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TESTING ISOMORPHISM OF CIRCULANT OBJECTS

IN POLYNOMIAL TIME

M. MUZYCHUK and I. PONOMARENKO

Abstract. We show that isomorphism testing of two cyclic combinatorial objects

may be done in a polynomial time provided that both objects share the same regular
cyclic group of automorphisms given in advance.

1. Introduction

In this note we consider combinatorial objects as the objects of a concrete category
K [1]. In such a category, each object X ∈ K is associated with an underlying set
Ω(X), and each isomorphism fromX to Y is associated with a bijection f : Ω(X)→
Ω(Y ); the set of all these bijections is denoted by IsoK(X,Y ). It is also assumed
that for any bijection f from the set Ω(X) to another set, there exists a unique
object Y = Xf for which this set is the underlying one and f ∈ Iso(X,Y ). Thus,

X ∼=K Y ⇔ Y = Xf for some f ∈ Iso(X,Y ).

Given a set K ⊆ Sym(Ω) of permutations and two objects X,Y ∈ K with Ω(X) =
Ω(Y ), we write IsoK(X,Y ) for the intersection K ∩ IsoK(X,Y ).

In what follows by a Cayley object of K over a group G we mean any X ∈ K
such that Ω(X) = G and the group AutK(X) := IsoK(X,X) contains the subgroup
induced by the right regular representation of G.

A particular example of a concrete category is formed by relational structures.
A relational structure is a pair X = (Ω,R) consisting of a ground set Ω and a
finite set of relations R over Ω. Isomorphisms and automorphisms of objects in
this category are defined in a natural way. In this category a Cayley object over
a group G is a relational structure X = (G,R) the automorphism group of which
contains the right regular representation of G. In the case of G being cyclic the
object will be called cyclic or circulant.

We present a result which provides a complete solution of the following problem.
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Circulant Objects Isomorphism. Given a cyclic group C and two Cayley
relational structures over C, test whether they are isomorphic and (if so) find an
isomorphism between them.

The first result towards a solution of the above problem was obtained by
Pálfy [9]. He proved that if the group order n = |C| satisfies (n, ϕ(n)) = 1, then
Iso(X,Y ) 6= ∅ ⇐⇒ IsoAut(C)(X,Y ) 6= ∅ for any pair X = (C,R), Y = (C,S)
of cyclic relational structures. This result provides a simple polynomial-time al-
gorithm for isomorphism testing of circulant combinatorial structures. In order
to cover the remaining orders of circulant objects it was proposed in [2, 3] to
replace Aut(C) by a bigger set S ⊂ Sym(C) with the property Iso(X,Y ) 6= ∅ ⇐⇒
IsoS(X,Y ) 6= ∅. This idea was further developed in [6] where such a set was
called a solving set. It was shown in [7, 8, 4] that various classes of circulant
combinatorial objects admit solving sets of polynomial size.

2. Main results

Our first main result shows that there exists a solving set which works for all
circulant combinatorial objects.

Theorem 2.1. Let C be a cyclic group of order n. Then in time poly(n), one
can construct a solvable group K ≤ Sym(C) such that for any concrete category K
and any two Cayley objects X,Y ∈ K over C,

(1) IsoK(X,Y ) 6= ∅ ⇐⇒ IsoK(X,Y ) 6= ∅.
The group K mentioned above is permutation isomorphic to the iterated wreath

product
K = AGL(1, p1) o · · · oAGL(1, pd),

where p1 ≥ · · · ≥ pd are primes such that n = p1 · · · pd. One can replace the group
K by a smaller group, e.g., the Hall π- subgroup of K, where π = {p1, . . . , pd}.
However, it is doubtful that the order of such a group can be bounded from above
by a polynomial in n.

In order to apply the above result to the concrete category of relational struc-
tures we represent relational structures by special colored hypergraphs in such
a way that the required isomorphisms could be taken inside a solvable group K
constructed in Theorem 2.1. Finding an isomorphism f ∈ K in polynomial time
can be done with the help of Miller’s algorithm designed for isomorphism testing
of hypergraphs [5]. This yields us the following result.

Theorem 2.2. The isomorphism of any two circulant objects can be tested in
time polynomial in their sizes.

As a corollary we obtain the following statement.

Theorem 2.3. The isomorphism of any two circulant hypergraphs can be tested
in time polynomial in their sizes.

In particular, this result provides a polynomial algorithm for isomorphic testing
of circulant Steiner triple systems.
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