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PERMUTATION SNARKS OF ORDER 2 (mod 8)

E. MÁČAJOVÁ and M. ŠKOVIERA

Abstract. A permutation snark is a cubic graph which has a 2-factor consisting
of two chordless cycles and is not 3-edge-colourable. Every permutation snark is

cyclically 4-edge-connected, has girth at least 5, and its order is twice an odd num-

ber. Employing exhaustive computer search, Brinkmann et al. (2013) discovered a
cyclically 5-edge-connected permutation snark of order 34, disproving a conjecture

of C.-Q. Zhang (1997) that the Petersen graph is the only such graph. Hägglund and

Hoffmann-Ostenhof (2017) extended this example to an infinite series of cyclically
5-edge-connected permutation snarks of order n = 24k + 10 for every positive inte-

ger k. Here we present three general methods of constructing permutation snarks
and with their help provide permutation snarks with cyclic connectivity 4 and 5 for

every possible order 2 (mod 8).

1. Introduction

A cycle permutation graph is a cubic graph consisting of two disjoint circuits of
equal length and a perfect matching between them; equivalently, it is a cubic graph
which has a 2-factor consisting of two chordless circuits. A permutation snark is
a cycle permutation graph that has no 3-edge-colouring.

Cycle permutation graphs were introduced in 1967 by Chartrand and Harary
in [4] as a generalisation of the Petersen graph and were subsequently studied by
various authors, see for example [8, 11, 12]. Since the Petersen graph is a snark,
permutation snarks are a natural family to investigate. In spite of that, until
very recently permutation snarks have attracted only very little attention, with a
notable exception of Zhang’s book [13].

It is not difficult to see that every permutation snark has cyclic connectivity
at least 4, girth at least 5, and order twice on odd number. In [13], Zhang made
a conjecture that the only cyclically 5-edge-connected permutation snark is the
Petersen graph. However, in 2013, Brinkmann et al. [2] disproved this conjecture
by exhibiting a cyclically 5-edge-connected permutation snark on 34

vertices found through an exhaustive computer search. This snark is displayed
in Figure 1 in a form rather different from that in [2]; the defining 2-factor is
shown in bold lines. In 2017, Hägglund and Hoffmann-Ostenhof [5] presented an
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ad hoc construction that extends this example to an infinite series of cyclically
5-edge-connected permutation snarks of order 24n + 10 for each integer n ≥ 1.

Figure 1. A cyclically 5-connected permutation snark of order 34.

All currently known permutation snarks have order 2 (mod 8) while orders
6 (mod 8) are completely missing. The purpose of this paper to fill in the gaps
left by [5] and to construct permutation snarks with cyclic connectivity 4 and
5 for every possible order 2 (mod 8). In contrast to [5], our constructions are
very general and at the same time simple as they only use classical operations:
dot product (4-product), a similar operation (5-product) capable of producing
cyclically 5-edge-connected snarks, and a subgraph substitution. A brief discussion
concerning permutation snarks of order 6 (mod 8) can be found in the last section.

2. Permutation snarks with cyclic connectivity 4

Given two cubic graphs G and H, a dot product G .H is a cubic graph defined as
follows. Choose two independent edges e1 = a1b1 and e2 = a2b2 in G and an edge
e = uv in H. Let a′1, b′1, and v be the neighbours of u, and let a′2, b′2, and u be
the neighbours of v. Remove the edges e1 and e2 from G and the vertices u and v
from H. Finally, connect a1 to a′1, b1 to b′1, a2 to a′2, and b2 to b′2. Although the
notation G .H is common, the result depends on the choice of the edges e1 and e2
in G and the edge e = uv in H as well as on the chosen labelling of the neighbours
of u and v in H and their counterparts in G. If we need to be more specific, we
will write G[e1, e2] . [e]H instead of G .H.

The operation of dot product was introduced by Adelson-Velskii and Titov [1]
in 1973 and independently by Isaacs [6] in 1975. In [1] it was shown that if both
G and H are cyclically 4-edge-connected, then so is G .H. Furthermore, G .H
is a snark provided that each of G and H is [1, 6]. (Throughout this paper we
are using the term snark in its most general meaning, that is, as a synonym for a
connected cubic graph with no 3-edge-colouring, see e.g. [3].)
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Now assume that G and H are permutation snarks. Let P = {P1, P2} be a
permutation 2-factor of G, that is, a 2-factor that consists of two chordless circuits
P1 and P2. Also let Q = {Q1, Q2} be a permutation 2-factor of H. Let us perform
the dot product G[e1, e2] . [e]H in such a way that the edges e1 and e2 belong to
different circuits of P and that the edge e is a spoke of Q, that is, an edge of the
1-factor complementary to Q. Since the end-vertices vertices u and v of e belong
to different circuits of Q, there is an index i ∈ {1, 2} such that the dot product
operation welds the circuit P1 of P with the circuit Qi of Q and the circuit P2 of
P with Q3−i of Q. In this manner a 2-factor of G .H consisting of two chordless
circuits is produced. Thus G .H is a permutation snark.

It is well known that the dot product operation is essentially reversible (see for
example Cameron et al. [3]). This means that if a snark G has a cycle-separating
edge-cut S of size 4, then there exist snarks G1 and G2 such that G is isomorphic
to G1 . G2. If G is a permutation snark, then the snarks G1 and G2 are uniquely
determined by S and both can be shown to be again permutation snarks. Thus
the following result is true.

Theorem 2.1. Let G and H be permutation snarks. A dot-product G[e1, e2] ·
[e]H is a permutation snark if and only if the edges e1 and e2 belong to different
circuits of a permutation 2-factor of G and e belongs to the 1-factor complementary
to a permutation 2-factor of H. Furthermore, every permutation snark with cyclic
connectivity 4 arises in this way.

This theorem can be used to produce huge amounts of permutation snarks with
cyclic connectivity 4. For example, starting from the Petersen graph and applying
Theorem 2.1 repeatedly we can we can construct cyclically 4-edge-connected snarks
of every possible order n ≡ 2 (mod 8).

Corollary 2.2. For every integer n ≡ 2 (mod 8) with n ≥ 10 there exists a
permutation snark of order n.

Theorem 2.1 explains an explosion of permutation snarks observed by Brink-
mann et al. in [2]: there is one permutation snark of order 10, two of order 18
(the Blanuša snarks), 64 of order 26, and 10771 of order 34. Exluding the Petersen
graph, only twelve of all these snarks are cyclically 5-edge-connected, all of order
34. This naturally directs our interest to cyclically 5-edge-connected permutation
snarks.

3. Permutation snarks with cyclic connectivity 5

Dot product has a lesser-known cyclically 5-connected analogue called star prod-
uct. It was introduced by Cameron et al. in [3] and can be described as follows.
Consider two cubic graphs G and H and containing 5-cycles C = v0v1v2v3v4 ⊆ G
and D = w0w1w2w3w4 ⊆ H. For each vertex x on either of these circuits let x′

denote the corresponding neighbour not lying on the circuit. Define G ? H to be
the cubic graph obtained by removing C from G and D from H and by connecting
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each vertex v′i to the vertex w′2i with indices reduced modulo 5. Observe that the
result is not uniquely determined as it depends on the chosen labelling of vertices
in the 5-cycles C and D. Nevertheless, G ? H is always a snark provided that G
and H are (see [3]).

Let G be a snark with a permutation 2-factor P = {P1, P2} and let C be an
arbitrary 5-cycle in G. Since each circuit of P is chordless, there exists an index
i ∈ {1, 2} such that C has two common edges with Pi and one common edge with
P3−i. Hence, precisely one of the edges connecting C to the rest of G is a spoke.

Now let G and H be permutation snarks with 5-cycles C = v0v1v2v3v4 ⊆ G and
D = w0w1w2w3w4 ⊆ H. Let us choose the labelling of vertices of the 5-cycles C
and D in such a way that v0v

′
0 and w0w

′
0 are spokes of the respective permutation

2-factors. We will say that the star product performed with respect to such a
labelling is rooted.

The following result implies that rooted star product can be used to construct
permutation snarks.

Proposition 3.1. A rooted star product of two permutation snarks is again a
permutation snark.

Another method for constructing permutation snarks is based on a subgraph
substitution. Take a snark H and construct a subgraph N by removing the vertices
of a path R of length 2 from H. The important property of N is that every proper
3-edge-colouring of N induces the same colour on the edges leading from N to
one of the end-vertices of R and two different colours on the edges leading to the
other end-vertex of R. The fact that N switches matching colours at one end of
R to mismatching colours at the other end justifies calling N a negator. The edge
leading from N to the inner vertex of R is said to be the residual edge for N .

Consider a snark G which has a cycle-separating 5-edge-cut S such that one
of the components of G − S, denoted by M , is isomorphic to the negator N0 of
order 7 obtained from the Petersen graph. Let N be a negator constructed from an
arbitrary snark H. Substitute M ⊆ G with N in such a way that the residual edge
for M is replaced with the residual edge for N and the pairs of edges determined
by the end-vertices of the removed paths are preserved. We say that the resulting
graph is obtained from G by a negator substitution. It can be shown that a negator
substitution performed on a snark gives rise to a snark.

Now assume that both G and H are permutation snarks, G containing a copy
M of the Petersen negator. Observe that the 5-edge-cut S that separates M from
the rest of G contains a unique spoke. Construct a negator N from H by removing
a path R ⊆ H of length 2 that contains a spoke. It follows that the 5-edge-cut
between N and R also contains exactly one spoke, but that edge is not residual. A
short reflection reveals that if the substitution of M ⊆ G with N is performed in
such a way that, additionally, spoke is replaced with a spoke, a permutation snark
is obtained. The latter condition still leaves two possibilities how to perform the
substitution, and the two graphs obtained in this way will be called mates.



PERMUTATION SNARKS OF ORDER 2 (mod 8) 933

Proposition 3.2. Substituting a Petersen negator in a permutation snark with
a negator obtained from a permutation snark can always be performed in such a
way that the resulting graph is a permutation snark.

In order to guarantee a sufficient cyclic connectivity of the resulting permutation
snarks we need the following theorem which itself is a consequence of a stronger
result independent of edge-colourings.

Theorem 3.3. Let G and H be cyclically 5-edge-connected permutation snarks.
Then:

(i) G ? H is cyclically 5-edge-connected;
(ii) at least one of the mates obtained by a negator substitution performed on G

by using a negator contained in H is cyclically 5-edge-connected.

We now apply Propositions 3.1 and 3.2 and Theorem 3.3 to construct cyclically
5-edge-connected permutation snarks of every order n ≡ 2 (mod 8) with n ≥ 34.
Note that there exist no cyclically 5-edge-connected permutations of orders strictly
between 10 and 34, see [2].

For this purpose it is sufficient to display cyclically 5-edge-connected permuta-
tion snarks of order 34, 42, and 50, each containing at least two disjoint 5-cycles,
and apply rooted star product or a negator substitution repeatedly. A pair of
disjoint 5-cycles guarantees that the star product can indeed be iterated, because
one of the 5-circuits is used for the product and the other one survives in each
factor of the star product.

For the snark of order 34 we can use the snark G34 displayed in Figure 1,
which clearly contains four disjoint Petersen negators and hence sufficiently many
disjoint 5-cycles. To construct a cyclically 5-edge-connected permutation snark
G42 of order 42 we perform a negator substitution on G34 where one Petersen
negator is substituted with a negator obtained from the second Blanuša snark B2

of order 18 (also called Blanuša double according to [10]) by removing a path R
of length 2 that intersects its unique cycle-separating 4-edge-cut. Note that B2 is
a permutation snark by Theorem 2.1. Although we cannot apply Theorem 3.3 to
conclude that G42 is cyclically 5-edge-connected, this can be verified directly. A
cyclically 5-edge-connected permutation snark G50 of order 50 can be obtained by
the same procedure applied to G42, since it still contains three disjoint Petersen
negators inherited from G34.

Thus we have the following result.

Theorem 3.4. There exists a cyclically 5-edge-connected permutation snark of
order n for each n ≡ 2 (mod 8) with n ≥ 34.

4. Final remarks

1. The fact that no permutation snarks of order 6 (mod 8) are currently known
is really intriguing. Theorem 3.3 implies that the smallest such snark, if it exists,
must be cyclically 5-edge-connected. In [9], where full proofs of all our results will
appear, we gather additional structural information about a smallest permutation
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snark of order 6 (mod 8). In the future, this information could either lead to
discovering such a snark or disproving its existence.

2. All known permutation snarks, including those resulting from the construc-
tions described above, have girth 5 and hence cyclic connectivity at most 5. Al-
though cycle permutation graphs of arbitrarily high girth are known [11], their
cyclic connectivity has not been determined. It is therefore natural to ask whether
there exist cycle permutation graphs of arbitrarily high cyclic connectivity. Any
effort in this direction could shed more light on the famous conjecture of Jaeger
[7] that there are no cyclically 7-edge-connected snarks.
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