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EMBEDDING TREES WITH MAXIMUM AND MINIMUM

DEGREE CONDITIONS

G. BESOMI, M. PAVEZ-SIGNÉ and M. STEIN

Abstract. We propose the following conjecture: For every fixed α ∈ [0, 1
2

], each

graph of minimum degree at least (1 +α) k
2

and maximum degree at least 2(1−α)k
contains each tree with k edges as a subgraph.

Our main result is an approximate version of the conjecture for bounded degree trees

and large dense host graphs. We also show that our conjecture is asymptotically
best possible, which disproves a conjecture from [17].

1. Introduction

A central challenge in extremal graph theory is to determine degree conditions a
graph G has to satisfy in order to ensure that it contains a given subgraph H. One
of the most interesting open cases are trees. Instead of focusing on the containment
of just one specific tree T , one usually asks for containment of all trees of some
fixed size k ∈ N. To this end, bounds on the average degree, the median degree
or the minimum degree of the host graph G have been suggested in the literature.
Let us give a quick outline of the most relevant directions.

1.1. Average degree

The classical Erdős-Sós conjecture from 1964 (see [6]) states that every graph of
average degree strictly greater than k − 1 contains each tree with k edges. In
particular, this conjecture implies that for every fixed tree T with k edges one has
ex(n, T ) ≤ k−1

2 n.
This conjecture has received a lot of attention over the last three decades, in

particular, Ajtai, Komlós, Simonovits and Szemerédi announced a proof of this
conjecture in the early 1990’s. Nevertheless, many others partial results have been
found since then, see e.g. [4, 18, 17, 3].
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1.2. Median degree

The Loebl-Komlós–Sós conjecture from 1992 (see [7]) states that every graph of
median degree at least k contains each tree with k edges. For the particular case
k = n

2 , Ajtai, Komlós and Szemerédi [1] proved an aproximate version for large n,
and years later Zhao [19] proved the exact version for large n.

An approximate version of the Loebl-Komlós-Sós conjecture, for dense graphs,
was proved by Piguet and Stein [14]. The exact result, for dense graphs, was
proved by Piguet and Hladký [9], and independently by Cooley [5]. For sparse
graphs, Hladký, Komlós, Piguet, Szemerédi and Stein proved an approximate
version of the Loebl-Komlós-Sós conjecture in a series of four papers [10, 11, 12,
13].

1.3. Maximum and minimum degree

A new angle to the problem was introduced in 2016 by Havet, Reed, Stein, and
Wood [8], who impose bounds on both the minimum and the maximum degree.
They suggest that every graph of minimum degree at least b 2k3 c and maximum
degree at least k contains each tree with k edges. We call their conjecture the
2
3–conjecture, for progress see [8, 3, 15, 16].

In [3], the present authors proposed a variation of this approach, conjecturing
that every graph of minimum degree at least k

2 and maximum degree at least 2k

contains each tree with k edges. We call this conjecture the 2k–k2 conjecture.

1.4. New conjecture

Comparing the two variants of maximum/minimum degree conditions given by the
latter two conjectures, it seems natural to ask whether one can allow for a wider
spectrum of bounds for the maximum and the minimum degree of the host graph.
We believe it might be possible to weaken the bound on the maximum degree given
by the 2k–k2 conjecture, if simultaneously, the bound on the minimum degree is
increased. Quantitatively speaking, we suggest the following.

Conjecture 1.1. Let k ∈ N, let α ∈ [0, 12 ] and let G be a graph with δ(G) ≥
(1 + α)k2 and ∆(G) ≥ 2(1− α)k. Then G contains each tree with k edges.

Note that for α = 0, the bounds from Conjecture 1.1 coincide with the bounds
from the 2k–k2 conjecture, and for all α ∈ [ 13 ,

1
2 ], Conjecture 1.1 follows from the

2
3–conjecture. We believe that in the range α ∈ [ 13 ,

1
2 ], the Conjecture 1.1 is not

tight and that the corrects bounds follow from the 2
3 -conjecture (which is stronger

in that range).
As positive evidence for Conjecture 1.1, we show an approximate version for

trees with bounded degree and dense host graph. Our main result is the following.

Theorem 1.2. For all δ ∈ (0, 1) there exist k0 ∈ N such that for all n, k ≥ k0
with n ≥ k ≥ δn and for each α ∈ [0, 13 ] the following holds. If G is an n-vertex

graph with δ(G) ≥ (1 + δ)(1 +α)k2 and ∆(G) ≥ 2(1 + δ)(1−α)k, then G contains

each k-edge tree T with ∆(T ) ≤ k 1
67 as a subgraph.
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Due to lack of space we will only give a sketch of the proof of Theorem 1.2,
referring to [2] for full details. In [2] we also discussed the extremal examples and
different degree conditions for embedding trees.

2. Extremal examples

Let `, k, c ∈ N, with 1 ≤ c ≤ k
`(`+1) , such that ` ≥ 3 is odd and divides k. For

i = 1, 2, we define Hi = (Ai, Bi) to be the complete bipartite graph with

|Ai| = (`− 1)

(
k

`
− 1

)
and |Bi| =

k

2
+

(c− 1)(`+ 1)

2
− 1.

We define the graph Hk,`,c by adding a new vertex x to H1 ∪H2, and adding all
edges between x and A1 ∪A2 (see figure 1 below). Observe that

δ(Hk,`,c) = min{|A1|, |B1|+ 1} = |B1|+ 1 =
k

2
+

(c− 1)(`+ 1)

2

and

∆(Hk,`,c) = |A1 ∪A2| = 2(`− 1)

(
k

`
− 1

)
.

Figure 1. The graph Hk,`,c.

The following proposition shows that Conjecture 1.1 is asymptotically tight, we
refer to [2] for a proof.

Proposition 2.1. For all odd ` ∈ N with ` ≥ 3, and for all γ > 0 there
are k, c ∈ N and a k-edge tree T , such that the graph Hk,`,c satisfies δ(Hk,`,c) ≥
(1 + 1

` − γ)k2 and ∆(Hk,`,c) ≥ 2(1− 1
` − γ)k, but T does not embed in Hk,`,c.
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3. Sketch of proof of Theorem 1.2

Let G be a graph satisfying the assumptions of Theorem 1.2 and let x ∈ V (G)
be a vertex of maximum degree, that is, deg(x) ≥ (1 + δ)(1 − α)2k. Our proof
uses embedding techniques for trees that the present authors developed in [3] and
which can be used together with the regularity method.

We apply the regularity lemma to G − x, with parameters 0 < ε � η � δ, in
order to obtain an (ε, η)-regular partition of G − x and a corresponding reduced

graph R. Given a tree T with k edges and maximum degree at most k
1
67 , we use a

general embedding lemma from [3] which describes a series of scenarios in which
T can be embedded into G. If this fails, we deduce that R has a specific structure
that we can use for embedding T .

We show that x sees only two components of the reduced graph, say C1 and
C2

1. Moreover, the component which receive most of the degree of x is bipartite
and x sees only one of the bipartition classes. Assume that C1 is bipartite with
parts A and B such that x does not see B, then we have

(I) (1 + δ
2 )(1− α)k ≤ |V (

⋃
A)| ≤ (1 + η)k; and

(II) (1 + δ
2 )(1 + α)k2 ≤ |V (

⋃
B)| ≤ (1 + η)k.

The upper bounds in (I) and (II) follow by the embedding lemma from [3]. The
lower bound in (I) follows from deg(x) ≥ (1 + δ)(1 − α)2k and since x does not
see B, the lower bound in (II) is because of the minimum degree of G.

. .

1We use calligraphic letters to denote subsets of clusters of the reduced graph. Given a component
V of the reduced graph, we write

⋃
V for the subgraph of G induced by all the clusters in V.

Furthermore, we denote by V (
⋃

V) the set of vertices of G that are contained in
⋃

V. Later we

will write
⋃
F for the union of all trees in a family F of trees.
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The plan for embedding T is to split T into a cut vertex and small components
that can be arranged into groups that fit into C1 (respecting its bipartition) and
C2. After that, we embed the cut vertex of T into some special vertex and then
we can embed the corresponding forest using the regularity method (the roots of
the forest are embedded into neighbours of the image of the cut vertex).

Let z ∈ V (T ) be a vertex such that each component of T − z has size at most
dk2 e, and let F denote the set of connected components of T − z.

We can partition F = J1 ∪ J2 so that |V (J1)| ≤ 2
3k and |V (J2)| ≤ k

2 . Let V0
be the set of vertices of T − z that lie at even distance to z. If |V0| ≤ (1 +α)k2 , we
map z into x and. Since

|V (J1) ∩ V0| ≤ (1 + α)k2 ≤
1

1 + δ
2

|V (
⋃

B)|

and

|V (J1) r V0| ≤ 2
3k ≤ (1− α)k ≤ 1

1 + δ
2

|V (
⋃
A)|,

by using regularity we can embed J1 into C1, with V (J1) ∩ V0 going to clusters
in B and V (J1) r V0 going to clusters in A. The trees from J2 can be embedded
greedily into C2 because of the minimum degree of G. From now we assume that
|V0| ≥ (1 + α)k2 . The remaining proof splits in two cases.

Case 1: |V (F ) ∩ V0| ≤ αk for all F ∈ F .

Let F1 be an inclusion-maximal subset F1 ⊂ F such that

|V0 ∩ V (
⋃
F1)| ≤ (1 + α)k2 .

Then clearly

|V0 ∩ V (
⋃
F1)| ≥ (1− α)

k

2
and |V (

⋃
F1) r V0| ≤ (1 + α)

k

2
.

This implies that we can embed z into x and thus, by using the regularity lemma,
we embed F1 into C1, with V (

⋃
F1)rV0 going to clusters in A and V (

⋃
F1)∩V0

going to clusters in B. The trees from F r F1 can be embedded greedily into C2

because of the minimum degree of G.

Case 2: There is a tree F ∗ such that |V (F ∗) ∩ V0| > αk.

Let F ′ = F r {F ∗} and note that |V (
⋃
F ′)∩ V0| ≤ (1−α)k. This implies that

z and V (
⋃
F ′) ∩ V0 fit into A. Furthermore, since |V0| ≥ (1 + α)k2 we have that

|V (
⋃
F ′) r V0| ≤ (1 − α)k2 . Therefore, {z} ∪ (V (

⋃
F ′) ∩ V0) and V (

⋃
F ′) r V0

fit into A and B respectively. We embed z into some neighbour of x in V (
⋃

A)
and then, using regularity, we can embed F ′ into C1, with V (

⋃
F ′) ∩ V0 going to

clusters in A and V (
⋃
F ′) r V0 going to clusters in B. We embed the root of F ∗

into z and then complete the embedding into C2 using the minimum degree of G.
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17. Rozhoň V., A local approach to the Erdős-Sós conjecture, SIAM J. Discrete Math. 2 (2019),

643–664.
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Chile,

e-mail : mpavez@dim.uchile.cl

M. Stein, Facultad de Ciencias Fsicas y Matemáticas Universidad de Chile, Santiago, Chile,

e-mail : mstein@dim.uchile.cl


