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AN EXPONENTIAL DIOPHANTINE EQUATION

RELATED TO ODD PERFECT NUMBERS

T. YAMADA

Abstract. We show that for any given primes ` ≥ 17 and p, q ≡ 1 (mod `), the

diophantine equation (x` − 1)/(x − 1) = pmq has at most four positive integral

solutions (x,m) and gives its application to odd perfect number problem.

1. Introduction

The purpose of this paper is to bound the number of integral solutions of the
diophantine equation

(1)
x` − 1

x− 1
= pmq, m ≥ 0.

This equation arises from our study of odd perfect numbers of a certain form.
N is called perfect if the sum of divisors of N except N itself is equal to N .
It is one of the oldest problem in mathematics whether or not an odd perfect
number exists. Euler has shown that an odd perfect number must be of the

form N = pαq2β1

1 . . . q2βkk for distinct odd primes p, q1, . . . , qk and positive integers
α, β1, . . . , βr with p ≡ α ≡ 1 (mod 4).

However, we do not know a proof of the nonexistence of odd perfect numbers
even of the special form N = pα(q1q2 . . . qk)2β , although McDaniel and Hagis
conjecture that there exists no such one in [15]. Gathering various results such as
[4], [9] [10], [11], [14], [15], and [18], we know that β ≥ 9, β 6≡ 1 (mod 3), β 6≡ 2
(mod 5), and β cannot take some other values such as 11, 14, 18, 24.

We have shown, that if N = pα(q1q2 . . . qk)2β is an odd perfect number, then
k ≤ 4β2 + 2β + 2 in [19]. Recently, in [21], we have improved this upper bound
by 2β2 + 8β + 2 where the coefficient 8 of β can be replaced by 7 if 2β + 1 is not

a prime or β ≥ 29. Since it is known that N < 24
k+1

from [17], we have

N < 24
2β2+8β+3

.
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The key point for this result is the diophantine lemma that if `, p, q are given
primes such that ` ≥ 19 and p ≡ q ≡ 1 (mod `), then (1) has at most six integral

solutions (x,m) such that x is a prime below 24
`2

, and at most five such solutions
if ` is a prime ≥ 59 (we note that by Theorems 94 and 95 in Nagell [16], any
prime factor of (x` − 1)/(x− 1) with ` prime must be ≡ 1 (mod `) or equal to `).
Combining this result with an older upper bound from [19], we obtain the above
upper bound for N .

Now we return to the equation (1), which is a special type of Thue-Mahler
equations. Evertse gave an explicit upper bound for the numbers of solutions
of such equations. [8, Theorem 3] gives that a slightly generalized equation

(x` − y`)/(x − y) = pmqn has at most 2 × 77(`−1)
3

integral solutions for ` ≥ 4.
In this paper, we would like to obtain a stronger upper bound for the numbers of
solutions of (1).

Theorem 1.1. If `, p, q are given primes such that ` ≥ 17 and p ≡ q ≡ 1
(mod `), then (1) has at most four positive integral solutions (x,m). Moreover,
if p, q, ` are such given primes and (1) has five integral solutions (xi,mi) with
m5 > m4 > · · · > m1 ≥ 0, then m1 = 0 and x2 = xr1 for some prime r 6= `.

Combining this result with an argument in [21], we obtain the following new
upper bound for odd perfect numbers of a special form.

Corollary 1.2. If N = pe(q1q2 . . . qk)2β is an odd perfect number with p, q1, q2,
. . . , qk distinct primes and p ≡ e ≡ 1 (mod 4) then, k ≤ 2β2 + 6β + 2 and N <

24
2β2+6β+3

.

Our method is similar to the approach used in [21]. In this paper, we use
upper bounds for sizes of solutions of (1) derived from a Baker-type estimate
for linear forms of logarithms by Matveev [13], which may be interesting itself,
while [21] used an older upper bound for odd perfect numbers of the form given
above. We note that Padé approximations using hypergeometric functions given
by Beukers [2], [3], does not work in our situation since our situation gives much

weaker approximation to
√
D, although Beukers’ gap argument is still useful (see

Lemma 2.4 below).
In the next section, we introduce some arithmetic preliminary results from [21]

and Matveev’s lower bound for linear forms of logarithms. In Section 3, using
Matveev’s lower bound, an upper bound for the sizes of solutions of (1) is given. In
Section 4, we prove Theorem 1.1. For large `, this can be done combining results
in Sections 2 and 3 with general estimates for class numbers, and regulators of
quadratic fields. For small `, we settle the case x1 is large and then check the
remaining x1’s.

A more generalized equation of (1) is

(2)
x` − 1

x− 1
= ymzn, x ≥ 2, y ≥ 2, ` ≥ 3, mn ≥ 2.
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Assuming the abc-conjecture, the author [20] proved that any integral solution of
(2) with ` ≥ 3, m ≥ 1, n ≥ 2, 1 ≤ y < z, and x` sufficiently large must satisfy
(`,m, n) = (4, 1, 2), (3, 1, 3) or (`, n) = (3, 2).

2. Preliminary lemmas

In this section, we introduce some notations and lemmas.
We begin by introducing a well-known result concerning prime factors of values

of the n-th cyclotomic polynomial, which we denote by Φn(X). This result was
proved by Bang [1] and rediscovered by many authors such as Zsigmondy [22],
Dickson [7], and Kanold [11, 12].

Lemma 2.1. If a is an integer greater than 1, then Φn(a) has a prime factor
which does not divide am − 1 for any m < n, unless (a, n) = (2, 6) or n = 2, and
a+ 1 is a power of 2.

In order to introduce further results on values of cyclotomic polynomials, we
need some notations and results from the arithmetic of a quadratic field. Let

` ≥ 17 be a prime and D = (−1)
`−1
2 `. Let K and O denote Q(

√
D) and its ring

of integers Z[(1 +
√
D)/2], respectively. We use the overline symbol to express

the conjugate in K. In the case D > 0, ε and R = log ε denote the fundamental
unit and the regulator in K, respectively. In the case D < −4, we set ε = −1 and
R = πi. We note that neither D = −3 nor −4 occurs since we have assumed that
` ≥ 17.

Moreover, we define the absolute logarithmic height h(α) of an algebraic number
α in K. For an algebraic number α in K and a prime ideal p over K such that
α = (ζ1/ζ2)ξ with ξ ∈ pk and ζ1, ζ2 in O r p, we define the absolute value |α|p by

|α|p = Np−k

as usual, where Np denotes the norm of p, i.e., the rational prime lying over p.
Now the absolute logarithmic height h(α) is defined by

h(α) =
1

2

(
log+ |α|+ log+ |ᾱ|+

∑
p

log+ |α|p

)
,

where log+ t = max{0, log t} and p in the sum runs over all prime ideals over K.
The following three lemmas on the value of the cyclotomic polynomial Φ`(x)

are quoted from [21], except the latter part of Lemma 2.3.

Lemma 2.2. If x is an integer > `2, then Φ`(x) can be written in the form
X2 −DY 2 for some coprime integers X and Y with

(3)

∣∣∣∣ Y

X + Y
√
D

∣∣∣∣ > 0.4387

x

and

(4)

∣∣∣∣ Y

X − Y
√
D

∣∣∣∣ < 0.5608

x
.
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Moreover, if p, q are primes ≡ 1 (mod `) and Φ`(x) = pmq for some integer m,
then

(5)

[
X + Y

√
D

X − Y
√
D

]
=

(
p̄

p

)±m(
q̄

q

)±1
,

where [p] = pp̄ and [q] = qq̄ are prime ideal factorizations in O.

Lemma 2.3. Assume that ` is a prime ≥ 17. If x2 > x1 > 0 are two
multiplicatively independent integers, Φ`(x1) = pm1q and Φ`(x2) = pm2q, then

x2 > x
b(`+1)/6c
1 . If x2 > x1 > 0 are multiplicatively dependent integers and

Φ`(xi) = pmiq for i = 1, 2, then m1 = 0 and x2 = xr1 for some prime r 6= `.

Lemma 2.4. If Φ`(xi) = pmiq for three integers x3 > x2 > x1 > 0 with

x2 > x
b(`+1)/6c
1 , then m3 > 0.445 |R|x1/

√
`.

Proofs of lemmas. The former statement of Lemma 2.3 and Lemma 2.4 are 4.1
and 4.2 of [21] (the original version of Lemma 4.2 contains an error, see the
corrigendum), respectively, for ` ≥ 19, and the corresponding statements can be
proved for ` = 17 in a similar way. Moreover, Lemma 2.2 is Lemma 2.3 of [21]
with 3b(`+1)/6c replaced by `2 for ` ≥ 19 and can be proved in a similar way, even
for ` = 17. Hence, what we should prove here is only the latter statement of
Lemma 2.3.

The assumption implies that x1 = yr1 and x2 = yr2 for some positive integers
y, r1, r2 with r2 > r1. Assume that r1 > 1, and put ri = siti with ti = `ki and si
not divisible by ` for i = 1, 2.

If at least one si 6= 1, then Φ`(y
ri) must be divisible by Φti`(y)Φri`(y). Hence,

three values Φti`(y), Φr1`(y), and Φr2`(y) must be composed only by p and q.
However, since we have assumed that ` ≥ 17, Lemma 2.1 yields that each of Φti`(y),
Φr1`(y), and Φr2`(y) must have a primitive prime factor. This is a contradiction.

If s1 = s2 = 1, then we have t1 6= t2 and Φ`(xi) = Φti`(y) for i = 1, 2. Hence,
both Φt1`(y) and Φt2`(y) must be divisible by q, which is impossible since q ≡ 1
(mod `).

Thus we must have r1 = 1 and x2 = xr1. If r is divisible by `, then, writing
r = s`k with s indivisible by `, we see that

pm2q = Φ`(x
r
1) =

(xs`
k+1

1 − 1)

(xs`
k

1 − 1)
=
∏
d|s

Φd`k+1(x1).

If s 6= 1, then three values Φ`(x1),Φ`k+1(x1), and Φs`k+1(x1) must be composed
only by p and q, which is impossible like above. Then s = 1, and q must divide
both Φ`(x1) = pm1q and Φ`k+1(x1). But this cannot occur since q ≡ 1 (mod `).

Hence, r is not divisible by ` and we see that

pm2q = (xr`1 − 1)/(xr1 − 1) =
∏
d|r

Φd`(x1),
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while each Φd`(x1) has a primitive prime factor. Hence, r must be prime and since
Φ`(x1) must be divisible by q, we conclude that Φr`(x1) = pm2 and Φ`(x1) = q,
proving the latter statement of Lemma 2.3. �

In order to obtain an upper bound for the size of solutions, we use a lower
bound for linear forms of logarithms due to Matveev [13, Theorem 2.2].

Lemma 2.5. Let α1, α2, . . . , αn be algebraic integers in O which are multiplica-
tively independent and b1, b2, . . . , bn be arbitrary integers. Let
A(α) = max{2h(α), |logα|} and Aj = A(αj). Moreover, we put κ = 1 if D > 0,
and κ = 2 if D < 0.

Put

(6)

B = max{1, |b1|A1/An, |b2|A2/An, . . . , |bn|},
Ω = A1A2 . . . An,

Cκ(n) =
16

n!κ
en(2n+ 1 + 2κ)(n+ 2)(4(n+ 1))n+1

×
(

1

2
en

)κ
(4.4n+ 5.5 log n+ 7 + 2 log 2 + log(1 + log(2))),

c = 3e(1 + log 2),

and

(7) Λ = b1 logα1 + · · ·+ bn logαn.

Then we have Λ = 0 or

(8) log |Λ| > −Cκ(n)(log cB) max
{

1,
n

6

}
Ω.

3. Upper bounds for the sizes of solutions

In this section, we give upper bounds for the sizes of solutions of (1), which
itself may be of interest. As in the previous sections, for a prime ` ≥ 17, we let

D = (−1)
`−1
2 `, K and O denote the quadratic field Q(

√
D) and its ring of integers

Z[(1 +
√
D)/2], respectively, and h is the class number of K. In the case D > 0, ε

and R = log ε denote the fundamental unit and the regulator in K, respectively. In
the case D < −4, we set ε = −1 and R = πi. We note that |R| > log(

√
17) > 1.4

for every D with |D| ≥ 17.
We let p, q be primes ≡ 1 (mod `). Then, we can factor [p] = pp̄ and [q] = qq̄ in

O and see that ph = [τ ] and qh = [η] for some τ, η ∈ O. In the case D > 0, taking
integers u, v so that |τεu| ≤ ph/2ε1/2 ≤

∣∣τεu+1
∣∣ and |ηεv| ≤ ph/2ε1/2 ≤

∣∣ηεv+1
∣∣,

we can take τ0 = τεu, and η0 = ηεv in O such that [τ0] = ph, [η0] = qh and
ph/2ε−1/2 ≤ |τ0| ≤ ph/2ε1/2, qh/2ε−1/2 ≤ |η0| ≤ qh/2ε1/2. In the case D < 0, we
can easily observe that τ0 and η0 in O can be chosen from ±τ,±τ̄ and ±η,±η̄,
respectively, such that [τ0] = ph, [η0] = qh, and |arg τ0| , |arg η0| < π/4.
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Theorem 3.1. Assume that Φ`(x) = pmq and put C = C1(3) = 1.813 · · ·×1010

if ` ≡ 1 (mod 4), and C = C2(3) = 4.518 · · · × 1010 if ` ≡ 3 (mod 4). Then we
have the following upper bounds for m:

i) If h log q > h log p ≥ |R|, then

(9) m < 4.505C`h2 |R| (log q)(log(8cC`h2 |R|) + log log p).

ii) If h log q ≥ |R| ≥ h log p, then

(10) m < 4.505C
`

log(2`)
h |R|2 (log q) log

(
8cC` |R|3

log(2`)

)
.

iii) If h log p > h log q ≥ |R|, then

(11) m < 4.505C`h2 |R| (log q)(log(8cC`h2 |R|) + log log q).

iv) If h log p ≥ |R| ≥ h log q, then

(12) m < 4.505C`h |R|2 log(8cC`h |R|2).

v) If |R| ≥ h log max{p, q}, then

(13) m < 4.505C` |R|3 log(8cC` |R|3)

log `
.

Proof. We begin by observing that if m ≤ 2` log `, then we can easily confirm
the Theorem exploiting the fact that p, q > 2`. Indeed, in cases i), iii), and
iv), we have 2` log ` < C` log ` which is clearly smaller than the right hand side
of the desired inequality in each case. Moreover, in cases ii) and v), we have
|R| ≥ log p > log(2`) and 2` log ` < C` log |R| is smaller than the right hand side
of the desired inequality in each case. Hence, we may assume that m > 2` log `, so
that x > `2. If Φ`(x) = pmq, then Lemma 2.2 yields that there exist two integers
X,Y such that

(14)

[
X + Y

√
D

X − Y
√
D

]
=

(
p̄

p

)±m(
q̄

q

)±1
with 0 <

∣∣∣Y/(X − Y√D)
∣∣∣ < 0.5608/x. We can easily see that (X + Y

√
D)/

(X−Y
√
D) 6= ±1 from Y/(X−Y

√
D) 6= 0. Since |D| = ` > 3 is odd, (X+Y

√
D)/

(X − Y
√
D) cannot be a root of unity. Hence, taking the h-th powers, we have

(15)

(
X + Y

√
D

X − Y
√
D

)h
= εu

(
τ̄0
τ0

)±m(
η̄0
η0

)±1
6= 1

for some integer u, where we take τ0 and η0 as we explained just before the lemma.
Now let

(16) Λ = u log ε±m log

(
τ̄0
τ0

)
± log

(
η̄0
η0

)
= h log

(
X + Y

√
D

X − Y
√
D

)
.
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Then, proceeding as in the corrigendum of [21], (15) gives that

(17) 0 < |Λ| < 2hY
√
`

|X − Y
√
D|

<
1.1216h

√
`

x
.

If |Λ| ≥ 1, then we have x < 1.1216h
√
` < h` and m < ` log x/ log p < ` log(h`).

We can easily confirm the desired inequality in each case. Hence, we may assume
that |Λ| < 1.

Before applying Lemma 2.5, we must obtain upper bounds for A(ε), A(τ̄0/τ0),
and A(η̄0/η0). If D > 0, then we deduce from ph/2ε−1/2 ≤ |τ0| ≤ ph/2ε1/2 that
|τ̄0/τ0| ≤ ε and h log p ≤ 2h(τ̄0/τ0) ≤ h log p + log |ε|. Thus, we obtain h log p ≤
A(τ̄0/τ0) ≤ h log p+|R|, and similarly, we obtain h log q ≤ A(η̄0/η0) ≤ h log q+|R|.
Moreover, since h(ε) = (log ε)/2, we have A(ε) ≤ |R|. If D < 0, then the situation
becomes simpler. We can see that |τ0| = |τ̄0| = |η0| = |η̄0| = ph/2. Hence,

h(τ̄0/τ0) = log |τ0|−1p = (h/2) log p, and similarly, h(η̄0/η0) = (log q)/2. Now, we

have A(τ̄0/τ0) = max{h log p, π/2} = h log p since p ≥ 47 > eπ/2, and, similarly
A(η̄0/η0) = h log q. Moreover, A(ε) = A(−1) = π = |R|. Thus, in any case, we
obtain h log p ≤ A(τ̄0/τ0) ≤ h log p + |R|, h log q ≤ A(η̄0/η0) ≤ h log q + |R|, and
A(ε) ≤ |R|.

We begin by treating the first case h log q > h log p > |R|. We have

(18)
mA(τ̄0/τ0)

A(η̄0/η0)
=
m(h log p+ |log(τ̄0/τ0)|
h log q + |log(η̄0/η0)|

≤ m(h log p+ |R|)
h log q

and

(19)

uA(ε)

A(η̄0/η0)
=
|u log ε|
A(η̄0/η0)

≤ m |log(τ̄0/τ0)|+ |log(η̄0/η0)|+ |Λ|
h log q

<
(m+ 1) |R|+ |Λ|

h log q
<

2m |R|
h log q

,

where we recall that |Λ| < 1, and observe that m > 2` log ` > 48, |R| > 1.4, and
(m+ 1) |R|+ |Λ| < (m+ 1) |R|+ 1 < 2m |R|.

Since h log q > h log p > |R|, we see that A(τ̄0/τ0) < h log p + |R| < 2h log p,
A(η̄0/η0) < h log q + |R| < 2h log q, and B ≤ 2m log p/ log q. Hence, Matveev’s
theorem gives

(20)

log x− log(1.1216h
√
`) < − log |Λ|

< C(2h)2 log
(2cm log p

log q

)
|R| (log p)(log q),

and therefore,

(21)

m log p

log q
<
` log x

log q

< `

(
log(1.1216h

√
`)

log q
+ 4Ch2 |R| log

(2cm log p

log q

)
(log p)

)
.

Taking into account that C > 1010, we may assume that (2cm log p)/ log q > 1010,
otherwise, (9) automatically holds. Now we observe that q, p ≥ max{`, 47} and
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2c log(1.1216h
√
`)/ log q < 1 + log h + log ` ≤ 1 + log h + log p < 2h log p. Hence,

we obtain

(22)

2cm log p

log q
< (8cC + 1)`h2 |R| log

(2cm log p

log q

)
(log p)

=: U log
(2cm log p

log q

)
.

In other words, putting W = 2cm log p/ log q, we have W/ logW < U . Since
U >8cC≥8cC1(3)>2× 1012, we have (1.12212U logU)/ log(1.12212U logU) < U .
Thus we obtain W < 1.12212U logU . Noting that 8cC > 2 × 1012, ` ≥ 17,
|R| > 1.4, and p ≥ 47, we have log(8cC` |R| log p) > 32.84 and

logU = log(1.12212(8cC + 1)`h2 |R| log p)

< log(8cC`h2 |R| log p) + log(1.12213)

<1.00351 log(8cC`h2 |R| log p).

(23)

Hence, (22) yields that

(24)

2cm log p

log q
< 1.12212U logU

< 1.12212(8cC+1)`h2 |R| (log p)×1.00351 log(8cC`h2 |R| (log p)),

and dividing by 2c,

(25)
m log p

log q
< 4.505C`h2 |R| (log p)(log(`h2 |R|) + log log p+ log(8cC)),

proving i).
Then, if h log q > |R| > h log p, then A(τ̄ /τ) < 2 |R| , A(η̄/η) < 2h log q, and

B ≤ 2m |R| /h log q. Moreover, (18) and (19) hold as in the previous case. Hence,
an argument similar to the above yields that

(26)
m log p

log q
< `

(
log(1.1216h)

log q
+ 4Ch |R|2 log

(2cm |R|
h log q

))
,

and observing that p > 2`,

(27)
m |R|
h log q

< `

(
|R| log(1.1216h)

h(log(2`))(log q)
+ 4C

|R|3

log(2`)
log
(2cm |R|
h log q

))
.

We see that log(8cC` |R|3 / log(2`)) > log(8cC`(log3 p)/ log(2`)) > 33.85 in this
case. Thus, proceeding as above, we obtain

(28)
m |R|
h log q

< 4.505C
`

log(2`)
|R|3 log

(8cC` |R|3

log(2`)

)
,

which proves ii).
In the remaining cases, similar arguments give iii), iv), and v). �
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4. Proof of the main theorem

In this section, we prove the main theorem.
Assume that Φ`(xi) = pmiq with mi ≥ 0 has five solutions x1 < x2 < x3 <

x4 < x5 such that x1 and x2 are multiplicatively independent. It is clear that
x1 ≥ max{q1/`, 2}. Since we have assumed that x1 and x2 are multiplicatively

independent, Lemma 2.3 yields that x3 ≥ max{q, 2`}b(`+1)/6c2/`. Now it follows
from Lemma 2.4 that

(29) m5 >
0.455πx3√

`
>

0.455π√
`

max{qb(`+1)/6c2/`, 2b(`+1)/6c2} := M.

We begin by the case ` ≥ 47. If ` ≡ 3 (mod 4), then R = πi. If ` ≡ 1
(mod 4), then noting that ` is prime, it follows from Proposition 3.4.5 of [5, p.
138] and Proposition 10.3.16 of [6, p. 200] with ` in place of m and f in the latter
proposition that hR < `1/2((log `)/2 + log log ` + 2.8). Now Theorem 3.1 implies
that m5 < M , which contradicts to (29). Hence, if ` ≥ 47, then Φ`(xi) = pmiq
can never have five solutions x1 < · · · < x5 such that x1 and x2 are pairwise
multiplicatively independent.

Next, assume that ` = 43. We must have x1 ≥ 3 since 243 − 1 = 431 ×
9719 × 2099863 has three distinct prime factors. Thus we must have m5 >
0.455πmax{q49/43, 349}/

√
43, which exceeds the upper bounds given in Theorem

3.1 with h = 1, R = πi. Indeed, Theorem 3.1 would yield that if q < 343,
then m5 < 5 × 1016 < 0.455π × 349/

√
43 < m5, and if q > 343, then m5 <

2.8 × 1013(log q)(log log q + 35) < 0.455πq49/43/
√

43 < m5. In both cases, we
are led to a contradiction. Hence, Φ43(xi) = pmiq can never have five solutions
x1 < · · · < x5 such that x1 and x2 are pairwise multiplicatively independent.

Table 1. Estimates when ` ≤ 41 and x1 is large.

` h R x1 ≥ x2 > x3 >

17 1 log(4 +
√
17) 69 x31 max{q9/17, 699}

19 1 πi 79 x31 max{q9/19, 799}
23 3 πi 14 x41 max{q16/23, 1416}
29 1 log((5 +

√
29)/2) 5 x51 max{q25/29, 525}

31 3 πi 6 x51 max{q25/31, 625}
37 1 log(6 +

√
37) 3 x61 max{q36/37, 336}

41 1 log(32 + 5
√
41) 3 x71 max{q49/41, 349}

If ` ≤ 41 and x1 is not less than the corresponding value given in Table 1, then
x2 and x3 exceed the value given in this table. Now we see that m5 > 0.455πx3/

√
`

exceeds our upper bound M , which leads to a contradiction.
Now we examine the remaining cases. Then m1 = 0 or x1 must be one of the

values given in Table 2, and p, q must be in the range given in this table.
Assume that x1 is one of the values given in Table 2. In any case, Theorem 3.1

gives that m < 1.3 × 1017. But we have confirmed that x2 > p4 ≥ 474 > 106 for
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these cases. Hence, we must have x3 > x42 > 1024 and m5 > x3 > 1024 for all cases
given in Table 2, which is a contradiction again.

Table 2. Estimates when ` ≤ 41,m1 > 0 and x1 is small.

` x1 p, q ≥ p, q ≤

17
3, 4, 5, 7, 10, 12, 14, 15,

103 36275943774350895510464675919, 23, 26, 32, 39, 41, 42,
44, 45, 46, 48, 58, 61, 63, 65

19
3, 4, 6, 7, 13, 15, 18, 21,

191 60712781828773132166057742705126, 28, 29, 30, 33, 34, 35,
37, 38, 50, 61, 62, 63, 71

23 2, 3, 5 47 332207361361
23 13 1381 p1 = 2519545342349331183143
31 5 1861 625552508473588471
37 2 223 616318177
41 2 13367 164511353

For example, in the case ` = 23 (in this case, we have h = 3 and R = πi), if

x1 ≥ 14, then we must have m5 > 0.455πmax{q16/23, 1416}/
√

23, which exceeds
the upper bounds given in Theorem 3.1.

If x1 < 14, then we must have x1 = 2, 3, 5, or 13, (1023 − 1)/9 is prime, and
(x23 − 1)/(x− 1) with x = 4, 6, 7, 8, 9, 11, or 12 has more than two distinct prime
factors.

If x1 = 2, 3, or 5, then p, q ≤ 332207361361 and m < 1.37 × 1017. But, in
any case, we have confirmed that x2 > p4 > 106. Hence, we must have x3 >
x42 > 1024 and m5 > x3 > 1024, which is a contradiction. If x1 = 13, then
(x231 − 1)/(x− 1) = 1381p1, where p1 = 2519545342349331183143 and m < 2.46×
1017. Since (x`1 − 1)/(x1 − 1) = 1381p1, Lemma 2.3 yields that we cannot have
x2 = xr1 with r > 1. Thus, we have x2 > 149085523215936756399 > 1020 and

m4 > 0.455πx2/
√

23 > 2.46× 1017, which is a contradiction.
Next assume that m1 = 0 or equivalently, (x`1− 1)/(x1− 1) = q. Thus, (x, `) =

(2, 31), (10, 23), or ` = 19, x ∈ {2, 10, 11, 12, 14, 19, 24, 40, 45, 46, 48, 65, 66, 67, 75},
or ` = 17, x ∈ {2, 11, 20, 21, 28, 31, 55, 57, 62}. We observe that xr1 with 1 ≤ r ≤
`− 1 give the complete solutions to the congruence (X`− 1)/(X− 1) ≡ 0 (mod q)

and x`−11 < q. Since x1, x2 are multiplicatively independent, we must have x2 >

x`1 > max{q, 2`}. Thus, x3 > x
b(`+1)/6c
2 and m5 > 0.455 |R|x3/

√
`. However,

except the case ` = 17 and x1 = 2, this exceeds the upper bound for m given by
Theorem 3.1.

For example, if ` = 19 and x1 = 2, then x2 ≥ 219, x3 > x32, and m5 >

0.455πx3/
√

19 > 4.7× 1016 while Theorem 3.1 gives m5 < 5.8× 1015.
Finally, if ` = 17 and x1 = 2, then q = 131071, and since (x172 − 1)/(x2 − 1) =

pm2q, we have either x2 ≥ 218 or x2 = 131583. If x2 ≥ 218, then x3 > 254 and
m5 > 0.455 log(4 +

√
17)x3/

√
17 > 4.1 × 1015 while Theorem 3.1 gives m5 <

1.2 × 1015. If x2 = 131583, then p = 6161 . . . 6351 is a certain 76-digits prime.
This yields that x3 > 2.3× 1074 and m5 > 5.3× 1073, which is impossible again.
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Thus, we have proved that if Φ`(xi) = pmiq with mi ≥ 0 has five solutions x1 <
x2 < x3 < x4 < x5, then x1 and x2 are multiplicatively dependent. Combining it
with Lemma 2.3, the proof of Theorem 1.1 is completed.
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