ and let $\mathcal{H}_{i+1} = \mathcal{H}_i \cup \mathcal{H}'$. Depending on how \mathcal{H}' was generated, we may have to consider this step as degenerated and in this case we add $i + 1$ to the set DEG, which is an auxiliary set with the only purpose of tracking the degenerated steps. The way that we generate \mathcal{H}' will depend on weather there is a hyperedge $E \in \mathcal{E}_1(\mathcal{G}_0)$ which intersects $G(\mathcal{H}_i)$ in at least two vertices and is not contained in $G(\mathcal{H}_i)$. This case distinction is done in line 4 of Algorithm [1.](#page-3-0) If such a hyperedge E exists, then \mathcal{H}' will be simply $\{E\}$ and we consider this step degenerated. Otherwise, if we do not have such a hyperedge, then the procedure to generate \mathcal{H}' is more intricate and we will not be able to describe it in detail here. But the idea is roughly the following. Since we have $e(\mathcal{H}_i) \leq \ell r^2 \log n$ and $\lambda(G(\mathcal{H}_i)) > -\varepsilon_0$, Lemma [5](#page-2-0) implies that w.h.p. \mathcal{H}_i is not \star -critical. Then, because we failed the condition on line 4 of the Algorithm [1](#page-3-0) together with the fact that \mathcal{G}_0 is \star -critical, we will be able to show that there exist

a hyperedge $F \in \mathcal{E}_2(\mathcal{G}_0)$ which intersects $G(\mathcal{H}_i)$ in an edge and is not contained in $G(\mathcal{H}_i)$. Then \mathcal{H}' will be built as an extension of F. Finally, if H adds too many vertices to \mathcal{H}_i , then we consider this step degenerated.

Algorithm 1

Input: a \star -critical subhypergraph $\mathcal{G}_0 \subseteq \mathcal{G} = \mathcal{G}(\mathbf{G}_{n,p})$ **Output:** a triple $(i, \mathcal{H}_i, \text{DEG})$ where $\mathcal{H}_i \subseteq \mathcal{G}_0$ and $\text{DEG} \subseteq [i]$ $i \leftarrow 0$ 2: $DEG \leftarrow \emptyset$ 3: Let $\mathcal{H}_0 = \{E_0\}$, where E_0 is any hyperdge from $\mathcal{E}_1(\mathcal{G}_0)$ 4: while $i \leq \log(n)$ and $\lambda(G(\mathcal{H}_i)) > -\varepsilon_0$ do 5: if there exists $E \in \mathcal{E}_1(\mathcal{G}_0)$ such that $E \nsubseteq G(\mathcal{H}_i)$ and $|V(E) \cap V(G(\mathcal{H}_i))| \geq 2$ then 6: $\mathcal{H}' \leftarrow \{E\}$ 7: DEG ← DEG ∪ $\{i+1\}$ 8: else 9: $\langle \langle$ Compute H' $\rangle \rangle$ 10: **if** \mathcal{H}' is degenerated **then** 11: $\text{DEG} \leftarrow \text{DEG} \cup \{i+1\}$ 12: end if 13: end if 14: $\mathcal{H}_{i+1} \leftarrow \mathcal{H}_i \cup \mathcal{H}'$ 15: $i \leftarrow i + 1$ 16: end while

In the following, we state claims that are sufficient to prove Theorem [3.](#page-1-1) We do not prove these claims here. While the proof of Claim [6](#page-3-1) really depends on the fact that we are dealing with the pair (K_r, C_ℓ) , the proofs of Claims [7](#page-3-2) and [8](#page-3-3) are general and follow the same argument of the corresponding lemmas in [[3](#page-4-6)].

Claim 6. For every $r, \ell \geq 4$, there exists $\delta > 0$ such that the following holds.

(i) If $i \in \text{DEG}$, then $\lambda(G(\mathcal{H}_i)) \leq \lambda(G(\mathcal{H}_{i-1})) - \delta$.

(ii) If $i \notin \text{DEC}$, then $\lambda(G(\mathcal{H}_i)) = \lambda(G(\mathcal{H}_{i-1}))$.

In particular, $\lambda(G(\mathcal{H}_i)) \leq \lambda(K_r)$.

The following claim is actually a consequence of the previous claim.

Claim 7. For every $r, \ell \geq 4$, there exists $M > 0$ such that for every output $(i, \mathcal{H}_i, \text{DEG})$ of Algorithm [1,](#page-3-0) we have $|\text{DEG}| \leq M$.

For all positive integers d and k, let $\mathcal{F}(d, k)$ be the family of all non-isomorphic graphs H such that $H = G(\mathcal{H}_i)$, where \mathcal{H}_i comes from some possible output $(i, \mathcal{H}_i, \text{DEG})$ of Algorithm [1](#page-3-0) with $i \leq k$ and $|\text{DEG}| \leq d$.

Claim 8. For every $r, \ell \geq 4$, there exists $\alpha > 0$ such that for any $d, k \geq 1$, we have $|\mathcal{F}(d,k)| \leq k^{\alpha d}$.

Proof of Theorem [3.](#page-1-1) From Claim [7,](#page-3-2) we have that after applying Algorithm [1](#page-3-0) to some \star -critical subhypergraph $\mathcal{G}_0 \subseteq \mathcal{G}(\mathbf{G}_{n,p})$, we get, w.h.p., as an output $(i, \mathcal{H}_i, \text{DEG})$ with $i \leq \log n$ and $|\text{DEG}| \leq M$. In particular, $H \subseteq \mathbf{G}_{n,p}$, for some $H \in \mathcal{F}(M, \log n)$. Therefore

$$
\mathbb{P}[\mathbf{G}_{n,p} \to (K_r, C_\ell)] \leq \mathbb{P}[\exists H \subseteq \mathbf{G}_{n,p} : H \in \mathcal{F}(M, \log n)] + o(1)
$$

$$
\leq \sum_{H \in \mathcal{F}(M, \log n)} \mathbb{P}[H \subseteq \mathbf{G}_{n,p}] + o(1)
$$

The additional $o(1)$ $o(1)$ $o(1)$ term comes from the fact that Algorithm 1 will only generate an output with high probability.

Now for any $H \in \mathcal{F}(M, \log n)$, because of the condition in line 6 of the Algo-rithm [1,](#page-3-0) we have that either (i) $e(H) \ge \log n$ or (ii) $\lambda(H) \le -\varepsilon_0$. In case (i), since $\lambda(H) \leq \lambda(K_r)$, we have

$$
\mathbb{P}[H \subseteq \mathbf{G}_{n,p}] \le c^{e(H)} n^{\lambda(H)} \le c^{\log n} n^{\lambda(K_r)} \le n^{-\varepsilon_0},
$$

by choosing $c = c(\ell, r)$ small enough. In case (ii), we get

$$
\mathbb{P}[H \subseteq \mathbf{G}_{n,p}] \le c^{e(H)} n^{\lambda(H)} \le n^{\lambda(H)} \le n^{-\varepsilon_0}.
$$

Therefore, by Claim [8,](#page-3-3) we get

$$
\mathbb{P}\big[\mathbf{G}_{n,p} \to (K_r, C_\ell)\big] \leq |\mathcal{F}(M, \log n)| \cdot n^{-\varepsilon_0}
$$

$$
\leq (\log n)^{\alpha M} \cdot n^{-\varepsilon_0} = o(1).
$$

REFERENCES

- 1. Erdős P. and Hajnal A., *Research problems*, J. Combin. Theory 2 (1967), 104–105.
- 2. Folkman J., Graphs with monochromatic complete subgraphs in every edge colouring, SIAM J. Appl. Math. 18 (1970), 19–24.
- 3. Kohayakawa Y. and Kreuter B., Threshold functions for asymmetric Ramsey properties involving cycles, Random Structures Algorithms 11 (1997), pp. 245–276.
- 4. Marciniszyn M., Skokan J., Spöhel R. and Steger A., Asymmetric Ramsey properties of random graphs involving cliques, Random Structures Algorithms 34 (2009), 419–453.
- 5. Mousset F., Nenadov R. and Samotij W., Towards the Kohayakawa-Kreuter conjecture on asymmetric Ramsey properties, arXiv:1808.05070.
- 6. Nešetřil J. and Rödl V., The Ramsey property for graphs with forbidden complete subgraphs, J. Combin. Theory Ser. B 20 (1976), 243–249.
- 7. Ramsey F. P., On a problem of formal logic, Proc. Lond. Math. Soc. 30 (1930), 264–286.
- 8. Rödl V. and Ruciński A., Threshold functions for Ramsey properties, J. Amer. Math. Soc. 8 (1995), 917–942.

 \Box

A. Liebenau, School of Mathematics and Statistics, University of New South Wales, Sydney, Australia,

e-mail: a.liebenau@unsw.edu.au

L. Mattos, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil, $e-mail:$ leticiadmat@gmail.com

W. Mendonça, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil, e-mail: walner@impa.br

J. Skokan, Department of Mathematics, London School of Economics, London, UK, e-mail: j.skokan@lse.ac.uk