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OPTION PRICING WITH DYNAMICALLY CORRELATED

STOCHASTIC INTEREST RATE

LONG TENG, M. EHRHARDT and M. GÜNTHER

Abstract. In this work we review several option pricing models with stochastic

interest rate and extend these models by incorporating a local time dependent cor-
relation between the underlying and the interest rate. We compare the difference

between using a constant and a dynamic correlation by analyzing some numerical

benchmarks. Furthermore, we conduct experiments on fitting the pricing model
to the market price. Our analysis shows that the option pricing within the Black-

Scholes framework can not be improved significantly by incorporating stochastic

interest rate even when using a nonlinear correlation term.

1. Introduction

The Black-Scholes model [2] defining the fair price of European-style options is
one of the most famous models. However, due to the assumption that the stock
log-return follows a geometric Brownian motion (with constant volatility), the
widening gap between model and market data could exist almost all the time.
For this reason, the Black-Scholes model has been generalized to allow stochas-
tic volatility, see e.g. [5], [6], and hence the pricing performance has been thus
improved.

The other strong assumption of a constant interest rate is also not realistic. The
first work on incorporating stochastic interest rate into the Black-Scholes model
is Merton [8]. Afterwards, a couple of works on option pricing under stochastic
interest rate was published, e.g. [1], [3], [4] and [9]. However, some empirical
findings indicated that stochastic interest rates may be not relevant for the pricing
and hedging of short term options, see e.g. [4] and [7]. Besides, the paper [3]
concluded that allowing interest rates to be stochastic does not necessarily improve
the pricing performance any further, even for long-term options, once the model
has accounted for stochastically varying volatility.

We have realized that the correlation between interest rates process and un-
derlying process in the works mentioned above has been assumed to be constant.
Unfortunately, this assumption is also dubious due to the fact that financial quan-
tities may be correlated in a nonlinear way, even stochastically, see [10], [11] and
[12]. Besides, it has been inferred in [12] and [13] that the Heston model and the
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model of Quanto-option pricing can be better fitted to the market data using a
dynamic (i.e. only time-dependent) correlation than using a constant correlation.
Thus, it is interesting to ask whether stochastic interest rates could be relevant
for the hedging and pricing of options if the correlation between the interest rates
and the underlying asset is not considered as a constant.

Motivated by this question, we review and extend some option pricing models
with stochastic interest rate by allowing for a nonconstant correlation. Firstly, we
compare the option pricing between using a constant and a nonconstant correla-
tion by analyzing some numerical results. Secondly, we conduct an experiment on
fitting the pricing models to the market data, in order to check, whether stochas-
tic interest rates are important for option pricing while allowing a nonconstant
correlation.

The paper is organized as follows. In the next section, we review and extend
two different pricing models with stochastic interest rate and dynamic correlation.
Section 3 is devoted to investigate the difference of model calibration between using
a constant and a dynamic correlation. Finally, Section 4 concludes this work.

2. Option Pricing with dynamically correlated
Stochastic Interest Rate

In this Section, we consider two pricing models with stochastic interest rate. First,
we review and extend the Merton model [8] of pricing European option where
bond price dynamics are allowed. Besides, we study the option pricing model with
stochastic interest rate given by Vasicek stochastic differential equation (SDE) in
[9] and [7].

2.1. The Merton model

We use the following SDE to describe the stock price St and the bond price Pt
dynamics

dSt
St

= µSdt+ σSdW 1
t ,(1)

dPt
Pt

= µPdt+ σP ρtdW
1
t + σP

√
1− ρ2

tdW
2
t ,(2)

with the instantaneous expected returns µS , µP , the instantaneous variances σ2
S , σ

2
P

and the two independent Brownian motions W 1
t ,W

2
t . Let P (t, T ) be the bond price

which pays one unit of currency at maturity T (or say τ = T − t years later from
now). Besides, we denote the European option price function by H(S, P, τ ;K) for
using the constant correlation ρt = ρ between the returns on the stock and on the
bond and by V (S, P, ρτ , τ ;K) for using the corresponding dynamic correlation ρt,
where K is the strike price. Merton [8] has shown that H(S, P, τ ;K) must satisfy

1

2
σ2
SS

2 ∂
2H

∂S2
+ ρσSσPSP

∂2H

∂S∂P
+

1

2
σ2
PP

2 ∂
2H

∂P 2
− ∂H

∂τ
= 0(3)
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subject to the boundary conditions{
H(0, P, τ ;K) = 0
H(S, 1, 0;K) = max(0, S −K).

(4)

(3) is a second-order, linear partial differential equation (PDE) of parabolic type
with a singularity at S = 0. Furthermore, if we assume that the returns on the
stock and on the bond are correlated with an appropriate time-varying function
ρt (without stochasticity), it is straightforward to deduce

1

2
σ2
SS

2 ∂
2V

∂S2
+ ρtσSσPSP

∂2V

∂S∂P
+

1

2
σ2
PP

2 ∂
2V

∂P 2
− ∂V

∂τ
= 0,(5)

subject to the boundary conditions{
V (0, P, ρτ , τ ;K) = 0
V (S, 1, ρ0, 0;K) = max(0, S −K).

(6)

Following the methodologies of [8], we define x = S
KPτ

which can be described
with the aid of Itô’s lemma as

dx

x
= [µS − µP + σ2

P − ρtσPσS ]dt+ σSdW 1
t

− σP ρtdW 1
t − σP

√
1− ρ2

tdW
2
t ,

(7)

from which we obtain the instantaneous variance of the return on x given by

σ2
t := σ2

P + σ2
S − 2ρtσPσS .(8)

Next, we define v = V
KP and substitute x and v in (5) to get

1

2
σ2
t x

2 ∂
2v

∂x2
− ∂v

∂τ
= 0.(9)

Finally, we consider a new time variable T (τ) :=
∫ τ

0
σ2
t dt and define y(x, T ) :=

v(x, τ) which can be substituted into (9) to obtain the heat equation

1

2
x2 ∂

2y

∂x2
− ∂y

∂τ
= 0,(10)

subject to the boundary conditions, y(0, T ) = 0 and y(x, 0) = max(0, x− 1). It is
well-know the fact that the heat equation (10) can be solved analytically. The the
solution of V (S, P, ρτ , τ ;K) can thus be found as

V (S, P, ρτ , τ ;K) = SΦ(d1)−KPΦ(d2),(11)

with

d1 :=
ln S

K − lnP + 1
2

∫ τ
0
σ2
sds√∫ τ

0
σ2
sds

, d2 := d1 −

√∫ τ

0

σ2
sds,

where σt is defined in (8) and Φ(x) denotes the standard normal cumulative dis-
tribution function. So far, in order to compute the European call option price we
need to know the formula of Pτ and a reasonable local correlation function ρt.
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Following the methodologies of [8] we assume that the short rate rt follows a
Gauss-Wiener process 1

drt = µrdt+ σrρtdW
1
t + σr

√
1− ρ2

tdW
2
t .(12)

Applying Itô’s lemma with P (τ ; r) we obtain

dP =
∂P

∂τ
dτ +

∂P

∂r
drt +

1

2

∂2P

∂r2
(drt)

2.(13)

Substituting (12) into (13) leads to

dP =

(
−∂P
∂τ

+ µr
∂P

∂r
+
σ2
r

2

∂2P

∂r2

)
dt

+ σrρt
∂P

∂r
dW 1

t + σr

√
1− ρ2

t

∂P

∂r
dW 2

t .

(14)

By comparing the coefficients in (14) and (2) we get

−∂P
∂τ

+ µr
∂P

∂r
+
σ2
r

2

∂2P

∂r2
= PµP and σr

∂P

∂r
= PσP ,(15)

which gives

σP = −τσr,(16)

and

P (τ ; r) = exp
(
− rτ − µr

2
τ2 +

σ2
r

6
τ3
)
.(17)

For ρt we employ the local correlation function proposed in [12], see also [13],

ρt := E [tanh(Xt)](18)

for the dynamic correlation function, where Xt is any mean-reverting process with
positive and negative values. For a fixed parameter of Xt, the correlation function
ρt depends only on t. It is obvious that ρt takes values only in (−1, 1) for all t
and converges for t → ∞. By choosing Xt in (18) to be the Ornstein-Uhlenbeck
process [14]

dXt = κ(µ−Xt)dt+ σdWt, t ≥ 0,(19)

the closed-form expression for ρt has been derived as

ρt = 1−
exp(−A− B

2 )

2

∫ ∞
−∞

1

cosh(πu2 )
· exp

(
iu(A+B) + u2B

2

)
du,(20)

with

A = exp(−κt) tanh−1(ρ0) + µ(1− exp(−κt)),(21)

B = −σ
2

2κ
(1− exp(−2κt)),(22)

where κ ≥ 0, σ ≥ 0, µ ∈ R and ρ0 ∈ (−1, 1).

1The drawback: A limitation on fitting model to market data could exist due to the linearity of

the conditional expectation of rt, namely E[rt|rs] = (t− s)µr.
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Substituting (16), (17) and (20) into (11), we obtain the European Call-option
price with dynamically correlated stochastic interest rate

V (S, P, ρτ , τ ;K) = SΦ(d1)−KPΦ(d2),(23)

d1 :=
ln S

K − lnP + 1
2

∫ τ
0
σ2
sds√∫ τ

0
σ2
sds

, d2 := d1 −

√∫ τ

0

σ2
sds

and

σ2
t = τ2σ2

r + σ2
S + 2ρtτσrσS ,(24)

where P and ρt are defined in (17) and (20), respectively. The price of European
Put-options are directly available using the Put-Call parity.

2.2. Option pricing with Vasicek Interest rate ––– The Rabinovitch model

Rabinovitch [9] investigated the pricing of European option with Vasicek stochastic
interest rates and derived a closed form formula. A comparison of pricing formulas
of European Call-option with different stochastic interest rate processes can be
found in [7]. In this section, we consider the pricing of European Call-options
with the Vasicek stochastic interest rate and incorporate dynamic correlation.

Again, we consider the following SDEs for the stock price and interest rate
dynamics

dSt
St

= µSdt+ σSdW 1
t ,(25)

drt = κr(µ
r − rt)dt+ σrρtdW

1
t + σr

√
1− ρ2

tdW
2
t ,(26)

where W 1
t and W 2

t are independent Brownian motions. The pricing formula of
European Call-option according to (25) and (26) but with a constant correlation
has been given in [9], see also [7].

Furthermore, if we compare the pricing formula of the Merton model between
using constant and dynamic correlation in Section 2.1, we observe that incorpo-
rating a dynamic correlation does not change the original pricing formula (with
constant correlation) to a large extent, the new pricing formula with dynamic
correlation has just the formel which can be obtained directly by fitting in the
dynamic correlation function instead of a constant correlation with the original
formula.

We can observe that incorporating a dynamic correlation function into the pric-
ing formula with the Vasicek stochastic interest rate provided in [9] and [7] also in
this case. In order to adopt the approach in [7] to directly get the pricing formula
with dynamic correlation, we need to rewrite (25) and (26) with respect to the
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Brownian motions under a risk-neutral probability measure Q as

dSt
St

= (µS − σSλS)︸ ︷︷ ︸
:=µS

dt+ σSdW̃ 1
t ,(27)

drt = κr[(µ
r − σr

√
1− ρ2

tλ
r
t

κr
)︸ ︷︷ ︸

:=µr

−rt]dt+ σrρtdW̃
1
t + σr

√
1− ρ2

tdW̃
2
t ,(28)

where λS and λrt are the market prices of risk. Whilst we assume that the market

price of risk λrt to be a constant, this is to say we set µr − σr
√

1−ρ2tλ
r
t

κr
= µr.

The pricing formula with constant correlation in [7] can be thus straightforwardly
adopted to find the pricing formula using dynamic correlation. Therefore, we omit
the exact derivation and give the pricing formula using dynamic correlation

V (S, P, ρτ , τ ;K) = SΦ(d1)−KPΦ(d2)(29)

with

d1 :=
Στ11 + Στ12 − Cτ√

Dτ

, d2 := d1 −
√
Dτ

where

Cτ :=
Στ11

2
−Bτ + ln

K

S
, Dτ := Στ11 + 2Στ12 + Στ22, Στ11 := σ2

Sτ,

Στ22 :=
σ2
r

κ2
r

[
τ − 3 + e−κrτ (e−κrτ − 4)

2κr

]
, Στ12 :=

σrσS
κr

∫ τ

ρs(1− e(s−τ)κr )ds

and

Bτ :=
1

κr

[
κrµrτ − (r − µr)(e−κrτ − 1)

]
, Pτ := e

1
2 Στ22−Bτ ,(30)

ρt has been defined in (20).

2.3. Numerical Results

In this section, we compare numerically the option prices between using constant
and dynamic correlations. in both models above. We choose the parameters
S = 80, K = 100, σS = 0.2, constant correlation: ρc = 0.2, parameters of dynamic
correlation function: ρ0 = 0.2, κρ = 2, µρ = 0.5, σρ = 0.2, constant interest rate
for the Black-Scholes model: rc = 0.05, stochastic rate for the Merton model:
r0 = 0.05, µr = 0.001, σr = 0.1 and for the Rabinovitch model: r0 = 0.05, κr = 2,
µr = 0.001, σr = 0.1.

We compute the prices of the European Call-option using the Black-Scholes
model, using the Merton model and the Rabinovitch model with constant and dy-
namic correlation for the different maturities T = 0.5, 1, 1.5, 2, 2.5, 3 years and dis-
play them in Figure 1. We can easily see the difference between the Black-Scholes
model and the model using stochastic interest rate. However, as mentioned in the
introduction, some empirical findings showed us that stochastic interest rates (with
constant correlation) may not be important for the option pricing. From Figure 1
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Figure 1. Comparison of pricing European Call-option using different models.

we can also observe, the prices in both models have been changed because of incor-
porating nonconstant correlation. Thus, one could ask whether stochastic interest
rates with nonconstant correlation can contribute to the performance improvement
of the Black-Scholes model. To clarify this question, we run a calibration test in
the next section.
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3. Calibration to the market data

Both works [12] and [13] indicated that using a dynamic correlation can improve
the model calibration. In the following, we examine both the Merton model and
the Rabinovitch model whether incorporating stochastic interest rate contributes
to the performance improvement of pring due to allowing a dynamic correlation.

We have seen that the bond price formula is available for both models, see (17)
for the Merton model and (30) for the Rabinovitch model. Thus, one can directly
estimate the parameters of the short rate model using the market yield curve Yτ
with the aid of the relation

Yτ = −1

τ
lnPτ .(31)

We consider the overnight rate on July 30, 2013, r0 = 0.26%, as the initial value of
the short rate. One can then obtain the estimates by fitting (31) to the treasury
yield curve2 on this day for a maturity series, i.e. 1/12, 1/4, 1/2, 1, 2, 3, 5, . . . 30
years. Our results are: µr = 0.005, σr = 0.017 (Merton short rate) and κr = 0.111,
µr = 0.052, σr = 0.001 (Vasicek short rate).

The parameters, which we do still need to estimate, are σS , ρc (for the case
of using a constant correlation) or correlation function parameters (for using a
dynamic correlation). For this purpose, we pick the market Call option prices on
the S&P 500 on July 30, 2013 with the spot price S = 169.1, for the maturities
T = 30, 90, 180, 360 days and the strikes K/S = 0.9, 1, 1.1. Then, we fit the model
prices VMod(Ti,Kj) to the market prices VMkt(Ti,Kj) by minimizing the relative
mean error sum of squares (RMSE)

1

N

∑
i,j

ωi,j
(VMkt(Ti,Kj)− VMod(Ti,Kj))

2

VMkt(Ti,Kj)
,(32)

where ωi,j is an optional weight and N is number of prices. While minimizing we
need to add some constraints on the parameters: the implied volatility σS must be
positive, the constant correlation ρc must belong to the interval (−1, 1). We know
that the correlation function (20) stems from the expectation of the transformed
Ornstein-Uhlenbeck process by tanh . As mentioned before, the parameters of the
correlation function must satisfy the following conditions

κ > 0, µ ∈ R, σ > 0, ρ0 ∈ (−1, 1).(33)

We set the upper limit for κ to be 30 and the interval for µ to be [−6, 6].
For this optimization problem we used the standard method of nonlinear op-

timization and report our results in Table 1 for using a constant correlation and
in Table 2 for using a dynamic correlation. First, we look at Table 1 and find
that the constant correlation ρc in both models tends to attain the boundary 0.99.
We have checked that the option prices can not really be affected by varying the
correlation value in the interval (−0.7, 1), this result 0.99 could be thus justified
in this case. However, the calibration to the chosen market data in both models

2available on http://www.treasury.gov
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Model σS ρc RMSE

The Merton model 0.12 0.99 0.115
The Rabinovitch model 0.12 0.99 0.141

Table 1. Parameter estimation for using constant correlation (S&P 500).

Model σS ρ0 κ µ σ RMSE

The Merton model 0.12 −0.99 18.14 6 5× 10−4 0.114
The Rabinovitch model 0.12 −0.99 22.90 6 6.6× 10−3 0.141

Table 2. Parameter estimation for using dynamic correlation (S&P 500).

is still not much satisfied. The reason could be that the option pricing within the
Black-Scholes framework can not really be improved by incorporating stochastic
interest rate.

Naturally, one may think that the unsatisfactory calibration might be caused by
the drawback of the chosen interest rate model, e.g. the linear drift in the Merton
model as mentioned before. Ignoring this, one could think whether the calibration
will be thus improved by allowing a nonconstant correlation between stock and
the stochastic interest rate, namely whether option pricing could be improved by
imposing a nonconstant correlation? Unfortunately, from Table 2 we see although
the dynamic correlation has changed from the initial value −0.99 to the boundary
0.99 over time, there is almost no improvement of the RMSE compared to the
RMSE in Table 1, and both RMSEs are quite large.

To further confirm the outcome of the experiment above, we repeat the cali-
bration using other market data. We fit both stochastic interest rate models to
r0 = 4.2% and the yield curve on June 27, 2007: µr = 0.003, σr = 0.016 (Merton
short rate) and κr = 7.225, µr = 0.058, σr = 0.8278 (Vasicek short rate). We
use the market option prices on the DAX on the same day with the spot price
S = 7858.5, for the maturities T = 0.02, 0.52, 1.02, 1.52 years and the strikes
K/S = 0.9, 1, 1.1. We present our results in Table 3 for using constant correlation
and in Table 4 for using dynamic correlation.

Model σS ρc RMSE

The Merton model 0.18 0.99 1.960
The Rabinovitch model 0.18 −0.304 1.312

Table 3. Parameter estimation for using constant correlation (DAX).

Model σS ρ0 κ µ σ RMSE

The Merton model 0.19 −0.99 3.73 6 0.001 1.916
The Rabinovitch model 0.19 −0.501 6.054 −0.339 0.156 1.234

Table 4. Parameter estimation for using dynamic correlation (DAX).
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Figure 2. Comparison of the market and model prices in the Merton model (S&P 500).

Although the calibration of the Rabinovitch model is a bit better than using
the Merton model in this experiment, the Merton model exhibits a drawback
mentioned before. Unfortunately, we still observe no significant improvements by
incorporating a time-varying correlation.

Furthermore, we can observe that the value of κ is quite large and the value
of σ is small in both examples above, this means that the dynamic correlation
will rapidly tend to its equilibrium which is close to the value of the applied
constant correlation. This means that no big differences between using constant
and dynamic correlation are expected. To confirm this statement, for the first
example (S&P 500) we compare the model prices using constant and dynamic
correlation to the market prices in Figure 2 for the Merton model and in Figure
3 for the Rabinovitch model. As expected, in both models there is almost no
difference between prices using constant and dynamic correlation, especially, for a
longer maturity.

Thus, we conclude that allowing a dynamic correlation in this example does not
improve the calibration as in [12] and [13]. Incorporating a stochastic volatility
could probably solve this calibration problem. This means also that our exper-
imental results do not only coincide with the statement that only incorporating
stochastic interest rate does not improve pricing performance. Furthermore, our
results show that the calibration is not getting better for allowing a dynamic cor-
relation between stochastic interest rate and stock process.
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Figure 3. Comparison of the market and model prices in the Rabinovitch model (S&P 500).

4. Conclusion

In this work, we reviewed two European option pricing models with stochastic
interest rates: the Merton model (interest rate given by Gauss-Wiener process) and
the Rabinovitch model (interest rate given by Vasicek process). We extend both
models by incorporating a local time dependent correlation between the underlying
process and the stochastic interest rate. We presented numerical results to show
the difference between using a constant and a dynamic correlation. Furthermore,
we conducted experiments on fitting the model to the market price. Our result
has justified firstly the earlier empirical finding that the option pricing within
the Black-Scholes framework could not be improved by incorporating stochastic
interest rate and secondly showed no significant improvement even when using a
nonlinear time-varying correlation between the stock process and the short rate
process.
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