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EXISTENCE RESULTS FOR NONLINEAR KATUGAMPOLA

FRACTIONAL DIFFERENTIAL EQUATIONS

WITH AN INTEGRAL CONDITION

B. BASTI, Y. ARIOUA and N. BENHAMIDOUCHE

Abstract. This work studies the existence and uniqueness of solutions for a class of
nonlinear fractional differential equations via the Katugampola fractional derivatives
with an integral condition. The arguments for the study are based upon the Banach
contraction principle, Schauder’s fixed point theorem, and the nonlinear alternative
of Leray-Schauder type.

1. Introduction

Fractional calculus is a mathematical branch which investigates the properties of
derivatives and integrals of non-integer orders (also known as fractional derivatives
and integrals, briefly differ-integrals). We refer the interested readers in the subject
to the books (Samko et al. 1993 [19], Podlubny 1999 [18], Kilbas et al. 2006 [15],
Diethelm 2010 [7]).

The differential equations of fractional order are generalizations of classical
differential equations of integer order they are increasingly used in such fields
as fluid flow, control theory of dynamical systems, diffusive transport akin to
diffusion, probability and statistics etc. The boundary value problem of fractional
differential equations was recently approached by various researchers ([6], [17],
[13], [4]).

In [6], Benchohra and Lazreg applied the Banach contraction principle with
Schauder fixed-point theorem and Leray-Schauder type to show the existence and
uniqueness of solutions for an initial value problem of the nonlinear implicit frac-
tional differential equation{

cDα0+u(t) = f
(
t, u(t),cDα0+u(t)

)
, t ∈ [0, T ] , T > 0, 0 < α ≤ 1,

u (0) = u0,

where cDα0+u is the Caputo fractional derivative, f : [0, T ]×R×R→ R is a given
function, and u0 ∈ R.
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In [17], by means of Schauder fixed-point theorem and the Banach contrac-
tion principle, Murad and Hadid, considered the boundary value problem of the
fractional differential equation{

Dα0+u(t) = f
(
t, u(t),Dβ0+u(t)

)
, t ∈ (0, 1), 1 < α ≤ 2, 0 < β < 1,

u (0) = 0, u(1) = Iγ0+u (s) , 0 < γ ≤ 1,

where Dα0+u (resp., Iα0+u) is the Riemann-Liouville fractional derivative (resp.,
fractional integral), and f : [0, 1]× R× R→ R is a continuous function.

In this work, our objective is to study in a general manner the existence and
uniqueness of solutions of nonlinear fractional differential equations

(1) ρDα0+u(t) = f
(
t, u(t),ρDβ0+u(t)

)
, t ∈ [0, T ] ,

with the integral condition

(2)
(
ρI1−α

0+ u
) (

0+
)

= 0,

where 0 < β < α ≤ 1, ρ > 0, and for any 1 ≤ p ≤ ∞, c > 0, T ≤ (pc)
1
pc is a

finite positive constant. The symbol ρDα0+ (resp., ρIα0+) presents the Katugampola
fractional derivative (resp., integral) operator and f : [0, T ]× R× R→ R.

We obtain several existence and uniqueness results for the problem (1)–(2).

2. Preliminaries

In this section, we present the necessary definitions from fractional calculus theory.
As in [15], consider the space Xp

c [0, T ], (c ∈ R, 1 ≤ p ≤ ∞) of those complex-
valued Lebesgue measurable functions u on [0, T ], for which ‖u‖Xpc < ∞, where
the norm is defined by

‖u‖Xpc =
(∫ T

0

|scu(s)|p ds

s

) 1
p

<∞

for 1 ≤ p <∞, c ∈ R. For the case p =∞,

‖u‖X∞c = ess sup
0≤t≤T

[tc |u(t)|] (c ∈ R) .

By C[0, T ], we denote the Banach space of all continuous functions from [0, T ] into
R with the norm

‖u‖∞ = sup
0≤t≤T

|u(t)| .

Remark. Let p, c, T ∈ R∗+ be such that p ≥ 1, c > 0, and T ≤ (pc)
1
pc ,

It’s clear that for all u ∈ C[0, T ]

‖u‖Xpc =
(∫ T

0

|scu(s)|p ds

s

) 1
p ≤

(
‖u‖p∞

∫ T

0

spc−1ds
) 1
p

=
T c

(pc)
1
p

‖u‖∞

and
‖u‖X∞c = ess sup

0≤t≤T
[tc |u(t)|] ≤ T c‖u‖∞,
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which implies that C[0, T ] ↪→ Xp
c [0, T ] and

‖u‖Xpc ≤ ‖u‖∞ for all T ≤ (pc)
1
pc .

We start with the definitions introduced in [15], with a slight modification in
the notation.

Definition 2.1 (Riemann-Liouville fractional integral [15]). The left-sided Rie-
mann-Liouville fractional integral of order α ∈ R+ of a continuous function u :
[0, T ]→ R is given by

RLIα0+u(t) =
1

Γ (α)

∫ t

0

(t− s)α−1
u(s)ds, t ∈ [0, T ].

Definition 2.2 (Riemann-Liouville fractional derivative [15]). The left-sided
Riemann Liouville fractional derivative of order α ∈ R+ of a continuous function
u : [0, T ]→ R is given by

RLDα0+u(t)=
1

Γ (n− α)

(
d

dt

)n ∫ t

0

(t− s)n−α−1
u(s)ds, t ∈ [0, T ], n = [α] + 1,

[α] denotes the integer part of α.

Definition 2.3 (Hadamard fractional integral [15]). The left-sided Hadamard
fractional integral of order α ∈ R+ of a continuous function u : [0, T ]→ R is given
by

HIα0+u(t) =
1

Γ(α)

∫ t

0

(
log

t

s

)α−1u(s)

s
ds, t ∈ [0, T ].

Definition 2.4 (Hadamard fractional derivative [15]). Left-sided Hadamard
fractional derivative of order α ∈ R+ of a continuous function u : [0, T ] → R is
given by

HDα0+u(t) =
1

Γ (n− α)

(
t

d

dt

)n ∫ t

0

(
log

t

s

)n−α−1u(s)

s
ds, t ∈ [0, T ], n = [α] + 1,

[α] denotes the integer part of α.

A recent generalization, introduced by Udita Katugampola (2011) [14], gen-
eralizes the Riemann-Liouville fractional integral and the Hadamard fractional
integral (see [15]).

The integral is now known as the Katugampola fractional integral, it is given
in the following definition

Definition 2.5 (Katugampola fractional integral [14]). The Katugampola frac-
tional integrals of order α ∈ R+ of a function u ∈ Xp

c [0, T ] is defined by

(3) ρIα0+u(t) =
ρ1−α

Γ(α)

∫ t

0

sρ−1u(s)

(tρ − sρ)1−α ds, t ∈ [0, T ],

for ρ > 0. This integral is called left-sided integral.

Similarly, we can define right-sided integrals [15], [12]–[14]. In a similar way,
we have the following definition.
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Definition 2.6 (Katugampola fractional derivatives [12]). If the integral ex-
ists, the generalized fractional derivatives of order α ∈ R+, corresponding to the
Katugampola fractional integrals (3), defined for any t ∈ [0, T ], by

(4)

ρDα0+y(t) =
(
t1−ρ

d

dt

)n (
ρIn−α0+ y

)
(t)

=
ρα−n+1

Γ (n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ−1y(s)

(tρ − sρ)α−n+1 ds,

[α] denotes the integer part of α, n = [α] + 1, and ρ > 0.

Remark ([12]–[14]). As a basic example, for α, ρ > 0, and µ > −ρ, we quote

ρDα0+tµ =
ρα−1Γ

(
1 + µ

ρ

)
Γ
(
1− α+ µ

ρ

) tµ−αρ.
Let us give in particular

ρDα0+tρ(α−m) = 0 for each m = 1, 2, . . . , n.

In fact, for α, ρ > 0 and µ > −ρ, we have

ρDα0+tµ =
ρα−n+1

Γ (n− α)

(
t1−ρ

d

dt

)n ∫ t

0

sρ+µ−1 (tρ − sρ)n−α−1
ds

=
ρα−1Γ

(
1 + µ

ρ

)
Γ
(

1 + n− α+ µ
ρ

)[n− α+
µ

ρ

]
· · ·
[
1− α+

µ

ρ

]
tµ−αρ(5)

=
ρα−1Γ

(
1 + µ

ρ

)
Γ
(

1− α+ µ
ρ

) tµ−αρ.(6)

If we put m = α− µ
ρ from (5), we obtain

ρDα0+tρ(α−m) = ρα−1 Γ (α−m+ 1)

Γ (n−m+ 1)
(n−m)(n−m− 1) . . . (1−m)t−ρm.

So, for m = 1, 2, . . . , n, we have ρDα0+tρ(α−m) = 0 for all α, ρ > 0.
Similarly, for all α, ρ > 0, we have

(7) ρIα0+tµ =
ρ−αΓ

(
1 + µ

ρ

)
Γ
(
1 + α+ µ

ρ

) tµ+αρ for all µ > −ρ.

In the theorem below, we present some properties of Katugampola fractional in-
tegrals and derivatives.

Theorem 2.7 ([12]–[14]). Let α, β, ρ, c ∈ R be such that α, β, ρ > 0. Then for
any u, v ∈ Xp

c [0, T ], where 1 ≤ p ≤ ∞, we have:
– Index property:

ρIα0+
ρIβ0+u(t) =ρ Iα+β

0+ u(t) for all α, β > 0,

ρDα0+
ρDβ0+u(t) =ρ Dα+β

0+ u(t) for all 0 < α, β < 1,
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– Inverse property:

(8) ρDα0+
ρIα0+u(t) = u(t) for all α ∈ (0, 1)

– Linearity property: for all α ∈ (0, 1), we have

(9)

{
ρDα0+ (u+ v) (t) = ρDα0+u(t) + ρDα0+v(t) ,
ρIα0+ (u+ v) (t) = ρIα0+u(t) + ρIα0+v(t) .

From Definitions 2.5 and 2.6, and Theorem 2.7, we deduce that

ρI1
0+

(
t1−ρ

d

dt

)
ρIα+1

0+ u(t) =

∫ t

0

sρ−1
(
s1−ρ d

ds

)
ρIα+1

0+ u(s) ds=

∫ t

0

d

ds
ρIα+1

0+ u(s) ds

=
[ 1

ραΓ (α+ 1)

∫ s

0

τρ−1 (tρ−τρ)αu (τ) dτ
]t

0
=ρIα+1

0+ u(t).

Consequently,

(10)
(
t1−ρ

d

dt

)
ρIα+1

0+ u(t) = ρIα0+u(t) for all α > 0.

Theorem 2.8 (Ascoli-Arzelà [1]). Let E be a compact space. If A is an equicon-
tinuous, bounded subset of C (E) , then A is relatively compact.

Definition 2.9 (Completely continuous [9]). We say A : E → E is completely
continuous if for any bounded subset P ⊂ E, the set A (P ) is relatively compact.

Lemma 2.10 (Gronwall [11]). Let u(t) and v(t) be nonnegative, continuous
functions on 0 ≤ t ≤ T for which the inequality

u(t) ≤ µ+

∫ t

0

v(s)u(s)ds, 0 ≤ t ≤ T,

where µ is a nonnegative constant, holds. Then

u(t) ≤ µ exp
(∫ t

0

v(s)ds
)
, 0 ≤ t ≤ T.

Theorem 2.11 (Banach’s fixed point [10]). Let P be a non-empty closed subset
of a Banach space E, then any contraction mapping A of P into itself has a unique
fixed point.

Theorem 2.12 (Schauder’s fixed point [10]). Let E be a Banach space and P
be a closed, convex, and nonempty subset of E. Let A : P → P be a continuous
mapping such that A (P ) is a relatively compact subset of E. Then A has at least
one fixed point in P.

Theorem 2.13 (Nonlinear Alternative of Leray-Schauder type [10]). Let E be
a Banach space with P ⊂ E being closed and convex. Assume U is a relatively
open subset of P with 0 ∈ U and A : Ū → P is a compact map. Then either

(i) A has a fixed point in Ū or
(ii) there is a point u ∈ ∂U and µ ∈ (0, 1) with u = µA (u).



248 B. BASTI, Y. ARIOUA and N. BENHAMIDOUCHE

3. Main results

Throughout the remaining of this paper T, p and c are real constants such that

p ≥ 1, c > 0, and T ≤ (pc)
1
pc .

In what follows, we present some significant lemmas to show the principal theo-
rems.

Lemma 3.1. Let α, ρ ∈ R be such that 0 < α ≤ 1 and ρ > 0. We define

(11) P =
{
u ∈ C[0, T ] |

(
ρI1−α

0+ u
) (

0+
)

= 0
}
.

Then (P, ‖·‖∞) is a Banach space.

Proof. Let 0 < α ≤ 1 and ρ > 0.
It is clear that the space P with the norm ‖·‖∞ is a subspace of C[0, T ] which is
a Banach space.

It remains to prove that P is a closed subspace in C[0, T ]. Let (un)n∈N ∈ P be
a real sequence such that lim

n→∞
un = u in C[0, T ]. Then for each t ∈ [0, T ], we have

|un(t)| ≤ K0, |u(t)| ≤ K0 for some K0 > 0.

Since un → u, then we get ρI1−α
0+ un(t)→ ρI1−α

0+ u(t) as n→∞ for each t ∈ [0, T ].
In fact,

(12)

∣∣ρI1−α
0+ un(t)− ρI1−α

0+ u(t)
∣∣ =

∣∣∣∣ ρα

Γ (1− α)

∫ t

0

sρ−1un(s)

(tρ − sρ)α
ds

− ρα

Γ (1− α)

∫ t

0

sρ−1u(s)

(tρ − sρ)α
ds

∣∣∣∣
≤ ρα

Γ (1− α)

∫ t

0

sρ−1

(tρ − sρ)α
|un(s)− u(s)|ds.

Then∣∣ρI1−α
0+ un(t)− ρI1−α

0+ u(t)
∣∣ ≤ ρα

Γ (1− α)

∫ t

0

sρ−1 (tρ − sρ)−α (|un(s)|+ |u(s)|) ds

≤ 2ραK0

Γ (1− α)

[
− (tρ − sρ)1−α

1− α

]t
0
≤ 2ραT ρ(1−α)K0

Γ (2− α)
.

Thus, for each t ∈ [0, T ], the Lebesgue dominated convergence theorem and (12)
imply that ∣∣ρI1−α

0+ un(t)− ρI1−α
0+ u(t)

∣∣→ 0 as n→∞.
Hence

lim
n→∞

∥∥ρI1−α
0+ un(t)− ρI1−α

0+ u(t)
∥∥
∞ = 0

and for t→ 0+, we have also

lim
n→∞

(
ρI1−α

0+ un
) (

0+
)

=
(
ρI1−α

0+ u
) (

0+
)

= 0, then u ∈ P.

Consequently, P is closed in C[0, T ], and hence (P, ‖·‖∞) is a Banach space. The
proof is complete. �
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Lemma 3.2. Let α, ρ > 0. If u ∈ C[0, T ], then:

(i) The fractional deferential equation ρDα0+u(t) = 0 has a unique solution

u(t) = C1t
ρ(α−1) + C2t

ρ(α−2) + · · ·+ Cnt
ρ(α−n),

where Cm ∈ R with m = 1, . . . , n.
(ii) If ρDα0+u ∈ C[0, T ] and 0 < α ≤ 1, then

(13) ρIα0+
ρDα0+u(t) = u(t) + Ctρ(α−1)

for some constant C ∈ R.
(iii) Let 0 < β < α ≤ 1 be such that ρDα0+u ∈ C[0, T ], then

(14) ρIα−β0+
ρDα0+u(t) = ρDβ0+u(t) −

ρ1−α+β
(
ρI1−α

0+ u
)

(0+)

Γ (α− β)
tρ(α−β−1).

Moreover, for each u ∈ P , we have for every t ∈ [0, T ] that

(15)
∣∣∣ρDβ0+u(t)

∣∣∣ ≤ T ρ(α−β)

ρα−βΓ (1 + α− β)
‖ρDα0+u‖∞ .

Proof. (i) Let α, ρ > 0, from remark 2, we have

ρDα0+tρ(α−m) = 0 for each m = 1, 2, . . . , n.

Then the fractional differential equation ρDα0+u(t) = 0 has a particular solution as
follows

(16) u(t) = Cmt
ρ(α−m), Cm ∈ R for each m = 1, 2, . . . , n.

Thus, the given general solution of ρDα0+u(t) = 0 is a sum of particular solutions
(16), i.e.,

u(t) = C1t
ρ(α−1) + C2t

ρ(α−2) + · · ·+ Cnt
ρ(α−n), Cm ∈ R (m = 1, 2, . . . , n) .

(ii) Let ρDα0+u ∈ C [0, T ] be the fractional derivatives (4) of order 0 < α ≤ 1.
If we apply the operator ρDα0+ to ρIα0+

ρDα0+u(t) − u(t) and use the properties
(8), (9), we have

ρDα0+ [ρIα0+
ρDα0+u(t)− u(t)] =ρ Dα0+

ρIα0+
ρDα0+u(t) − ρDα0+u(t)

= ρDα0+u(t) − ρDα0+u(t) = 0.

After the step (i), we deduce there exists C ∈ R such that

ρIα0+
ρDα0+u(t)− u(t) = Ctρ(α−1),

which implies the law of composition (13).

(iii) Let ρDα0+u ∈ C [0, T ] be the fractional derivative (4) of order 0 < α ≤ 1.

If we apply the operator ρIα−β0+ to ρDα0+u(t), where 0 < β < α, and use Defini-
tions 2.5, 2.6, Theorem 2.7, and equation (10), we get

ρIα−β0+
ρDα0+u(t) =

(
t1−ρ

d

dt

)
ρIα−β+1

0+
ρDα0+u(t)

=
(
t1−ρ

d

dt

)[ ρβ−α

Γ (1 + α− β)

∫ t

0

(tρ − sρ)α−β d

ds
ρI1−α

0+ u(s) ds
]
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=
(
t1−ρ

d

dt

) ρβ−α

Γ (1 + α− β)

[[
(tρ − sρ)α−β ρI1−α

0+ u(s)
]t
0

+ ρ (α− β)

∫ t

0

sρ−1 (tρ − sρ)α−β−1 ρI1−α
0+ u(s) ds

]
.

Then

ρIα−β0+
ρDα0+u(t) =

(
t1−ρ

d

dt

) ρ1−α+β

Γ (α− β)

∫ t

0

sρ−1 (tρ − sρ)α−β−1 ρI1−α
0+ u(s) ds

−
ρβ−α

(
ρI1−α

0+ u
)

(0+)

Γ (1 + α− β)

(
t1−ρ

d

dt

)
tρ(α−β)

=
(
t1−ρ

d

dt

)
ρIα−β0+

ρI1−α
0+ u(s)

−
ρβ−α

(
ρI1−α

0+ u
)

(0+)

Γ (1 + α− β)
ρ (α− β) t1−ρtρ(α−β)−1

= ρDβ0+u(t) −
ρ1−α+β

(
ρI1−α

0+ u
)

(0+)

Γ (α− β)
tρ(α−β−1).

Moreover, for each u ∈ P , we have
(
ρI1−α

0+ u
)

(0+) = 0. Then for every t ∈ [0, T ],

ρIα−β0+
ρDα0+u(t) = ρDβ0+u(t)

and ∣∣∣ρDβ0+u(t)
∣∣∣ =

∣∣∣ρIα−β0+
ρDα0+u(t)

∣∣∣
≤ ρ1−α+β

Γ (α− β)

∫ t

0

sρ−1 (tρ − sρ)α−β−1 |ρDα0+u(s)|ds

≤
[
− ρβ−α

(α− β) Γ (α− β)
(tρ − sρ)α−β

]t
0

{
sup

0≤t≤T
|ρDα0+u(t)|

}
≤ T ρ(α−β)

ρα−βΓ (1 + α− β)
‖ρDα0+u‖∞ .

The proof is complete. �

Based on the previous lemma, we define the integral solution of the problem
(1)–(2).

Lemma 3.3. Let α, β, ρ ∈ R be such that 0 < β < α ≤ 1, and ρ > 0. We
give u, ρDα0+u ∈ C[0, T ], and a continuous function f (t, u, v). Then the problem
(1)–(2) is equivalent to the integral equation

(17) u(t) =

∫ t

0

G (t, s) f
(
s, u(s), ρDβ0+u(s)

)
ds,

where

(18) G (t, s) =
ρ1−α

Γ (α)
sρ−1 (tρ − sρ)α−1

.
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Proof. Let 0 < β < α ≤ 1 and ρ > 0, we may apply Lemma 3.2 to reduce the
fractional equation (1) to an equivalent fractional integral equation.
By applying ρIα0+ to equation (1), we obtain

(19) ρIα0+
ρDα0+u(t) = ρIα0+f

(
t, u(t), ρDβ0+u(t)

)
.

From Lemma 3.2, we find easily
ρIα0+

ρDα0+u(t) = u(t) + Ctρ(α−1)

for some C ∈ R. Then, the fractional integral equation (19) gives

(20) u(t) = ρIα0+f
(
t, u(t), ρDβ0+u(t)

)
− Ctρ(α−1).

From (7), we have
ρI1−α

0+ tρ(α−1) = ρα−1Γ (α) .

If we use the condition (2) in equation (20), we find(
ρI1−α

0+ u
) (

0+
)

= 0 = −Cρα−1Γ (α) =⇒ C = 0.

Therefore, the problem (1)–(2) is equivalent to

(21) u(t) =

∫ t

0

G (t, s) f
(
s, u(s), ρDβ0+u(s)

)
ds,

where G (t, s) is given by the equality (18). The proof is complete. �

Lemma 3.4. Let A : P → C[0, T ] be an integral operator, which is defined by

(22) Au(t) =

∫ t

0

G (t, s) f
(
s, u(s), ρDβ0+u(s)

)
ds,

equipped with the standard norm

‖Au‖∞ = sup
0≤t≤T

|Au(t)| .

Then A(P ) ⊂ P .

Proof. Let u ∈ P be such that ρDα0+u(t) = f
(
t, u(t), ρDβ0+u(t)

)
. From (22),

we have (
ρI1−α

0+ Au
)

(t) = ρI1−α
0+

ρIα0+f
(
t, u(t), ρDβ0+u(t)

)
= ρI1

0+f
(
t, u(t), ρDβ0+u(t)

)
= ρI1

0+
ρDα0+u(t) .

If we use (10) and (4), we have(
ρI1−α

0+ Au
)

(t) = ρI1
0+

ρDα0+u(t) = ρI1
0+

(
t1−ρ

d

dt

)
ρI1−α

0+ u(t) = ρI1−α
0+ u(t) .

Thus
(
ρI1−α

0+ Au
)

(0+) = 0. Consequently, A(P ) ⊂ P . The proof is complete. �

Now, we prove our first existence result for the problem (1)–(2) which is based
on Banach’s fixed point theorem.

We impose the following hypotheses:

(H1) f : [0, T ]× R× R→ R is a continuous function.
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(H2) For all 0 < β < α ≤ 1, there exist two constants λ, γ > 0, where γ <
ρα−βΓ(1+α−β)

Tρ(α−β)
such that

|f (t, u, v)− f (t, ũ, ṽ)| ≤ λ |u− ũ|+ γ |v − ṽ|
for any u, v, ũ, ṽ ∈ R and t ∈ [0, T ].

(H3) There exist three positive functions a, b, c ∈ C[0, T ] such that

|f (t, u, v)| ≤ a(t) + b(t) |u|+ c(t) |v| for all t ∈ [0, T ] and u, v ∈ R.
We denote

M0 =
ρα−βΓ (1 + α− β) a∗

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)

and

M1 =
ρα−βΓ (1 + α− β) b∗

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)
,

where 0 < β < α ≤ 1 and

a∗ = sup
t∈[0,T ]

a(t), b∗ = sup
t∈[0,T ]

b(t), c∗ = sup
t∈[0,T ]

c(t)

with c∗ < ρα−βΓ(1+α−β)
Tρ(α−β)

.
In what follows, we present the principal theorems.

Theorem 3.5. Assume the hypotheses (H1)–(H2) hold. We give 0 < β < α ≤ 1
and ρ > 0. If

(23)
λT ραΓ (1 + α− β)

Γ (α+ 1)
[
ραΓ (1 + α− β)− γρβT ρ(α−β)

] < 1.

Then the problem (1)–(2) admits a unique solution on [0, T ].

Proof. To begin the proof, we transform the problem (1)–(2) into a fixed point
problem. Define the operator A : P → P by

(24) Au(t) =

∫ t

0

G (t, s) f
(
s, u(s), ρDβ0+u(s)

)
ds.

Because the problem (1)–(2) is equivalent to the fractional integral equation (24),
the fixed points of A are solutions of the problem (1)–(2).

Let u, v ∈ P be such that

ρDα0+u(t) = f
(
t, u(t), ρDβ0+u(t)

)
, ρDα0+v(t) = f

(
t, v(t), ρDβ0+v(t)

)
.

Which implies that

Au(t)−Av(t) =

∫ t

0

G (t, s)
[
f
(
s, u(s), ρDβ0+u(s)

)
− f

(
s, v(s), ρDβ0+v(s)

)]
ds.

Then, for all t ∈ [0, T ],

(25) |Au(t)−Av(t)| ≤
∫ t

0

G (t, s) |ρDα0+u(s)− ρDα0+v(s) |ds.
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By (H2), we have

|ρDα0+u(t)− ρDα0+v(t) | =
∣∣∣f (t, u(t), ρDβ0+u(t)

)
− f

(
t, v(t), ρDβ0+v(t)

)∣∣∣
≤ λ |u(t)− v(t)|+ γ

∣∣∣ρDβ0+u(t)− ρDβ0+v(t)
∣∣∣ .

By using (15) from Lemma 3.2, we have

‖ρDα0+u− ρDα0+v ‖∞ ≤ λ ‖u− v‖∞ +
γT ρ(α−β)

ρα−βΓ (1 + α− β)
‖ρDα0+u− ρDα0+v ‖∞ ,

thus

‖ρDα0+u− ρDα0+v ‖∞ ≤
λρα−βΓ (1 + α− β)

ρα−βΓ (1 + α− β)− γT ρ(α−β)
‖u− v‖∞ .

From (25) we have

‖Au−Av‖∞ ≤
λT ραΓ (1 + α− β)

Γ (α+ 1)
[
ραΓ (1 + α− β)− γρβT ρ(α−β)

] ‖u− v‖∞ .

This implies that by (23), A is a contraction operator.
As a consequence of Theorem 2.11, using Banach’s contraction principle [10],

we deduce that A has a unique fixed point which is the unique solution of the
problem (1)–(2) on [0, T ]. �

Theorem 3.6. Assume that hypotheses (H1)–(H3) hold. We give 0 < β<α≤1,
and ρ > 0. If we put

M1T
ρα

ραΓ (α+ 1)
< 1,

then the problem (1)–(2) has at least one solution on [0, T ].

Proof. In the previous theorem, we already transform the problem (1)–(2) into
a fixed point problem

Au(t) =

∫ t

0

G (t, s) f
(
s, u(s), ρDβ0+u(s)

)
ds.

We demonstrate that A satisfies the assumption of Schauder’s fixed point Theo-
rem 2.12. This could be proved through three steps:
Step 1. A is a continuous operator.

Let (un)n∈N be a real sequence such that lim
n→∞

un = u in P. Then for each

t ∈ [0, T ],

(26)
|Aun(t)−Au(t)| ≤

∫ t

0

G (t, s)

×
∣∣f(s, un(s), ρDβ0+un(s)

)
− f

(
s, u(s), ρDβ0+u(s)

)∣∣ds,
where
ρDα0+un(t) = f

(
t, un(t), ρDβ0+un(t)

)
and ρDα0+u(t) = f

(
t, u(t), ρDβ0+u(t)

)
.
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As a consequence of (H2), we find easily ρDα0+un →ρ Dα0+u in P. In fact, we have

|ρDα0+un(t)− ρDα0+u(t) | =
∣∣f(t, un(t), ρDβ0+un(t)

)
− f

(
t, u(t), ρDβ0+u(t)

)∣∣
≤ λ |un(t)− u(t)|+ γ

∣∣ρDβ0+un(t)− ρDβ0+u(t)
∣∣.

By using (15) from Lemma 3.2, we have

‖ρDα0+un − ρDα0+u‖∞ ≤ λ ‖un − u‖∞+
γT ρ(α−β)

ρα−βΓ (1 + α− β)
‖ρDα0+un − ρDα0+u‖∞ ,

thus

‖ρDα0+un − ρDα0+u‖∞ ≤
λρα−βΓ (1 + α− β)

ρα−βΓ (1 + α− β)− γT ρ(α−β)
‖un − u‖∞ .

Since un → u, then we get ρDα0+un(t)→ ρDα0+u(t) as n→∞ for each t ∈ [0, T ].
Now let K1 > 0 be such that for each t ∈ [0, T ], we have

|ρDα0+un(t)| ≤ K1, |ρDα0+u(t)| ≤ K1.

Then, we have

|Aun(t)−Au(t)| ≤
∫ t

0

G (t, s)

×
∣∣f(s, un(s), ρDβ0+un(s)

)
− f

(
s, u(s), ρDβ0+u(s)

)∣∣ds
≤
∫ t

0

G (t, s) |ρDα0+un(s)− ρDα0+u(s) |ds

≤
∫ t

0

G (t, s) [|ρDα0+un(s)|+ |ρDα0+u(s)|] ds

≤
∫ t

0

2K1G (t, s) ds.

For each t ∈ [0, T ], the function s → 2K1G (t, s) is integrable on [0, t] , then the
Lebesgue dominated convergence theorem and (26) imply that

|Aun(t)−Au(t)| → 0 as n→∞,
and hence

lim
n→∞

‖Aun −Au‖∞ = 0.

Consequently, A is continuous.
Step 2. Let r ≥ M0T

ρα

ραΓ(α+1)−M1Tρα
, and define

Pr = {u ∈ P : ‖u‖∞ ≤ r} .
It is clear that Pr is a bounded, closed, and convex subset of P.

Let u ∈ Pr, and A : Pr → P be the integral operator defined in (24), then
A (Pr) ⊂ Pr.

In fact, by using (15) from Lemma 3.2, and (H3), we have for each t ∈ [0, T ],

|ρDα0+u(t)| =
∣∣f(t, u(t), ρDβ0+u(t)

)∣∣ ≤ a(t) + b(t) |u(t)|+ c(t)
∣∣ρDβ0+u(t)

∣∣
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≤ a∗ + b∗ |u(t)|+ c∗T ρ(α−β)

ρα−βΓ (1 + α− β)
‖ρDα0+u‖∞ .

Then

(27)

‖ρDα0+u‖∞ ≤
ρα−βΓ (1 + α− β) a∗

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)

+
ρα−βΓ (1 + α− β) b∗

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)
r ≤ M0 +M1r.

Thus

|Au(t)| ≤
∫ t

0

G (t, s)
∣∣f(s, u(s), ρDβ0+u(s)

)∣∣ds
≤ M0T

ρα

ραΓ (α+ 1)
+

M1T
ρα

ραΓ (α+ 1)
r

≤
[ραΓ (α+ 1)−M1T

ρα] M0T
ρα

ραΓ(α+1)−M1Tρα
+M1T

ραr

ραΓ (α+ 1)

≤ [ραΓ (α+ 1)−M1T
ρα] r +M1T

ραr

ραΓ (α+ 1)
≤ r.

Then A (Pr) ⊂ Pr.
Step 3. A (Pr) is relatively compact.
Let t1, t2 ∈ [0, T ], t1 < t2, and u ∈ Pr. Then

(28)

|Au (t2)−Au (t1)| =
∣∣∣ ∫ t2

0

G (t2, s) f
(
s, u(s), ρDβ0+u(s)

)
ds

−
∫ t1

0

G (t1, s) f
(
s, u(s), ρDβ0+u(s)

)
ds
∣∣∣

≤
∫ t1

0

∣∣∣[G (t2, s)−G (t1, s)] f
(
s, u(s), ρDβ0+u(s)

)∣∣∣ds
+

∫ t2

t1

G (t2, s)
∣∣∣f (s, u(s), ρDβ0+u(s)

)∣∣∣ds
≤ (M0 +M1r)

×
[∫ t1

0

|(G (t2, s)−G (t1, s))|ds+

∫ t2

t1

G (t2, s) ds

]
.

We have

G (t2, s)−G (t1, s) =
ρ1−α

Γ (α)
sρ−1

[
(tρ2 − sρ)

α−1 − (tρ1 − sρ)
α−1

]
=

−1

αραΓ (α)

d

ds

[
(tρ2 − sρ)

α − (tρ1 − sρ)
α]
,

then ∫ t1

0

|(G (t2, s)−G (t1, s))|ds ≤
1

ραΓ (α+ 1)

[
(tρ2 − t

ρ
1)
α

+ (tρα2 − t
ρα
1 )
]
.
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We also have ∫ t2

t1

G (t2, s) ds =
ρ1−α

Γ (α)

∫ t2

t1

sρ−1 (tρ2 − sρ)
α−1

ds

=
−1

αραΓ (α)

[
(tρ2 − sρ)

α]t2
t1

≤ 1

ραΓ (α+ 1)
(tρ2 − t

ρ
1)
α
.

Then (28) gives

|Au (t2)−Au (t1)| ≤ M0 +M1r

ραΓ (α+ 1)

[
2 (tρ2 − t

ρ
1)
α

+ (tρα2 − t
ρα
1 )
]
.

As t1 → t2, the right-hand side of the above inequality tends to zero.
As a consequence of steps 1 to 3 together, and by means of the Ascoli-Arzelà

Theorem 2.8, we deduce that A : Pr → Pr is continuous, compact, and satisfies
the assumption of Schauder’s fixed point Theorem 2.12. Then A has a fixed point
which is a solution of the problem (1)–(2) on [0, T ]. �

Our next existence result is based on the nonlinear alternative of Leray-Schauder
type.

Theorem 3.7. Assume (H1)–(H3) holds. Then the problem (1)–(2) has at least
one solution on [0, T ].

Proof. Let α, β, ρ > 0, be such that β < α ≤ 1.
We show that the operator A defined in (24), satisfies the assumption of Leray-

Schauder fixed point Theorem 2.13. The proof is given in several steps.
Step 1. Clearly A is continuous.

Step 2. A maps bounded sets into bounded sets in P .
Indeed, it is enough to show that for any ω > 0, there exists a positive constant

` such that for each u ∈ Bω = {u ∈ P : ‖u‖∞ ≤ ω} , we have ‖Au‖∞ ≤ `.
For u ∈ Bω, we have for each t ∈ [0, T ],

(29) |Au(t)| ≤
∫ t

0

G (t, s)
∣∣f(s, u(s), ρDβ0+u(s)

)∣∣ds.
By (H3), similarly to (27), for each t ∈ [0, T ], we have∣∣f(t, u(t), ρDβ0+u(t)

)∣∣ ≤M0 +M1ω.

Thus (29) implies that

‖Au‖∞ ≤
M0T

ρα

ραΓ (α+ 1)
+

M1T
ρα

ραΓ (α+ 1)
ω = `.

Step 3. Clearly, A maps bounded sets into equicontinuous sets of P .
We conclude that A : P → P is continuous and completely continuous.
Step 4. A priori bounds.
We now show there exists an open set U ⊂ P with u 6= µA (u) for µ ∈ (0, 1)

and u ∈ ∂U.
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Let u ∈ P and u = µA (u) for some 0 < µ < 1. Thus for each t ∈ [0, T ], we
have

u(t) ≤ µ
∫ t

0

G (t, s)
∣∣f(s, u(s), ρDβ0+u(s)

)∣∣ds.
By (H3), for all solution u ∈ P of the problem (1)–(2), we have

|u(t)| =
∣∣∣ ∫ t

0

G (t, s) f
(
s, u(s), ρDβ0+u(s)

)
ds
∣∣∣ ≤ ∫ t

0

G (t, s) |ρDα0+u(s)|ds.

Then for each t ∈ [0, T ], we have

|ρDα0+u(t)| =
∣∣f(t, u(t), ρDβ0+u(t)

)∣∣ ≤ a(t) + b(t) |u(t)|+ c(t)
∣∣ρDβ0+u(t)

∣∣
≤ a∗ + b∗ |u(t)|+ c∗T ρ(α−β)

ρα−βΓ (1 + α− β)
sup

0≤t≤T
|ρDα0+u(t)| .

Then

sup
0≤t≤T

|ρDα0+u(t)| ≤ ρα−βΓ (1 + α− β)

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)

(
a∗ + b∗ sup

0≤t≤T
|u(t)|

)
≤M0 +M1 sup

0≤t≤T
|u(t)| .

Hence

sup
0≤t≤T

|u(t)| ≤ M0T
ρα

ραΓ (α+ 1)
+

∫ t

0

M1G (t, s)
{

sup
0≤s≤T

|u(s)|
}

ds.

After the Gronwall Lemma [11], we have

sup
0≤t≤T

|u(t)| ≤ M0T
ρα

ραΓ (α+ 1)
exp

( M1T
ρα

ραΓ (α+ 1)

)
.

Thus

‖u‖∞ ≤
M0T

ρα

ραΓ (α+ 1)
exp

( M1T
ρα

ραΓ (α+ 1)

)
= M2.

Let
U = {u ∈ P : ‖u‖∞ < M2 + 1} .

By choosing U, there is no u ∈ ∂U such that u = µA (u) for µ ∈ (0, 1). As a
consequence of Leray-Schauder’s Theorem 2.13, A has a fixed point u in U , which
is a solution to (1)–(2). �

4. Examples

Example 1. Consider the following problem
(30)

1D
1
2

0+u(t) =
cos(t)

π
(√

2 cos(t) + sin(t)
) [

1 + |u(t)|+
∣∣∣1D 1

4

0+u(t)
∣∣∣] , t ∈

[
0,
π

4

]
,

(1I 1
2

0+u
)
(0+) = 0.



258 B. BASTI, Y. ARIOUA and N. BENHAMIDOUCHE

Set

f (t, u, v) =
cos(t)

π
(√

2 cos(t) + sin(t)
)

[1 + |u|+ |v|]
, t ∈

[
0,
π

4

]
, u, v ∈ R.

Because sin(t), cos(t) are continuous positive functions for all t ∈
[
0, π4

]
, the

function f is jointly continuous. For any u, v, ũ, ṽ ∈ R and t ∈
[
0, π4

]
, we have

√
2

2 ≤ cos(t) ≤ 1 and 0 ≤ sin(t) ≤
√

2
2 , then

|f (t, u, v)− f (t, ũ, ṽ)| ≤ 1

π
(|u− ũ|+ |v − ṽ|) .

Hence, the condition (H2) is satisfied with

λ = γ =
1

π
' 0.3183 <

ρα−βΓ (1 + α− β)

T ρ(α−β)
=
(π

4

)− 1
4

Γ
(5

4

)
' 0.9628.

It remains to show that the condition (23)

λT ραΓ (1 + α− β)

Γ (α+ 1)
[
ραΓ (1 + α− β)− γρβT ρ(α−β)

] =

(
1
π

) (
π
4

) 1
2 Γ
(

5
4

)
Γ
(

3
2

) [
Γ
(

5
4

)
− 1

π

(
π
4

) 1
4

]
=

√
πΓ
(

5
4

)
2Γ
(

3
2

) [
πΓ
(

5
4

)
−
(
π
4

) 1
4

]
' 0.4755 < 1,

is satisfied. It follows from Theorem 3.5 that the problem (30) has a unique
solution.

Example 2. Consider the following problem

(31)


1D

1
2

0+u(t) =
cos(t)

[
2+|u(t)|+

∣∣∣∣1D 1
4
0+
u(t)

∣∣∣∣]
π(
√

2 cos(t)+sin(t))
[
1+|u(t)|+

∣∣∣∣1D 1
4
0+
u(t)

∣∣∣∣] , t ∈
[
0, π4

]
,(1I 1

2

0+u
)

(0+) = 0.

Set

f (t, u, v) =
cos(t) [2 + |u|+ |v|]

π
(√

2 cos(t) + sin(t)
)

[1 + |u|+ |v|]
, t ∈

[
0,
π

4

]
, u, v ∈ R.

Clearly, the function f is jointly continuous. For any u, v, ũ, ṽ ∈ R and t ∈
[
0, π4

]
,

we have

|f (t, u, v)− f (t, ũ, ṽ)| ≤ 1

π
(|u− ũ|+ |v − ṽ|) .

Therefore, the condition (H2) is satisfied with

λ = γ =
1

π
' 0.3183 <

ρα−βΓ (1 + α− β)

T ρ(α−β)
=
(π

4

)− 1
4

Γ
(5

4

)
' 0.9628.

Also, we have

|f (t, u, v)| ≤ cos(t)

π
(√

2 cos(t) + sin(t)
) (2 + |u|+ |v|) .
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Thus, the condition (H3) is satisfied with

a(t) =
2 cos(t)

π
(√

2 cos(t) + sin(t)
) and b(t) = c(t) =

cos(t)

π
(√

2 cos(t) + sin(t)
) .

We also have

a∗ =
2

π
,

b∗ = c∗ =
1

π
' 0.3183 <

ρα−βΓ (1 + α− β)

T ρ(α−β)
=
(π

4

)− 1
4

Γ
(5

4

)
' 0.9628,

M0 =
ρα−βΓ (1 + α− β) a∗

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)
=

2Γ
(

5
4

)
πΓ
(

5
4

)
−
(
π
4

) 1
4

,

M1 =
ρα−βΓ (1 + α− β) b∗

ρα−βΓ (1 + α− β)− c∗T ρ(α−β)
=

Γ
(

5
4

)
πΓ
(

5
4

)
−
(
π
4

) 1
4

and the condition

M1T
ρα

ραΓ (α+ 1)
=

(
Γ( 5

4 )

πΓ( 5
4 )−(π4 )

1
4

)(
π
4

) 1
2

Γ
(

1
2 + 1

) =

√
πΓ
(

5
4

)
2Γ
(

3
2

) [
πΓ
(

5
4

)
−
(
π
4

) 1
4

] ' 0.4755 < 1.

It follows from Theorem 3.6 and Theorem 3.7, that the problem (31) has at least
one solution.

5. Conclusion

In this paper, we have discussed the existence and uniqueness of solutions for a
class of nonlinear fractional differential equations with an integral condition, we
made use of the Banach contraction principle, Schauder’s fixed point theorem,
and the nonlinear alternative of Leray-Schauder type. The differential operator
used is extended by Katugampola, which generalizes the Riemann-Liouville and
the Hadamard fractional derivatives into a single form.
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