
Acta Math. Univ. Comenianae
Vol. XC, 2 (2021), pp. 231–243

231

THE PERFORMANCE OF WONG-ZAKAI APPROXIMATIONS

FOR THE INVESTIGATION OF STOCHASTIC

DIFFERENTIAL EQUATION MODELS

WITH NONLINEAR MULTIPLICATIVE NOISE

S. SENGUL, Z. BEKIRYAZICI and M. MERDAN

Abstract. In this study, Wong-Zakai approximation method has been applied for

the analysis of stochastic differential equations appearing in engineering sciences.
Wong-Zakai approximation has been used with similar stochastic approximation

methods to compare the approximate solutions of the problems and comment on
the performance of the method. Models for lake pollution and computer virus

spread under antivirus protection have been used with nonlinear stochastic noise as

numerical examples to demonstrate the efficiency of Wong-Zakai method.

1. Introduction

Mathematical modeling studies have mostly shifted from systems of ordinary dif-
ferential equations to various other types of differential equation systems. Fuzzy,
fractional and delay differential equations are some of the types which are used in
applications for modeling real life events in biology, engineering, social sciences,
and etc. [8, 9, 14]. Amongst these modeling approaches, random and stochastic
systems should be considered separately since they contain random components
for modeling the uncertainty of real life dynamics. Stochastic models are con-
sidered essential in modeling finance, population dynamics and physics since the
uncertainty inherent to the nature of the event can be modeled efficiently through
the use of stochastic processes.

Mathematical models consisting of stochastic equations can often be too com-
plex to analyze, especially in situations with nonlinear, multiplicative, and colored
noise. Most of the stochastic models in the literature are investigated through
approximation techniques for Ito differential equations such as Euler-Maruyama
and Milstein methods. Wong-Zakai convergence method for the solution processes
of Stratonovich stochastic differential equations enables the analysis of stochastic
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models through the use of deterministic approximation methods such as Adams-
Bashforth and Runge-Kutta methods. The deterministic properties that hold for
Stratonovich stochastic integration let the use of deterministic techniques for sto-
chastic equations which means an easier investigation for models with stochastic
noise. Applications of Wong-Zakai approximation were given for stochastic dif-
ferential equations with partial differentiation and reflecting boundary conditions
[4, 22]. In this study, deterministic models for pollution of a system of lakes [1]
and spread of a computer virus in a network are analyzed [15]. Stochastic noise is
added to the deterministic models to obtain systems of stochastic differential equa-
tions (SDE) which are examined through Wong-Zakai approximation. Euler and
Milstein methods are also used for the Ito SDE versions of the models to compare
the results of Wong-Zakai method. Wong-Zakai method can be used with various
deterministic approximation methods for the analysis of Stratonovich SDEs and
for our study we are using predictor-corrector method where Adams-Bashforth
method is used as the predictor and Adams-Moulton method is used as the cor-
rector counterparts [16]. Stochastic and random investigation of deterministic
models to investigate the random dynamics of events which cannot be modeled
through the use of deterministic systems were drawing attention in the last years
[8, 10, 11]. In this study, we extend this approach to engineering problems along
with an alternative method which we believe can be applied to many modeling
studies in a variety of research areas.

The outline of the paper can be given as follows. In Section 2, we give a brief
outline of the methods used for the investigations. In Section 3, the problems
are given along with the results and the graphical interpretations. Finally, the
concluding remarks are given with a comparative analysis of the results from Wong-
Zakai method and other methods used for comparison.

2. Wong-Zakai approximation

The basic idea behind Wong-Zakai approximate solutions of stochastic differential
equations (SDE) is based on using the deterministic method for the estimated in-
crements at every time discretization of a solution process. Consider a Stratonovich
stochastic differential equation

(1) dXt = a(t,Xt)dt + b(t,Xt) ◦ dWt,

where a(t,Xt) is the drift term and b(t,Xt) is the diffusion term with ◦ denoting the
Stratonovich stochastic integral operator. The more popular stochastic differential
equation, Ito stochastic differential equation, is given as

(2) dXt = a(t,Xt)dt + b(t,Xt)dWt,

with the drift terms of the two equations satisfying a(t, x) = a(t, x)− 1
2b(t, x)∂b(t,x)

∂x
between Ito and Stratonovich differential equations [5].
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Since the problems in this study are systems of stochastic differential equations,
a system of stochastic differential equations (1) is examined. For

Xt = [X1
t X2

t . . . Xn
t ]T , dWt = [dW1t dW2t . . . dWnt

]T

the stochastic equation (1) takes the system form

(3) dXt = a(t,Xt)dt + b(t,Xt)� dWt

where

a(t,Xt) = [a1(t,Xt) a2(t,Xt) . . . an(t,Xt)]
T ,

b(t,Xt) = [b1(t,Xt) b2(t,Xt) . . . bn(t,Xt)]
T ,

and n denotes the number of equations in the system. The expression � in (3)
denotes the multiplication of the corresponding elements of the vectors b(t,Xt)
and dWt. Hence,

b(t,Xt)� dWt = [b1(t,Xt) ◦ dW1t b2(t,Xt) ◦ dW2t . . . bn(t,Xt) ◦ dWnt
]T .

Now, Wong-Zakai approximation is given for the stochastic differential equation
(3).

The time interval under consideration [0, T ] is assigned a discretization of
0 = t0 < t1 < t2 < · · · < tk−1 < tk = T . Wong-Zakai method is based on

obtaining the numerical approximation X̂tj of the solution of the Stratonovich

SDE for each [tj , tj+1], using the initial approximation X̂0 = X0 [18, 19]. X̂tj+1

is obtained as

(4)
dX̂t

dt
= a(t, X̂t) +

1

∆j
b(t, X̂t)∆Wj

within every [tj , tj+1], j = 0, 1, . . . , k − 1 [6]. Here, ∆j = tj+1 − tj and ∆Wj =
Wtj+1

−Wtj , j = 0, 1, . . . , k − 1.

Stratonovich stochastic integration defines
∫ T

0
Xt ◦ dWt as a random variable

in the mean square limit

(5) l.i.m

k−1∑
i=0

Xi+1 −Xi

2
(Wi+1 −Wi)

as the discretization 0 = t0 < t1 < t2 < · · · < tk−1 < tk = T of [0, T ] goes
infinitesimal (k →∞) with the Wiener process Wt [3]. This enables the application
of some rules of calculus needed for numerical integration to the Stratonovich

integral such as
∫ T

0
f ′(Wt) ◦ dWt = f(WT ) − f(W0) [3]. Using this particular

advantage of the Stratonovich integral, we combine Wong-Zakai method with a
deterministic method, where we use the predictor corrector method [16] with
Adams Bashforth as the predictor pair

(6) X∗i+1 = Xi +
h

2
[3f(ti,Xi)− f(ti−1,Xi−1)]

and Adams Moulton method

(7) Xi+1 = Xi +
h

2
[f(ti,Xi) + f(ti+1,X

∗
i+1)], i = 2, 3, . . . ,m,
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(m denotes the number of intervals) as the corrector pair, where the function of f
is right hand side of equation (4)

f(t,X) = a(t,X(t)) +
1

∆j
b(t,X(t))∆Wj .

The initial X2 is calculated with Runge-Kutta II method for X1 = x0, through
k1 = f(tj ,X1), k2 = f(tj + h,X1 + hk1), and X2 = X1 + h

2 [k1 + k2], j =
0, 1, . . . , k−1, where h is the step size for the deterministic approximation method.

3. Applications

In this section, application of Wong-Zakai method is given for models for lake
pollution and computer virus spread under antivirus protection.

3.1. Lake Pollution Model

Pollution of a system of lakes has been analyzed via deterministic differential equa-
tion systems using several methods such as modified Differential transformation,
Homotopoy perturbation, and Collocation methods, [12, 21, 13]. The essential
approach of the lake pollution model is based on the idea of monitoring the effects
of the pollution in a single lake within a system of lakes which are connected by
rivers and channels. The system is given as follows:

(8)

dx1

dt
=

F13

V3
x3(t)− F31

V1
x1(t)− F21

V1
x1(t) + p(t),

dx2

dt
=

F21

V1
x1(t)− F32

V2
x2(t),

dx3

dt
=

F31

V1
x1(t) +

F32

V2
x2(t)− F13

V3
x3(t).

Here, Vi, i = 1, 2, 3, denote the volume of lake i, and xi, i = 1, 2, 3 denote the
amount of pollutant in lake i, respectively. Fji are the flow rates from lake i to lake
j for i, j ∈ 1, 2, 3. Further details about the deterministic analysis of this model
can be found in [1, 12, 21]. The values of the parameters and initial conditions
necessary for the stochastic analysis were given in the referred study as [1]:

(9)

V1 = 2900mi.3, V2 = 850mi.3, V3 = 1180mi.3,

F21 = 18
mi.3

year
, F32 = 18

mi.3

year
, F31 = 20

mi.3

year
, F13 = 38

mi.3

year
.

The time variable t denotes the number of years. Initial conditions are given as
x1(0) = 0, x2(0) = 0, and x3(0) = 0. Implementing the values of Fji and adding
nonlinear independent multiplicative stochastic noise give the stochastic model of
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pollution for a system of lakes:

(10)

dx1(t) =

(
38

1180
x3(t)− 38

2900
x1(t) + p(t)

)
dt + (a1 + b1x1)x1dW1t ,

dx2(t) =

(
18

2900
x1(t)− 18

850
x2(t)

)
dt + (a2 + b2x2)x2dW2t ,

dx3(t) =

(
20

2900
x1(t) +

18

850
x2(t)− 38

1180
x3(t)

)
dt + (a3 + b3x3)x3dW3t .

The role of the stochastic noise (ai + bixi)xidWit , i = 1, 2, 3, in this model is
to demonstrate the total effect of external factors on the spread of pollution in
the lake system. The function p(t) denotes the pollutant introduced to the system
and for the numerical simulations, we use a periodic pollutant function with p(t) =
1+sin t. The numerical solutions of the stochastic system (10) obtained with Euler-
Maruyama, Milstein, stochastic Runge-Kutta, and Wong-Zakai methods are given
in the table below (Table 1). The solutions are also shown in the figure with
additional solution curves for stochastic strong order 1.0 Runge-Kutta method
(Figure 1). Note that the results have been given for ai = 0.55, bi = 10−4,
i = 1, 2, 3, to simulate a stochastic model with small nonlinear diffusion.

Figure 1. The solutions for the stochastic model (10).
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Table 1. Numerical results for the stochastic model (10).

Runge Kutta IV Euler- Maruyama

Time E(x1(t)) E(x2(t)) E(x3(t)) E(x1(t)) E(x2(t)) E(x3(t))

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 1.4479 0.0040 0.0045 1.4304 0.0038 0.0042

2.0 3.3696 0.0187 0.0209 3.3538 0.0181 0.0202

3.0 4.8989 0.0440 0.0493 4.8996 0.0432 0.0483

4.0 5.4717 0.0753 0.0845 5.5126 0.0747 0.0841

5.0 5.4773 0.1072 0.1211 5.5039 0.1070 0.1206

6.0 5.7337 0.1392 0.1579 5.7213 0.1386 0.1568

7.0 6.8839 0.1738 0.1992 6.8294 0.1736 0.1967

8.0 8.6167 0.2179 0.2489 8.6419 0.2163 0.2456

9.0 10.2826 0.2720 0.3104 10.2453 0.2705 0.3065

10.0 11.1065 0.3333 0.3804 11.0651 0.3305 0.3762

11.0 11.1564 0.3962 0.4502 11.1266 0.3909 0.4465

12.0 11.1088 0.4558 0.5184 11.1477 0.4493 0.5144

13.0 11.8417 0.5154 0.5883 11.9404 0.5114 0.5867

14.0 13.4921 0.5824 0.6672 13.5446 0.5750 0.6662

15.0 15.1302 0.6620 0.7586 15.3887 0.6497 0.7495

16.0 16.1334 0.7482 0.8549 16.3497 0.7358 0.8527

17.0 16.2700 0.8380 0.9557 16.3459 0.8279 0.9552

18.0 16.1363 0.9124 1.0524 16.1386 0.9094 1.0547

19.0 16.4841 0.9894 1.1531 16.6858 0.9912 1.1570

20.0 17.8059 1.0634 1.2586 17.9781 1.0797 1.2572

Milstein Wong-Zakai

Time E(x1(t)) E(x2(t)) E(x3(t)) E(x1(t)) E(x2(t)) E(x3(t))

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.0 1.4311 0.0038 0.0042 1.4483 0.0040 0.0045

2.0 3.3530 0.0181 0.0202 3.3655 0.0187 0.0209

3.0 4.8917 0.0432 0.0484 4.8865 0.0440 0.0491

4.0 5.5352 0.0746 0.0840 5.4935 0.0755 0.0844

5.0 5.5028 0.1073 0.1209 5.4994 0.1078 0.1206

6.0 5.7037 0.1388 0.1569 5.7609 0.1397 0.1572

7.0 6.7959 0.1740 0.1977 6.8939 0.1748 0.1977

8.0 8.6002 0.2173 0.2483 8.7018 0.2189 0.2478

9.0 10.2788 0.2717 0.3104 10.3900 0.2729 0.3095

10.0 11.0895 0.3320 0.3797 11.0988 0.3329 0.3795

11.0 11.1472 0.3747 0.4507 11.1339 0.3948 0.4492

12.0 11.1697 0.4566 0.5205 11.0729 0.4509 0.5168

13.0 11.8907 0.5185 0.5923 11.9157 0.5096 0.5857

14.0 13.5265 0.5862 0.6688 13.6615 0.5773 0.6624

15.0 15.3479 0.6647 0.7580 15.4388 0.6600 0.7531

16.0 16.3659 0.7556 0.8569 16.3114 0.7365 0.8496

17.0 16.7537 0.8400 0.9598 16.3649 0.8228 0.9590

18.0 16.4914 0.9400 1.0591 16.1335 0.9093 1.0559

19.0 16.5214 1.0153 1.1605 16.4422 0.9815 1.1549

20.0 17.9631 1.0895 1.2498 17.7038 1.0580 1.2495
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It is known that the stochastic Runge-Kutta method is of the highest order
between these methods, hence we use the results from Runge-Kutta scheme to
investigate the results. The solution curves and numerical results suggest that
all of these methods provide similar results to one another, meaning Wong-Zakai
method performs similarly according to the more popular stochastic methods.

Using the results of Runge-Kutta method as a basis, the relative errors at several
time points are found as follows for Wong-Zakai, Euler-Maruyama, and Milstein
methods (Table 2). Note that the calculations have been done for ∆j = 0.05 with
N = 105 simulations for each model.

Table 2. Error percentages relative to stochastic Runge-Kutta results for (10).

Euler- Maruyama Milstein Wong-Zakai

Time x1(t) x2(t) x3(t) x1(t) x2(t) x3(t) x1(t) x2(t) x3(t)

t = 5 0.4856 0.1866 0.4129 0.4656 0.0933 0.1652 0.4035 0.5597 0.4129

t = 10 0.3728 0.8401 1.1041 0.1531 0.3900 0.1840 0.0693 0.1200 0.2366

t = 15 1.7085 1.8580 1.1996 1.4382 0.4079 0.0791 2.0396 0.3021 0.7250

t = 20 0.9671 1.5328 0.1112 0.8829 2.4544 0.6992 0.5734 0.5078 0.7230

It is seen that between these methods, the relative errors (relative to the results
from stochastic Runge-Kutta method) are of similar percentages. Euler-Maruyama
and Milstein schemes are widely used in applications, whereas it is seen that Wong-
Zakai method could provide a competent alternative.

3.2. Computer Virus Model

The spread of malicious software, computer viruses, and rumor in social media
and networks were a concentration point for the use of compartmental models
lately [7, 17, 20]. The similarities between the spread of diseases in populations
and malware in networks provide a basis for the use of epidemiological models in
analyzing the spread of computer viruses. In this example, the equation system
in Onwubuoya et al. [15, 2] is used for modeling the stochasticity of the effects of
antivirus on computer virus infections. The deterministic model is given as:

(11)

dX(t)

dt
= aZ(t)− bX(t),

dY (t)

dt
= c− dY (t)− eX(t)Y (t),

dZ(t)

dt
= eX(t)Y (t)− (d + f)Z(t)− gN(t),

dN(t)

dt
= h− iN(t).
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Here, X(t) denotes the number of worms, Y (t) denotes the number of uninfected
files, Z(t) denotes the number of infected files, and N(t) denotes the number of
antivirus agents. The initial values of the deterministic model are given as follows:
X(0) = 15, Y (0) = 3, Z(0) = 20, and N(0) = 0.5 [15]. Using these initial values
and the deterministic system (11), the stochastic model is given as:

(12)

dX(t) = (aZ(t)− bX(t)) dt + (a4 + b4X(t))X(t)dW4t ,

dY (t) = (c− dY (t)− eX(t)Y (t)) dt + (a5 + b5Y (t))Y (t)dW5t ,

dZ(t) = (eX(t)Y (t)− (d + f)Z(t)− gN(t)) dt + (a6 + b6Z(t))Z(t)dW6t ,

dN(t) = (h− iN(t)) dt + (a7 + b7N(t))N(t)dW7t .

Once again, the nonlinear diffusion coefficient models the stochastic nature of the
antivirus effect. The values and the descriptions of the parameters are given in
the referred study as [15]:

Table 3. Descriptions and values of parameters.

Parameter Description Value

a Rate of infected files becoming worms 0.3

b Worm death rate 0.5

c Uninfected file birth rate 2.3

d Uninfected file natural death rate 0.055

e Uninfected file worm-related infection rate 0.015

f Infected file death rate 0.055

g Antivirus efficiency rate 0.002

h Antivirus activity rate 2.6

i Antivirus inefficiency rate 0.1

The time variable t denotes the number of minutes. The numerical solutions
of the stochastic system (12) obtained with Euler-Maruyama, Milstein, stochastic
Runge-Kutta, and Wong-Zakai methods are given in the table below (Table 4).
The solutions are also shown in the figure with additional solution curves for
stochastic strong order 1.0 Runge-Kutta method (Figure 2).

Note that the results are given for ∆j = 0.05 step size with N = 105 simula-
tions for each of the model variables. The realizations are averaged to obtain the
solutions for expected values of the variables shown above (Figure 2)

(13) E(Xt) =
1

N

N∑
i=1

Xi
t .
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Table 4. Results for the expected values of the variables for (12).

Runge-Kutta IV Euler

Time X(t) Y (t) Z(t) N(t) X(t) Y (t) Z(t) N(t)

0.0 15.0000 3.0000 20.0000 0.5000 15.0000 3.0000 20.0000 0.5000

1.0 13.6775 4.3148 18.6619 2.9237 13.5991 4.3079 18.6051 2.9316

2.0 12.5603 5.4101 17.6523 5.1151 12.4547 5.4108 17.5385 5.1434

3.0 11.6689 6.3709 16.7774 7.1115 11.5884 6.3706 16.6723 7.1334

4.0 10.8932 7.2307 16.0017 8.8875 10.8658 7.2457 15.9060 8.9382

5.0 10.2635 8.0630 15.3457 10.5141 10.2271 8.0351 15.2366 10.5663

6.0 9.7608 8.7990 14.8221 11.9682 9.7254 8.7826 14.6028 12.0468

7.0 9.3391 9.5462 14.2881 13.2791 9.2657 9.5166 14.0569 13.4099

8.0 8.9544 10.2400 13.7895 14.5118 8.9123 10.2295 13.5638 14.5990

9.0 8.6459 10.9025 13.3527 15.5746 8.5689 10.8972 13.1250 15.6464

10.0 8.4885 11.5227 12.9862 16.5710 8.2589 11.5118 12.7161 16.6506

11.0 8.3390 12.1259 12.6353 17.4909 7.9608 12.1300 12.3799 17.5056

12.0 8.0844 12.6723 12.2957 18.3171 7.6912 12.7317 12.0563 18.2460

13.0 7.8068 13.2059 11.9351 19.0641 7.5031 13.2820 11.7935 19.0496

14.0 7.3821 13.7144 11.6658 19.7717 7.2628 13.7619 11.4545 19.6434

15.0 7.1847 14.1886 11.4072 20.4210 7.0607 14.3184 11.1487 20.2479

16.0 6.9461 14.6476 11.1211 21.0409 6.8826 14.7552 10.9685 20.8318

17.0 6.7925 15.1144 10.8418 21.5291 6.7513 15.2747 10.7932 21.2934

18.0 6.6574 15.5833 10.5573 21.8791 6.6382 15.7383 10.5700 21.7831

19.0 6.5322 16.0257 10.3463 22.2008 6.4971 16.0917 10.4594 22.1420

20.0 6.3681 16.4307 10.1406 22.4631 6.4154 16.4561 10.2702 22.4813

Milstein Wong-Zakai

Time X(t) Y (t) Z(t) N(t) X(t) Y (t) Z(t) N(t)

0.0 15.0000 3.0000 20.0000 0.5000 15.0000 3.0000 20.0000 0.5000

1.0 13.6258 4.3214 18.6368 2.9267 13.6378 4.3161 18.6757 2.9220

2.0 12.5104 5.4178 17.5815 5.1334 12.5453 5.4122 17.6281 5.1209

3.0 11.6402 6.3809 16.6849 7.1351 11.6893 6.3653 16.7629 7.1003

4.0 10.8673 7.2427 15.9559 8.9179 10.9499 7.2257 15.9743 8.9021

5.0 10.2264 8.0333 15.2902 10.5705 10.3518 8.0249 15.4028 10.5160

6.0 9.7424 8.7695 14.6740 12.0256 9.8332 8.8001 14.8391 11.9986

7.0 9.2642 9.4806 14.1093 13.3517 9.4150 9.4811 14.3273 13.3364

8.0 8.8852 10.1965 13.6029 14.5519 9.0078 10.1862 13.8982 14.5307

9.0 8.5449 10.8877 13.1989 15.6114 8.6782 10.8706 13.3927 15.5910

10.0 8.2684 11.4998 12.8103 16.5641 8.3632 11.5167 13.0144 16.6041

11.0 7.9664 12.0961 12.4352 17.4902 8.0843 12.0836 12.5209 17.5070

12.0 7.7397 12.6556 12.0201 18.3020 7.7737 12.6545 12.1496 18.3002

13.0 7.5599 13.2171 11.7403 19.0070 7.5372 13.2563 11.8557 18.9597

14.0 7.3225 13.7922 11.4334 19.6322 7.3100 13.7638 11.5972 19.6228

15.0 7.0794 14.2995 11.2056 20.1765 7.1122 14.2978 11.3466 20.2024

16.0 6.9099 14.7981 10.9012 20.7185 6.9746 14.7517 11.0147 20.8144

17.0 6.6985 15.2255 10.6340 21.0963 6.8279 15.2110 10.7523 21.2351

18.0 6.5195 15.6081 10.4319 21.5907 6.6099 15.5995 10.5412 21.7097

19.0 6.3834 16.0799 10.2445 21.9924 6.4278 15.9882 10.3593 22.1495

20.0 6.2967 16.4414 10.0856 22.3149 6.3249 16.3947 10.1975 22.5071
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Figure 2. The solutions for the stochastic model (12).

The relative errors (relative to stochastic Runge-Kutta method) are obtained
as follows (Table 5):

Table 5. Error percentages relative to stochastic Runge-Kutta results for (12).

Euler Milstein

Time X(t) Y (t) Z(t) N(t) X(t) Y (t) Z(t) N(t)

5.0 0.3547 0.3460 0.7109 0.4965 0.3615 0.3683 0.3617 0.5364

10.0 0.9605 0.0946 2.0799 0.4804 0.8466 0.1987 1.3545 0.0416

15.0 1.7259 0.9148 2.2661 0.8477 1.4656 0.7816 1.7673 1.1973

20.0 0.7428 0.1546 1.2780 0.0810 1.1212 0.0651 0.5424 0.6597

Wong-Zakai

Time X(t) Y(t) Z(t) N(t)

5.0 0.8603 0.4725 0.3721 0.0181

10.0 0.2902 0.0521 0.2172 0.1997

15.0 1.0091 0.7696 0.5312 1.0705

20.0 0.6784 0.2191 0.5611 0.1959
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It is seen that Wong-Zakai approximation provides the best convergence relative
to the higher ordered Runge-Kutta scheme at certain points. The figures also
suggest that all of the methods provide similar results for the variables of the
stochastic model. Note that the results have been given for ai = 0.45,bi = 10−4, i =
4, 5, 6, 7 to simulate a stochastic model with small nonlinear diffusion.

4. Conclusion

In this study, the performance of Wong-Zakai approximation method has been
investigated in comparison with more popular stochastic approximation methods
such as Euler-Maruyama, Milstein, and stochastic Runge-Kutta methods. Two
numerical examples have been analyzed to compare the results from these meth-
ods using solution graphs and relative errors of the results. Additional solution
curves have been added for the strong order 1.0 stochastic Runge-Kutta scheme
to underline the similarity between the results from the more popular stochas-
tic methods and Wong-Zakai method. Wong-Zakai convergence can be applied
to obtain the approximate solution processes of Stratonovich stochastic differen-
tial equations. Using the deterministic properties of Stratonovich stochastic in-
tegration, deterministic approximation methods are used jointly with stochastic
Wong-Zakai approximation to obtain the approximate solution process. Nonlinear
stochastic noise has been added to both deterministic models, the Lake Pollution
Model, and the Computer Virus Model to obtain stochastic models for numer-
ical examples. The Stratonovich stochastic differential equation versions of the
stochastic models have been analyzed with Wong-Zakai approximation using the
deterministic Predictor-Corrector method as the deterministic part of the scheme.
Adams-Bashforth method has been used as the predictor and Adams-Moulton
method has been used as the corrector counterpart of the method. The stochas-
tic expected values of the solutions have been obtained by averaging N = 105

realizations of the stochastic approximate solutions for both examples.
Numerical results, relative errors, and solution graphs show that Wong-Zakai

method performs just as well as the other stochastic methods. Relative errors, rela-
tive to stochastic Runge Kutta IV method, show that Wong-Zakai method provide
the best results for some of the variables in the stochastic models at certain mo-
ments. Results for t = 5, 10, 15, and 20, have been given to show the similarity
between the absolute error percentages for the methods. For instance, Wong-Zakai
produces the best result relative to Runge-Kutta method for the approximate ex-
pected value of N(t) at t = 5.0 with 0.0181% error, whereas Euler-Maruyama
and Milstein methods give 0.4965%, and 0.5364% errors, respectively. There are
moments where Euler and Milstein methods provide results with smaller error
percentages but Figures 1 & 2 show the similarity between the results of all mod-
els. It should be noted that these results were given for ai = 0.55 in the first
example, ai = 0.45 in the second example and bi = 10−4 for the nonlinear noise
coefficient. These values have been chosen to simulate stochastic models under the
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influence of nonlinear stochastic noise with small diffusion coefficients. The non-
linear stochastic noise in the equation systems may cause convergence issues for
the approximation methods but it is seen that Wong-Zakai performs just as good
as the other stochastic methods. In addition, due to the deterministic properties of
Stratonovich integration, the performance of Wong-Zakai method becomes increas-
ingly better for a smaller diffusion coefficient, i.e., the method performs better as
the problem becomes more deterministic. It is known that most of the stochastic
models and problems in the literature are analyzed by using Euler-Maruyama and
Milstein methods. However, the results show that Wong-Zakai method performs
similarly compared to these models and can be used as an alternative approxima-
tion technique.
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