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A MULTIGRID SOLVER FOR CONTROL-CONSTRAINED

NAVIER-STOKES CONTROL PROBLEMS

M. M. BUTT

Abstract. A multigrid solver for velocity tracking type control problems con-

strained by stationary Navier-Stokes equations is presented. Finite difference dis-
cretization is used on staggered grids. On these grids, a full multigrid method

with coarsening by a factor-of-three strategy is proposed. For smoothing scheme, a

distributive Gauss-Seidel scheme is used for the state and adjoint variables and a
gradient update step for the control variable is applied. Numerical results validate

the efficiency of the proposed multigrid algorithm.

1. Introduction

Optimal control problems constrained by partial differential equations (PDEs) has
been an active field of research in applied mathematics (e.g., [28]) in the last few
decades. In particular, these problems have considerable applications in the field of
fluid dynamics. For this reason, we consider one such important field of research,
that is, the Navier-Stokes control problem. A lot of works has been done on this
topic, e.g., see [2, 3, 12, 13, 16, 19, 25]. However, effective solvers for the
Navier-Stokes equations are fairly a recent development in Applied Mathematics.

Multigrid methods for the positive definite linear systems arising in elliptic
boundary value problems were proven one of the efficient solvers [6, 17, 18, 30].
However, for saddle-point systems they are more involved [1]. Spatial discretiza-
tion of the Navier-Stokes equations using either finite element or finite difference
method leads to a large sparse saddle point system. A lot of work has been done for
developing efficient solvers for the discretized system, especially efficient precondi-
tioners for Krylov subspace methods based on the block matrix form, see [1, 14].
Multigrid methods have also been considered for Flow (saddle-point) problems,
see [7, 8, 23, 27]) and the references therein.

In recent years, many articles have been devoted to developing multigrid meth-
ods for optimal control problems, e.g., see Borz̀ı and Schulz [4] and the references
therein. We are interested in efficient multigrid methods that are robust with
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respect to both the mesh size h and the regularization parameter α without any
preconditioner.

In this paper, a multigrid solver on staggered grids using finite differences is
developed. In particular, the focus of this paper is more on the numerical efficiency
of the proposed multigrid algorithm for solving tracking type control problems.
The finite difference discretization applied to the optimality system utilized first-
order standard upstream difference scheme (for the convection term) to avoid
numerical oscillation. We extend the work given by [9, 10], to Navier-Stokes
control problems with and without control constraints. Multigrid algorithm with
coarsening by a factor of three on staggered grids has the potential advantage of
simplifying the intergrid transfer operators, reducing number of levels and thus
the computations.

In the next Section 2, tracking type control problem is considered and the
solution is characterize as an optimality system. In Section 3, discretization of
the optimality system using finite difference on staggered grids is discussed. A
multigrid framework is given in Section 4, that consists of a smoothing scheme
and a gradient update step for the control variable. In Section 5, we present
numerical results for the proposed multigrid scheme. Control-constrained problem
with numerical results is given in Section 6, and finally conclusions are given in
the last Section.

2. The Navier-Stokes control problem

In this work, we consider the velocity tracking type control problem in a two-
dimensional bounded domain Ω ⊂ R2 with Lipschitz boundary Γ = ∂Ω: Find a
velocity field u ∈ H1(Ω), a pressure p ∈ L2(Ω), and a control f ∈ L2(Ω) such that
the functional

(1) J(u, f) :=
1

2
‖u− ud‖2L2(Ω) +

α

2
‖f‖2L2(Ω)

is a minimized subject to the following stationary Navier-Stokes equations

−ν4u + (u · ∇)u +∇p = f in Ω,(2)

−∇ · u = 0 in Ω,(3)

u = 0 on Γ.(4)

The variables u and p are the state variables, denoting the velocity and pressure,
respectively. The (regularization) parameter α > 0 represents the weight of the
cost of control f , the parameter ν denotes viscosity, and ud ∈ L2(Ω) is the tar-
get function (desired state). Furthermore, assume that p satisfies the zero mean
constraint, i.e.,

∫
Ω
p dx = 0.

Here and in the following, L2(Ω) and H1(Ω) denote the standard Lebesque
and Sobolev spaces with ‖ · ‖L2(Ω) and ‖ · ‖H1(Ω), respectively, as associated stan-

dard norms. The usual inner product associated with L2(Ω) is denoted by (·, ·).
Throughout this paper, we follow this same notational convention and use bold
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script to denote vectors and product spaces. Moreover, we have the space L2
0(Ω),

which is the space of functions in L2(Ω) with mean value 0, i.e.,

L2
0(Ω) =

{
φ ∈ L2(Ω) :

∫
Ω

φ dx = 0
}

and H1
0(Ω), the space in H1(Ω) vanishing on the boundary, i.e.,

H1
0(Ω) =

{
ψ ∈ H1(Ω) : ψ = 0 on ∂Ω

}
.

A weak formulation of the Navier-Stokes equations is given as follows. Given
f ∈ H−1, find (u, p) ∈ H1

0(Ω)× L2
0(Ω) of (2)–(4) is the solution of

(5)
a(u,w) + c(u,u,w) + b(w, p) = 〈f ,w〉 for all w ∈ H1

0(Ω),

b(u, q) = 0 for all q ∈ L2
0(Ω),

where 〈·, ·〉 denotes the duality between H1
0(Ω) and H−1(Ω), and

a(u,w) = ν(∇u,∇w) = ν

2∑
i=1

∫
Ω

∇ui · ∇wi for all u,w ∈ H1
0(Ω),

b(w, p) = −
∫

Ω

p∇ ·w for all w∈H1
0(Ω) and p∈L2

0(Ω),

are the bilinear form, and

c(u;w, φ) = ((u · ∇)w, φ) for all u,w, φ ∈ H1
0(Ω),

the trilinear form, respectively.
We recall here the standard result regarding the existence of (5) and uniqueness

for small data [15, 21] given as follows.
Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary Γ. Then for every

f ∈ H−1(Ω), there exists one solution (u, p) ∈ H1
0(Ω) × L2

0(Ω) of the stationary
Navier-Stokes system (5) that satisfies the estimate

(6) ‖∇u‖ ≤ ν−1‖f‖.
Moreover, the solution is unique if the data satisfies the smallness condition

(7) Mν−2 < 1, with M = sup
u,w,φ∈H1

0(Ω)r{0}

|c(u;w, φ)|
‖∇u‖‖∇w‖‖∇φ‖ .

If Ω is a convex polygon and f ∈ L2(Ω), then u ∈ H2(Ω), p ∈ H1(Ω), and

‖u‖H2(Ω) + ‖p‖H1(Ω) ≤ C(1 + ‖f‖3).

In this paper, we assume Ω to be convex so that the H2-regularity of the Navier-
Stokes system is ensured.

For the purpose of optimal control problem, we now introduce λ ∈ H1
0(Ω),

q ∈ L2
0(Ω) as the adjoint variables to u and p, respectively. The above formulation

is well defined. For discussion on existence of the optimal solutions and a derivation
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of optimality conditions, we refer [13, 26] leading to the following optimality
system

(8)

−ν∆u + (u · ∇)u +∇p = f in Ω,

−∇ · u = 0 in Ω, (state system),

u = 0 on Γ,

(9)

−ν∆λ− (u · ∇)λ+ (∇u)Tλ+∇q = ud − u in Ω,

∇ · λ = 0 in Ω, (adjoint system),

λ = 0 on Γ,

(10) αf − λ = 0 in Ω, (optimality conditions),

where

(u · ∇)u =
(
u1∂xu

1 + u2∂yu
1, u1∂xu

2 + u2∂yu
2
)T
,

(∇u)Tλ =
(
(∂xu

1)λ1 + (∂xu
2)λ2, (∂yu

1)λ1 + (∂yu
2)λ2

)T
.

This system characterizes the solution (u, p, f) ∈ H1
0(Ω)×L2

0(Ω)×L2(Ω) of the
optimal control problem with Lagrange multipliers (λ, q) ∈ H1

0(Ω)× L2
0(Ω).

3. Discretization of the optimality system

In this section, we discretize the optimality system by finite difference approxima-
tions on staggered grids. Implementation details are given and the advantageous
collocation of variables are noted.

We consider a sequence of grids {Ωh}h>0 given by

Ωh = {x ∈ R2 : xi = i h, yj = j h, i, j ∈ Z} ∩ Ω.

We assume that Ω is a rectangular domain and that the values of h are chosen such
that the boundaries of Ω coincide with grid lines. On staggered grids, variables
may be placed on cell edge-vertical, edge-horizontal, and on cell centers. We denote
these sets of grid points with Ωsh, s ∈ {ev, eh, c}.

For grid functions uh and vh defined on the same set Ωsh, we introduce the
discrete L2-scalar product

(uh, vh)L2
h(Ωs

h) = h2
∑
x∈Ωs

h

uh(x) vh(x)

with associated norm ‖uh‖L2
h(Ωs

h) =(uh, uh)
1/2

L2
h(Ωs

h)
. The spaces L2

h(Ωsh) and H1
h(Ωsh)

consist of the sets of grid functions uh defined on Ωsh endowed with norm ‖uh‖L2
h(Ωs

h)

and ‖uh‖H1
h(Ωs

h), respectively. We denote with Uh, Vh and Ph the space of the grid

functions u1
h, u2

h, and ph.
First, we discretize the state system using finite differences. On staggered grid,

u is defined on Ωevh , v is defined on Ωehh , and p is defined at cell centers Ωch, see
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Figure 1. We can write the discrete state system as

Qhu
j
h + ∂hj ph = f jh at j-face centers (j = 1, 2),

2∑
i=1

∂hi u
i
h = 0 at cell centers,

where Qh = −ν∆h +
∑

uih∂
h
i is some difference approximation to Q = −ν∆ +∑

ui∂i; ∆h is the usual 5-point approximation, and for the first-order derivatives,
we use the second-order central differences. Moreover, for the convection term,
we use first-order upwinding scheme. It is also important to note that near the
boundary, ∆h may involve an exterior (ghost) value, which is defined by quadratic
extrapolation cf. [7].

Here, we consider a set of grid indices that index all grid points in a lexicographic
order, i.e., (i, j), i = 1, . . . , Nx + 1, j = 1, . . . , Ny + 1, starting from the lowest-left
corner. Moreover, the vertices are given by xi = (i − 1)h and yj = (j − 1)h,
vi+1/2,j+1/2 we mean the discrete counterpart to v(xi + h/2, yj + h/2).

In the following, we use the notation given by [5], u+ := max(0, u), u− :=
min(0, u), and

χ1
+ :=

{
1, if max(0, u1

i,j+1/2) > 0,

0 otherwise,
χ1
− :=

{
1, if min(0, u1

i,j+1/2) < 0,

0, otherwise,

χ2
+ :=

{
1, if max(0, u2

i+1/2,j) > 0,

0 otherwise,
χ2
− :=

{
1, if min(0, u2

i+1/2,j) < 0,

0 otherwise.

Then by using the first-order upwind scheme for the convection term, which
avoids numerical oscilations with a first-order accuracy, we have the discretized
state system given by

(11)

− ν
[u1

i−1,j+1/2 + u1
i+1,j+1/2 + u1

i,j−1/2 + u1
i,j+3/2 − 4u1

i,j+1/2

h2

]
+ (u1

i,j+1/2)+

u1
i,j+1/2 − u1

i−1,j+1/2

h
+ (u1

i,j+1/2)−
u1
i+1,j+1/2 − u1

i,j+1/2

h

+ (u2
i+1/2,j)+

u1
i,j+1/2 − u1

i,j−1/2

h
+ (u2

i+1/2,j)−
u1
i,j+3/2 − u1

i,j+1/2

h

+
pi+1/2,j+1/2 − pi−1/2,j+1/2

h
= f1

i,j+1/2 on Ωevh ,

(12)

− ν
[u2

i−1/2,j + u2
i+3/2,j + u2

i+1/2,j−1 + u2
i+1/2,j+1 − 4u2

i+1/2,j

h2

]
+ (u1

i,j+1/2)+

u2
i+1/2,j − u2

i−1/2,j

h
+ (u1

i,j+1/2)−
u2
i+3/2,j − u2

i+1/2,j

h

+ (u2
i+1/2,j)+

u2
i+1/2,j − u2

i+1/2,j−1

h
+ (u2

i+1/2,j)−
u2
i+1/2,j+1 − u2

i+1/2,j

h

+
pi+1/2,j+1/2 − pi+1/2,j−1/2

h
= f2

i+1/2,j on Ωehh ,

(13)
u1
i+1,j+1/2 − u1

i,j+1/2

h
+
u2
i+1/2,j+1 − u2

i+1/2,j

h
= 0 on Ωch,
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where the equation (11) is centered at all internal cells Ωevh , the equation (12) is
centered at all internal cells Ωehh , and the continuity equation (13) is centered at
all internal cell centers Ωch, respectively, see Fig. 1.

Next, on staggered grids, the optimality conditions αf1−λ1 = 0, and αf2−λ2 =
0 give that the adjoint system should be such that u1, λ1, and f1 defined on Ωevh ;
u2, f2, and λ2 defined on Ωehh ; p and q are defined on Ωch. Therefore, we have the
following discretized adjoint system

(14)

− ν
[λ1

i−1,j+1/2 + λ1
i+1,j+1/2 + λ1

i,j−1/2 + λ1
i,j+3/2 − 4λ1

i,j+1/2

h2

]
− χ1

−u
1
i,j+1/2

λ1
i,j+1/2 − λ1

i−1,j+1/2

h
− χ1

+u
1
i,j+1/2

λ1
i+1,j+1/2 − λ1

i,j+1/2

h

− χ2
−u

2
i+1/2,j

λ1
i,j+1/2 − λ1

i,j−1/2

h
− χ1

+u
2
i+1/2,j

λ1
i,j+3/2 − λ1

i,j+1/2

h

+ (λ1
i,j+1/2)+

u1
i,j+1/2 − u1

i−1,j+1/2

h
+ (λ1

i,j+1/2)−
u1
i+1,j+1/2 − u1

i,j+1/2

h

+ (λ2
i+1/2,j)+

u2
i+1/2,j − u2

i−3/2,j

h
+ (λ2

i+1/2,j)−
u2
i+3/2,j − u2

i+1/2,j

h

+
qi+1/2,j+1/2 − qi−1/2,j+1/2

h
= (u1

d − u1)i,j+1/2 on Ωevh ,

(15)

− ν
[λ2

i−1/2,j + λ2
i+3/2,j + λ2

i+1/2,j−1 + λ2
i+1/2,j+1 − 4λ2

i+1/2,j

h2

]
− χ1

−u
1
i,j+1/2

λ2
i+1/2,j − λ2

i−1/2,j

h
− χ1

+u
1
i,j+1/2

λ2
i+3/2,j − λ2

i+1/2,j

h

− χ2
−u

2
i+1/2,j

λ2
i+1/2,j − λ2

i+1/2,j−1

h
− χ2

+u
2
i+1/2,j

λ2
i+1/2,j+1 − λ2

i+1/2,j

h

+ (λ1
i,j+1/2)+

u1
i,j+1/2 − u1

i,j−1/2

h
+ (λ1

i,j+1/2)−
u1
i,j+3/2 − u1

i,j+1/2

h

+ (λ2
i+1/2,j)+

u2
i+1/2,j − u2

i+1/2,j−1

h
+ (λ2

i+1/2,j)−
u2
i+1/2,j+1 − u2

i+1/2,j

h

+
qi+1/2,j+1/2 − qi+1/2,j−1/2

h
= (u2

d − u2)i+1/2,j on Ωehh ,

(16)
λ1
i+1,j+1/2 − λ1

i,j+1/2

h
+
λ2
i+1/2,j+1 − λ2

i+1/2,j

h
= 0 on Ωch.

Here, we remark that with our approach, we implement a direct coupling among
all the variables (of state, adjoint, and control) without the need of interpolation.

Here we also remark that a special care has to be taken while relaxing the state
and adjoint variables (on their respective spatial locations) as some of the variables
(in the convection term) are not located on the same spatial location, where the
respective equation is relaxed. Therefore, we take interpolation (average of four
neighbouring points) for such variables, cf. [8].
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Summarizing, equations (11)–(16) with the following optimality conditions

(17)
α f1

i,j+1/2 − λ1
i,j+1/2 = 0 on Ωevh ,

α f2
i+1/2,j − λ2

i+1/2,j = 0 on Ωehh ,

and boundary conditions

(18)

u1
i,j+1/2 = 0 for i = 1, Nx + 1, j = 1, . . . , Ny,

u2
i+1/2,j = 0 for j = 1, Ny + 1, i = 1, . . . , Nx,

λ1
i,j+1/2 = 0 for i = 1, Nx + 1, j = 1, . . . , Ny,

λ2
i+1/2,j = 0 for j = 1, Ny + 1, i = 1, . . . , Nx,

constitute the discrete optimality system for the control problem.
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neighbouring points) for such variables, c.f. [7].163
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α f1
i,j+1/2 − λ1
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Figure 1. Coarsest staggered grid.

Figure 1. Coarsest staggered grid.

4. Multigrid framework

In the following, we explain the implementation of a proposed full multigrid
method to the optimality system (11)–(18). The coarsest staggered grid is shown
in Figure 1. In the development of multigrid solver, we face some difficulties due
to the coupled state and adjoint systems, and because of the nature of staggered
grids.

We note that starting from the given coarse grid, a nested sequence of grids is
obtained by tripling the mesh size; see Figure 1. This remark seems novel in the
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staggered-grid context but it was also used for solving first-order elliptic control
problems [11] using multigrid methods on staggered grids.

Next, for the multigrid framework, we define a sequence of levels (nested grids)
Ωk of mesh size hxk = hx1/3

(k−1), and hyk = hy1/3
(k−1), k = 1, . . . , L. Here,

we denote k = L as the finest level, and hx1 = hy1 = 1/2 are the mesh sizes of
the coarsest grid in the x and y direction, respectively. We denote all operators
and functions defined on Ωk in terms of the index k. By using this setting, a
variable Xk−1

IJ on a grid point (I, J) (of coarse grid Ωk−1) has the same place as
the variable Xk

ij at (i, j) (of the fine grid Ωk), i.e.,

• u1,k−1
I,J+1/2 corresponds to u1,k

i,j+1/2 for i = 3I − 2, j = 3J − 1,

• u2,k−1
I+1/2,J corresponds to u2,k

i+1/2,j for i = 3I − 1, j = 3J − 2,

• pk−1
I+1/2,J+1/2 corresponds to pki+1/2,j+1/2 for i = 3I − 1, j = 3J − 1.

4.1. Smoothing scheme

In the following, we present our smoothing scheme that is needed in implementa-
tion of the proposed full multigrid algorithm.

To derive a distributive scheme, we note that the state momentum equations
are elliptic but the continuity equation is not elliptic [7], it is only a part of an
elliptic system, i.e., the continuity equation is only a part of elliptic state system.
Therefore, the state (adjoint) momentum equations can be relaxed by a classical
Gauss-Seidel scheme but for the state (adjoint) continuity equation, we need to
relax it by a distributive relaxation. In the following, we explain a distributed
relaxation technique, applied sequentially to the state and adjoint system with a
gradient step to update the control variable.

The so-called reduced cost functional is defined as follows: Ĵ := J(u(f), f), and

by Ĵh, we mean its discrete counter part in what follows.
Let (u1

h, u
2
h, ph, λ

1
h, λ

2
h, qh, f

1
h , f

2
h) be the current approximation to the numerical

solution. We define and update this approximation by a sequence of iterative
steps.

We start with the update of the control functions by performing a gradient
update step, i.e.,

f1
h ← f1

h − t∇f1 Ĵ(f1
h , f

2
h),

f2
h ← f2

h − t∇f2 Ĵ(f1
h , f

2
h),

where ∇f1 Ĵ(f1
h , f

2
h) = αf1

h − λ1
h and ∇f2 Ĵ(f1

h , f
2
h) = αf2

h − λ2
h are the gradients.

Moreover, we choose t = 1 as a step length during numerical experiments, see
Section 5.

Next, we perform the iterative step for the state system. Let (u1
h, u

2
h, ph) be the

current approximation to the state system (11)–(13). After smoothing (a pointwise
Gauss-Seidel relaxation), the residuals of the state momentum equations (11)–(12)
by relaxing all the interior points, where u1

h and u2
h are defined, we now need to

smooth the error in the state continuity equation (13) by distributive relaxation
[7]. It is done as follows:
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Let x be the current cell center and

(19) r0
h = 0− (∂hxu

1
h + ∂hyu

2
h)

be the residual at cell center just before relaxing there. Then the relaxation step
is done by the following nine changes

ujh ← ujh − δph∂hj χhx,
ph ← ph + δphQhχ

h
x,

where χhx is the characteristic function of the cell center x and

(20) δp =
h

4
r0
h.

The changes above and δp are such that after changing, r0
h vanishes. It is easy

to see that the pressure changes are such that the state momentum equations
residuals

(21) rjh = f jh −Qhu
j
h − ∂hj ph, (j = 1, 2),

at all points are preserved, regarding Qh as locally constant. Near the boundary
we need to modify δp because it is not possible to preserve rjh while relaxing the
continuity equation (13), see [7, 8].

Next, we consider the adjoint system and relax it in the analogous way as done
for the state system: Let (λ1

h, λ
2
h, qh) be the current approximation of the numerical

solution of adjoint system (14)–(16). The residuals of the adjoint momentum
equations (14)–(15) at all the interior points, where λ1

h and λ2
h are defined, are relax

by Gauss-Seidel scheme. The adjoint continuity equation (16), i.e., the variable
qh, is relaxed analogous to the state continuity equation. This completes one
relaxation step for the whole optimality system.

4.2. Intergrid transfer operators

We use bilinear interpolation as a prolongation operator. For example, consider the
space Uk of uk : Ωevk → R, k = 1, . . . , L. Between two grids Ωk and Ωk−1, we define
a prolongation operator, Ikk−1 : Uk−1 → Uk, that is consistent with the assumption
of bilinear finite elements on each rectangular partition of the discretization.

Note that in the coarsening by a factor-of-three strategy, the coarse-grid points
are the fine-grid points [9, 10, 11], see Figure 1. Therefore, to take an advantage

of this fact, we use straight injection operator Ik−1
k : Uk → Uk−1 for transfer of

residuals and solution functions from fine to coarse grids. Here we remark that
it is not necessary to use the straight injection operator. We use the straight
injection as a restriction operator because it gives a natural choice in a coarsening
by a factor-of-three strategy on staggered grids.

Next, we consider the optimality system (11)–(18) at the discretization level k
for the unknown variables xk = (u1

k, u
2
k, pk, λ

1
k, λ

2
k, qk, f

1
k , f

2
k ), i.e.,

(22) Ak(xk) = fk.



270 M. M. BUTT

A full multigrid (FMG) method is used with full approximation scheme cycle
(FAS) as a nested iteration, i.e., the FMG scheme is obtained by combining a
nested iteration strategy with the FAS, see [29].

Algorithm. FMG for solving AL(xL) = fL.

1. For l = K < L, set initial approximation ul,
2. If l < L, then interpolate to the next finer working level: x̃l+1 = I l+1

l xl,
3. Apply FAS to solve Al+1(xl+1) = fl+1, starting with x̃l+1,
4. Set l := l + 1. If l < L, go to step 2, else stop.

5. Numerical experiments

In this section, we test our proposed solver on the following two examples to
demonstrate the efficiency of the proposed staggered grid multigrid solver. We
run our numerical experiments using Matlab (R2017a) on laptop i7 with 1.86
GHz and 4GB RAM.

5.1. Test 1: Navier-Stokes problem

First, we consider the lid-driven cavity problem

−ν4u + (u · ∇)u +∇p = f in Ω := [0, 1]2,

−∇ · u = 0 in Ω,

u1 = 1 on Γ1 := [0, 1]× {1},
u = 0 on Γ r Γ1.

We apply the proposed FMG Algorithm 4.2 with the smoothing scheme given in
Section 4.1. We employ W -cycles with 3-pre and 3-post smoothing steps and stop
when max

{
‖rjh‖L2

}
< 10−6. In Table 1, maximum number of outer iterations

(W-cycles) with CPU time are reported. Furthermore, the velocity field (u1, u2)
and pressure p with viscosity ν = 0.1 are also depicted in Figure 2. We choose
lid-driven cavity problem because it is widely considered for the testing of solvers
for Navier-Stokes equations, e.g., see [14].

Table 1. Lid-driven cavity problem: Iteration history and CPU time (sec).

Nx ×Ny Itr CPU
18× 18 5 0.07
54× 54 6 0.29
162× 162 7 2.07
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Figure 2. Lid-driven cavity problem: Solution plot of velocity (left) and pressure (right) with
viscosity ν = 0.1 on 18 × 18 mesh.

5.2. Test 2: Navier-Stokes control problem

We consider the distributed Navier-Stokes control problem (1)–(4) with a rectan-
gular domain Ω = (0, 1)2 and take

u1
d(x, y) := −2x2y(1− x)2(1− 3y + 2y2),

u2
d(x, y) := 2xy2(1− y)2(1− 3x+ 2x2)

as the desired state (velocity field).
To solve this control problem, we use our multigrid scheme to the optimality

system (11)–(18). We employ W -cycles with 3-pre and 3-post smoothing steps. We
use the step length t = 1 in the gradient update step and viscosity ν = 0.1. We stop



272 M. M. BUTT

the iterations when the discrete L2-norm of the residuals satisfies max
{
‖rjh‖L2

}
<

10−6.
In Table 2, we report L2-norm of gradients and number of outer iterations

(W-cycles), which are robust in grid size and the regularization parameter. Here we
remark that the iteration counts we have observed in this article show better results
(robust in grid size h and regularization parameter α) at least for moderate values
of α with ν = 0.1, as compared to the recent work [24] in which preconditioned
iterative methods for Navier-Stokes control problem are presented.

Table 2. L2-norm of gradients and iterations history.

Nx ×Ny ‖∇f Ĵh‖L2 Itr CPU

α = 10−1

18× 18 2.0557e− 07 5 0.24
54× 54 8.3444e− 08 4 0.64
162× 162 1.1570e− 07 2 1.88

α = 10−2

18× 18 2.2596e− 07 41 1.43
54× 54 2.0844e− 07 24 3.15
162× 162 1.6994e− 07 8 7.34

α = 10−3

18× 18 6.7281e− 07 182 5.29
54× 54 1.8271e− 07 122 14.31
162× 162 1.4218e− 07 16 25.53

α = 10−4

18× 18 6.2549e− 07 239 14.76
54× 54 1.9420e− 07 391 42.77
162× 162 1.0405e− 07 136 129.86

α = 10−5

18× 18 3.5493e− 07 129 45.89
54× 54 1.4282e− 07 126 53.16
162× 162 8.7336e− 08 79 109.15

In Table 3, we report numerical values of tracking errors for different regular-
ization parameter α on Nx × Ny = 162 × 162. We obtain improved tracking for
smaller values of α.

Table 3. L2-norm of the tracking errors.

α ‖u− ud‖L2

10−1 4.0455e− 03
10−2 1.2581e− 03
10−3 2.2484e− 04
10−4 4.4967e− 05
10−5 7.3386e− 06
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Figure 3. Navier-Stokes control problem: Optimal velocity field (left) and target velocity field
(right) with α = 10−5, ν = 0.1 on 18 × 18 mesh.

6. Control-constrained Navier-Stokes control problems

In this section, we extend our proposed multigrid scheme to control-constrained
problems, and report results of numerical experiments. For this purpose, con-
sider the (distributed) Navier-Stokes control problem (1)–(4) in a two-dimensional
bounded domain Ω ⊂ R2 with control

(23) f ∈ Fad =
{
u ∈ L2(Ω) : u ≤ u(x) ≤ u a.e. in Ω

}
.

The existence and uniqueness of the optimal solution to this problem is standard
[13, 20, 22, 28] and characterized by the following optimality system

(24)

−ν∆u + (u · ∇)u +∇p = f in Ω,

−∇ · u = 0 in Ω,

u = 0 on Γ,

(25)

−ν∆λ− (u · ∇)λ+ (∇u)Tλ+∇q = ud − u in Ω,

∇ · λ = 0 in Ω,

λ = 0 on Γ,

(26) (αf − λ, f̃ − f) ≥ 0 for all f̃ ∈ Fad.

The discretization scheme described in Section 3 is also applicable to above opti-
mality system (24)–(26). Hence equations (11)–(16) with the following discretized
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optimality condition constitute the discretized optimality system for control-con-
strained problem

(α f1
i,j+1/2 − λ1

i,j+1/2, f̃
1
i,j+1/2 − f1

i,j+1/2) ≥ 0 in Ωevh ,

(α f2
i+1/2,j − λ2

i+1/2,j , f̃
2
i+1/2,j − f2

i+1/2,j) ≥ 0 in Ωehh ,

for all (f̃1
i,j+1/2, f̃

2
i+1/2,j) ∈ Fadh, where Fadh is the discrete analogue of Fad.

For smoothing, first we update the control fh by performing a gradient update
which includes projection on the control constraint, i.e.,

(27) f∗,h := P[f ,f ]

(
fh − t(αfh − λh)

)
,

where ∇Ĵ(fh) = αfh − λh and projection P[a,b] is defined as follows:

P[f ,f ](f) =

 f if f > f ,

f if f ≤ f ≤ f ,
f if f < f .

Corresponding to the new values of controls, we update the state and adjoint
variables using the smoothing scheme as given in Subsection 4.1.

Next, we consider the numerical problem given in previous Section 5 with
control-constraints −0.01 ≤ f ≤ 0.01. To solve this problem, we use our multigrid
scheme and employ W -cycles with 3-pre and 3-post smoothing steps with the same
stopping criterion as discussed for the unconstrained control problem.

The iteration counts with CPU time (seconds) are reported in Table 4, which
demonstrate the efficiency of the proposed FMG method for the control-con-
strained problems. In Table 5, we report L2-norm of tracking errors for differ-
ent values of regularization parameter on Nx ×Ny = 162× 162 mesh. We obtain
slightly better tracking for smaller values of the control weight α. To see the active
control-constraints, the control function f = (f1, f2) for α = 10−1, is also depicted
in Figure 4.

7. Conclusions

We have developed a multigrid algorithm with coarsening by a factor of three
to solve distributed optimal control problems constrained by stationary Navier-
Stokes equations. The potential advantage of the proposed multigrid solver is the
fact that coarsening by a factor of three results in nested hierarchy of staggered
grids simplifies the intergrid transfer operators, reduces number of levels, and thus
the computations. Results of numerical experiments demonstrate the efficiency of
the proposed multigrid solver for distributed control problems with and without
control-constraints. The iteration counts we have observed in this article show
robust results in grid size h and regularization parameter α, at least for moderate
values of regularization parameter α. In future work, one can use second-order
upwinding schemes [8] and can extend the proposed multigrid scheme for small
values of viscosity ν. On the other hand, the proposed multigrid scheme can be
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Figure 4. Control-constrained problem: Control function f1 (left) and f2 (right) with α = 10−1

on 162 × 162 mesh.

Table 4. Control-constrained problem: Number of iterations and CPU time (sec).

Nx ×Ny ‖∇f Ĵh‖L2 Itr CPU

α = 10−1

18× 18 2.3580e− 04 5 0.22
54× 54 2.3368e− 04 4 0.65
162× 162 2.3342e− 04 3 2.44

α = 10−2

18× 18 7.0586e− 04 16 0.52
54× 54 7.0313e− 04 18 1.99
162× 162 7.0266e− 04 15 9.97

α = 10−3

18× 18 7.7004e− 04 22 0.64
54× 54 7.6679e− 04 33 3.51
162× 162 7.6633e− 04 29 19.11

α = 10−4

18× 18 7.7676e− 04 23 0.68
54× 54 7.7345e− 04 53 4.77
162× 162 7.7299e− 04 32 22.19

α = 10−5

18× 18 7.7743e− 04 22 0.64
54× 54 7.7411e− 04 67 5.97
162× 162 7.7365e− 04 51 33.64
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Table 5. Control-constrained problem: Tracking errors.

α ‖u− ud‖L2

10−1 4.3102e− 03
10−2 4.0882e− 03
10−3 4.0810e− 03
10−4 4.0808e− 03
10−5 4.0807e− 03

extended to solve time-dependent analogue of the Navier-Stokes optimal control
problems [19].
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