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TOTAL VERTEX-EDGE DOMINATION IN TREES

H. ABDOLLAHZADEH AHANGAR, M. CHELLALI, S.M. SHEIKHOLESLAMI,
M. SOROUDI and L. VOLKMANN

Abstract. A subset S ⊆ V is a dominating set of G if every vertex in V \ S has a

neighbor in S, and it is a total dominating set if every vertex in V has a neighbor
in S. The total domination number of G, γt(G), is the minimum cardinality of a

total dominating set of G. A vertex v of a graph G is said to ve-dominate every

edge incident to v, as well as every edge adjacent to these incident edges. A set
S ⊆ V is a vertex-edge dominating set (or simply, a ve-dominating set) if every

edge of E is ve-dominated by at least one vertex of S. A total ve-dominating set

of G is a ve-dominating set whose induced subgraph has no isolated vertex. The
vertex-edge domination number γve(G) is the minimum cardinality of a total ve-

dominating set and the total vertex-edge domination number γtve(G) is the minimum

cardinality of a total ve-dominating set in G. In this paper, we characterize all trees
T with γtve(T ) = γt(T ) or γtve(T ) = γve(T ), answering two open problems posed in

[Boutrig R. and Chellali M., Total vertex-edge domination, Int. J. Comput. Math.

95 (2018), 1820–1828]. Moreover, we show that it is NP-hard to decide whether
γtve(G) = γve(G) for a given connected (K4 − e)-free graph G.

1. Introduction

In this paper, G is a simple nontrivial connected graph with vertex set V = V (G)
and edge set E = E(G). The order |V | of G is denoted by n = n(G). For a
vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V : uv ∈ E},
the closed neighborhood of v is the set N [v] = N(v) ∪ {v}, and the degree of v
is degG(v) = |N(v)|. A vertex of degree one is called a pendant vertex or a leaf
and its neighbor is called a support vertex. A strong support vertex is a support
vertex adjacent to at least two leaves and an end support vertex is a support vertex
having at most one non-leaf neighbor. A pendant path P in G is an induced path
such that one of the endpoints has degree one in G, and its other endpoint is the
only vertex of P adjacent to some vertex in G − P . The distance between two
vertices u and v in a connected graph G is the length of a shortest uv-path in G.
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The diameter of G, denoted by diam(G), is the maximum value among minimum
distances between all pairs of vertices of G. For a vertex v in a rooted tree T ,
let C(v) and D(v) denote the set of children and descendants of v, respectively,
and let D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced
by D[v], and is denoted by Tv. We write Pn for the path of order n. A double
star DSp,q is a tree obtained from K1,p and K1,q by connecting the center of K1,p

with that of K1,q. If A ⊆ V (G) and f is a mapping from V (G) into some set of
numbers, then f(A) =

∑
x∈A f(x) and the sum f(V (G)) is called the weight ω(f)

of f .
A subset S ⊆ V is a dominating set of G if every vertex in V r S is adjacent

to a vertex in S, and it is a total dominating set (TDS) if every vertex in V
is adjacent to a vertex in S. The total domination number, γt(G) of G, is the
minimum cardinality of a total dominating set of G. A total dominating set of G
with minimum cardinality is called a γt(G)-set. Total domination was introduced
by Cockayne, Daws, and Hedetniemi [6]. The reader is referred to Henning and
Yeo’s book [7] for more details on total domination. In additional, we refer to
[1, 2, 3].

A vertex v ve-dominates every edge incident to any vertex in N [v]. A set S ⊆ V
is a vertex-edge dominating set (or simply, a ve-dominating set), if for every edge
e ∈ E, there exists a vertex v ∈ S that ve-dominates e. The vertex-edge domination
number, γve(G) of G, is the minimum cardinality of a ve-dominating set of G.
Vertex-edge domination was introduced by Peters [12] in his 1986 PhD thesis,
and studied further in [5, 8, 9, 10, 11]. It is worth noting that Lewis showed
that the decision problem corresponding to the problem of computing γve(G) is
NP-complete for bipartite graphs, and it is linearly solvable for trees.

A total ve-dominating set (or simply, total ve-dominating set) of G is a
ve-dominating set whose induced subgraph has no isolated vertex. The total
vertex-edge domination number γtve(G) is the minimum cardinality of a total
ve-dominating set of G. The concept of total vertex-edge domination in graphs was
introduced by Boutrig and Chellali in [4], who showed that the decision problem
corresponding to the problem of computing γtve(G) is NP-complete for bipartite
graphs. They also observed that for any nontrivial connected graph G,

(1) γve(G) ≤ γtve(G) ≤ γt(G).

Moreover, they posed the following open problems.

Problem 1. Characterize the nontrivial connected graphs G with γtve(G) = γt(G).

Problem 2. Characterize the nontrivial connected graphsG with γtve(G)=γve(G).

In this paper, we settle the above problems for trees by providing a charac-
terization of all trees T with γtve(T ) = γt(T ) or γtve(T ) = γve(T ). Moreover, we
show that it is NP-hard to decide whether γtve(G) = γve(G) for a given connected
(K4 − e)-free graph G.



TOTAL VERTEX-EDGE DOMINATION IN TREES 129

2. Preliminaries

In this section, we provide some definitions and observations that are useful
throughout the paper.

Definition 2.1. Let u be a vertex of a graph G. A subset S of vertices is said
to be an almost total ve-dominating set with respect to u if the conditions: (i)
any edge not incident to u is ve-dominated by a vertex in S, (ii) every vertex in
S r {u} is adjacent to a vertex in S, are fulfilled. Define

γtve(G;u) = min{|S|. S is an almost total ve-dominating set with respect to u}.

Clearly, any total ve-dominating set in G is an almost total ve-dominating
set with respect to any vertex of G. Hence γtve(G;u) is well defined, and thus
γtve(G;u) ≤ γtve(G) for each u ∈ V (G). Define

W 1
G = {u ∈ V | γtve(G;u) = γtve(G)}.

Definition 2.2. For a graph G, define

W 2
G = {v ∈ V | v belongs to no γve(G)-set}.

Definition 2.3. Let u be a vertex of a graph G. A subset S ⊆ V is said to
be an almost ve-dominating set with respect to u, if any edge not incident to u is
ve-dominated by a vertex in S. Suppose

γve(G;u) = min{|S| ; S is an almost ve-dominating set with respect to u}.

Since any ve-dominating set on G is an almost ve-dominating set with respect
to any vertex of G, γve(G;u) is well defined and thus γve(G;u) ≤ γve(G) for each
u ∈ V . Let

W 3
G = {u ∈ V | γve(G;u) = γve(G)}.

Definition 2.4. For a graph G, define

W 4
G = {v ∈ V | v belongs to some γtve(G)-set}.

Proposition 2.5. Let G be a nontrivial connected graph and let u be a vertex
of G. If G′ is the graph obtained from G by adding a path P4 = x1x2x3x4 and
joining u to x1, then γt(G

′) = γt(G) + 2 and γtve(G
′) ≤ γtve(G) + 2.

Proof. Clearly, any γt(G)-set can be extended to a TDS of G′ by adding x2, x3,
and so γt(G

′) ≤ γt(G)+2. To prove the inverse inequality, let v ∈ NG(u) and D be
a γt(G

′)-set containing no leaves. Then x2, x3 ∈ D and D ∩NG[v] 6= ∅. If x1 /∈ D,
then Dr {x2, x3} is a TDS of G, yielding γt(G

′) ≥ γt(G) + 2. Hence assume that
x1 ∈ D. Then (D r {x1, x2, x3}) ∪ {u} when v ∈ D, or (D r {x1, x2, x3}) ∪ {v}
when v /∈ D, is a TDS of G, implying that γt(G

′) ≥ γt(G) + 2. Hence γt(G
′) =

γt(G) + 2.
Also, any γt

ve(G)-set can be extended to a total ve-dominating set of G′ by
adding x2, x3, and this implies that γt

ve(G
′) ≤ γt

ve(G) + 2. �
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Observation 2.6. Let H be a subgraph of a graph G. If γtve(H) = γt(H),
γt(G) ≤ γt(H)+s, and γtve(G) ≥ γtve(H)+s for some non-negative integer s, then
γtve(G) = γt(G).

Proof. We deduce from the assumptions that

γtve(G) ≥ γtve(H) + s ≥ γtve(H) + s ≥ γt(G)

which leads to the desired result by (1). �

Observation 2.7. Let H be a subgraph of a graph G. If γtve(G) = γt(G),
γtve(G) ≤ γtve(H)+s, and γt(G) ≥ γt(H)+s for some non-negative integer s, then
γtve(H) = γt(H).

Proof. By inequality (1) and the assumptions, we have

γt(G) = γtve(G) ≤ γtve(H) + s ≤ γt(H) + s ≤ γt(G).

Thus all inequalities in the above chain must be equalities. In particular, γtve(H) =
γt(H). �

Observation 2.8. Let H be a subgraph of a graph G. If γtve(H) = γve(H),
γtve(G) ≤ γtve(H) + s, and γve(G) ≥ γve(H) + s for some non-negative integer s,
then γtve(G) = γve(G).

Proof. We deduce from the assumptions that

γve(G) ≥ γve(H) + s = γtve(H) + s ≥ γtve(G)

which leads to the result by (1). �

Observation 2.9. Let H be a subgraph of a graph G. If γtve(G) = γve(G),
γve(G) ≤ γve(H) + s, and γtve(G) ≥ γtve(H) + s for some non-negative integer s,
then γtve(H) = γve(H).

Proof. By the assumptions and inequality (1), we have

γtve(G) = γve(G) ≤ γve(H) + s ≤ γtve(H) + s ≤ γtve(G).

Thus all inequalities occurring in the above chain, must be equalities. In particular,
γtve(H) = γve(H). �

We close this section with two simple observations.

Observation 2.10. If T is a nontrivial tree with diameter at most 4, then
γve(T ) = 1 and γtve(T ) = 2.

Observation 2.11. Let G be a graph and u ∈ V (G) a support vertex or a
non-leaf vertex adjacent to an end-support vertex. If G′ is the graph obtained from
G by adding a vertex v attached to u, then γtve(G) = γtve(G

′), γve(G) = γve(G
′),

and γt(G) = γt(G
′).
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Proof. If G′ is a star, then the results are immediate. Suppose G′ is not a star.
Clearly, any γt(G)-set (resp., γt(G

′)-set) containing no leaves, contains u, and so
is a TDS of G′ (resp., G) yielding γt(G

′) ≤ γt(G) (resp., γt(G) ≤ γt(G
′)). Hence

γt(G
′) = γt(G).

Assume now that D is a γtve(G
′)-set containing no leaves. Then u ∈ D if u

is adjacent to an end-support vertex, and D ∩ N [u] 6= ∅ when u is a support
vertex. In both cases, D is clearly a total ve-dominating set of G, implying that
γtve(G

′) ≥ γtve(G). On the other hand, any γtve(G)-set is a total ve-dominating set
of G′, and so γtve(G

′) ≤ γtve(G). Hence γtve(G
′) = γtve(G). Similarly, we can see

that γve(G
′) = γve(G). �

3. Trees T with γtve(T ) = γt(T )

In this section, we provide a constructive characterization of all trees T with
γtve(T ) = γt(T ). For this purpose, we define the family T of unlabeled trees T
that can be obtained from a sequence T1, T2, . . . , Tk (k ≥ 1) of trees such that
T1 ∈ {P2, P3, P4} and T = Tk. If k ≥ 2, then Ti+1 can be obtained recursively
from Ti by one of the following operations.

Operation O1: If u ∈ V (Ti) is a support vertex or a non-leaf vertex adjacent to
an end-support vertex, then O1 adds a new vertex x and an edge ux to obtain Ti+1.

Operation O2: If u ∈W 1
Ti

, then O2 adds a path P4 = x4x3x2x1 and an edge ux1
to obtain Ti+1.

The next lemma is an immediate consequence of Observation 2.11.

Lemma 3.1. If Ti is a tree with γtve(Ti) = γt(Ti) and Ti+1 is a tree obtained
from Ti by Operation O1, then γ

t
ve(Ti+1) = γt(Ti+1).

Lemma 3.2. If Ti is a tree with γtve(Ti) = γt(Ti) and Ti+1 is a tree obtained
from Ti by Operation O2, then γ

t
ve(Ti+1) = γt(Ti+1).

Proof. By Proposition 2.5, we have γt(Ti+1) = γt(Ti) + 2. Assume next that D
is a γtve(Ti+1)-set such that d(x4, D) is as large as possible. Clearly, x1, x2 ∈ D,
and thus D r {x1, x2} is an almost total ve-dominating set of Ti. We deduce
from the assumption u ∈ W 1

Ti
that γtve(Ti+1) ≥ γtve(Ti;u) + 2 = γtve(Ti) + 2. By

Observation 2.6, we obtain γtve(Ti+1) = γt(Ti+1). �

Theorem 3.3. If T ∈ T , then γtve(T ) = γt(T ).

Proof. Let T ∈ T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 ∈ {P2, P3, P4}, and if k ≥ 2, then Ti+1 can be obtained from Ti by
one of the aforementioned operations. We proceed by induction on the number
of operations used to construct T . If k = 1, then T ∈ {P2, P3, P4} and clearly
γtve(T ) = γt(T ). Assume that the result holds for each tree of T which can be
obtained from a sequence of operations of length k − 1 and let T ′ = Tk−1. By
the induction hypothesis, γtve(T

′) = γt(T
′). Since T = Tk is obtained from T ′

by Operation O1 or O2 , we conclude from Lemmas 3.1 and 3.2 that γtve(T ) =
γt(T ). �
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Now we are ready to state the main theorem of this section.

Theorem 3.4. Let T be a tree of order n ≥ 2. Then γtve(T ) = γt(T ) if and
only if T ∈ T .

Proof. According to Theorem 3.3, we need only to prove necessity. We proceed
by induction on n. If n ≤ 3, then T ∈ {P2, P3} and clearly T ∈ T . Let n ≥ 4 and
let the result hold for every tree T ′ of order less than n, satisfying γtve(T

′) = γt(T
′).

Let T be a tree of order n with γtve(T ) = γt(T ). If diam(T ) = 2, then T is a star
that can be obtained from P3 by using Operation O1, and so T ∈ T . If diam(T ) =
3, then T is a double star DSp,q, (q ≥ p ≥ 1) and we have γtve(T ) = γt(T ). If q = 1,
then T = P4 ∈ T , while if q > 1, then T can be obtained from P4 by frequently
use of O1, and thus T ∈ T . Henceforth, we assume that diam(T ) ≥ 4.

If any support vertex, say x, of T is adjacent to two or more leaves, then let T ′

be the tree obtained from T by removing a leaf adjacent to x. By Observation 2.11
and the induction hypothesis, we have T ′ ∈ T . Now T can be obtained from T ′ by
operation O1, and so T ∈ T . Henceforth, we assume that T has no strong support
vertex.

Let v1v2 . . . vk (k ≥ 5) be a diametrical path in T . Root T at vk. Clearly,
degT (v2) = degT (vk−1) = 2. Let D be a γt(T )-set containing no leaves. Clearly,
such a set D exists since diam(T ) ≥ 4. Moreover, D contains all support vertices of
T. Hence {v2, v3} ⊆ D. We claim that v4 does not belong to D. Indeed, if v4 ∈ D,
then D− {v2} is a total ve-dominating set of T of size γt(T )− 1, a contradiction.
Therefore v4 /∈ D. In the following, we consider the following cases.

Case 1. degT (v3) ≥ 3.
We claim that v3 has no children with depth 1 different from v2. Suppose, to the
contrary, that y2 is a child of v3 with depth 1 and let v3y2y1 be a pendant path in
T . Let T ′ = T − Tv2

. Then {v2, v3, y2} ⊆ D, and the set Dr {v2} is a TDS of T ′,
implying that γt(T ) ≥ γt(T ′) + 1. Suppose now that S is a γtve(T

′)-set containing
no leaves. Then clearly v3 ∈ S, and so the set S is also a total ve-dominating set
of T , yielding γtve(T ) ≤ γtve(T ′). It follows from (1) and the assumption that

γt(T
′) ≥ γtve(T ′) ≥ γtve(T ) = γt(T ) ≥ γt(T ′) + 1,

a contradiction.
Thus we may assume that v3 has at least one children with depth 0, say x. Let

T ′ = T −{x}. Clearly, γt(T ) ≥ γt(T ′) since D remains a TDS of T ′. Suppose now
that S is a γtve(T

′)-set. To ve-dominate the edge v1v2, we must have |{v2, v3} ∩
S| ≥ 1 and hence S is a total ve-dominating set of T , yielding γtve(T ) ≤ γtve(T

′).
We conclude from Observation 2.7 that γtve(T

′) = γt(T
′), and by the induction

hypothesis, we have T ′ ∈ T . Now T can be obtained from T ′ by operation O1,
and so T ∈ T .

Case 2. degT (v3) = 2.
We claim that degT (v4) = 2. Suppose, to the contrary, that degT (v4) ≥ 3. Observe
that if v4 has a child with depth 1 or 2, then v4 ∈ D, contradicting the fact that
v4 does not belong to D. Hence every child of v4 has depth 2. According to the
Case 1, we can assume that every child of v4 has degree two. Let z3 be a child of
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v4 different from v3, and let z2 and z1 be the children of z3 and z2, respectively.
Clearly, {v2, v3, z2, z3} ⊆ D, but then {v4} ∪Dr {v2, z2} is a total ve-dominating
set of T of size γt(T ) − 1, a contradiction. Therefore, degT (v4) = 2. Now, let
T ′ = T−Tv4 . Note that T ′ is nontrivial for otherwise T = P5 and γtve(P5) < γt(P5).
We conclude from Proposition 2.5 and Observation 2.7 that γtve(T

′) = γt(T
′). By

induction on T ′, we have T ′ ∈ T . Now let us show that v5 ∈ W 1
T ′ . Suppose, to

the contrary, that v5 6∈ W 1
T ′ , and let S′ be an almost total ve-dominating set of

T ′ with respect to v5 of cardinality at most γtve(T
′) − 1. Then S′ ∪ {v3, v4} is a

total ve-dominating set of T with cardinality γtve(T
′)+1, which is a contradiction.

Hence v5 ∈W 1
T ′ . Now since T can be obtained from T ′ by Operation O2, we have

T ∈ T . This completes the proof. �

4. Graphs G with γtve(G) = γve(G)

4.1. Hardness result

We show that it is NP-hard to decide whether γtve(G) = γve(G) for a given (K4−e)-
graph G by reducing the 3-satisfiability problem (3-SAT problem) to our problem.

xi

ui

xi

Figure 1. The graph Hi.

Theorem 4.1. It is NP-hard to decide whether γtve(G) = γve(G) for a given
(K4 − e)-free graph G.

Proof. Let U = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm} be an arbitrary
instance of the 3-SAT problem. We construct a graph G whose order is poly-
nomially bounded in terms of n and m such that C is satisfiable if and only if
γtve(G) = γve(G).

For each variable xi ∈ U, associate the connected graph Hi as shown in Figure 1.
Corresponding to each clause Cj = {xj , yj , zj} ∈ C, associate a path P2 = cjwj .
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For every literal x ∈ {xi, xi} and every clause Cj such that x appears in Cj , add
an edge between cj and the vertex denoted x in Hi. Clearly, G is (K4 − e)-free.
Also, for every ve-dominating set D of G, we have |D ∩ V (Hi)| ≥ 2, and thus
γve(G) ≤ 2n. The equality is obtained from the fact that all xi’s and xi’s form
a ve-dominating set of G. Furthermore, γtve(G) = 2n holds if and only if every
total ve-dominating set of G, that contains ui and one vertex of {xi, xi} for every i.
Clearly, such a total ve-dominating set of G indicates a satisfying truth assignment
for C. Moreover, from any satisfying truth assignment for C, we can construct a
total ve-dominating set of G of cardinality 2n. Therefore, γtve(G) = γve(G) if and
only if C is satisfiable. �

4.2. Trees T with γtve(T ) = γve(T )

In this subsection, we provide a constructive characterization of all trees T with
γtve(T ) = γve(T ). For this purpose, we define the family F of unlabeled trees T
that can be obtained from a sequence T1, T2, . . . , Tk (k ≥ 1) of trees such that
T1 ∈ {P6} and T = Tk. If k ≥ 2, then Ti+1 can be obtained recursively from Ti
by one of the following operations.

Operation T1: If u ∈ V (Ti) is a support vertex or a non-leaf vertex adjacent to
an end-support vertex, then T1 adds a new vertex x and an edge ux to obtain Ti+1.

Operation T2: If u ∈ V (Ti) has degree at least two and is adjacent to an end-
support vertex w, then T2 adds a path P2 = x2x1 and an edge ux2 to obtain Ti+1.

Operation T3: If u ∈ V (Ti) is a leaf of an induced path uvy3y2y1 such that
degTi

(y2) = degTi
(y3) = 2 and degTi

(y1) = 1, then T3 adds a path P2 = x2x1 and
joins u to x2 to obtain Ti+1.

Operation T4: If u ∈ V (Ti) and there is a path ux3x2x1 in Ti such that
degTi

(x2) = degTi
(x3) = 2 and degTi

(x1) = 1, then T4 adds a new vertex y
and an edge uy to obtain Ti+1.

Operation T5: If u ∈ W 2
Ti
∩W 3

Ti
, then T5 adds a path P6 = x6x5x4x3x2x1 and

joins u to x5 to obtain Ti+1.

Operation T6: If u ∈ W 4
Ti

is a leaf and its support vertex, say v, is adjacent
to the center vertex of a pendant star K1,s centered at x, then T6 adds a path
P3 = y3y2y1 and joins u to y3 to obtain Ti+1.

Operation T7: If u ∈ W 2
Ti
∩W 3

Ti
and there exists a vertex v ∈ NTi [u] such that

v ∈W 4
Ti

, then T7 adds a path P6 = x6x5x4x3x2x1 and an edge ux6 to obtain Ti+1.

Operation T8: If u ∈ V (Ti) such that NTi
(u) ∩W 4

Ti
6= ∅ and uy2y1 is a pendant

path in Ti, then T8 adds a path P3 = x3x2x1 and joins u to x3 to obtain Ti+1.

Operation T9: If u ∈ V (Ti), then T9 adds the graph H (see Figure 2) and joins
u to v to obtain Ti+1.
Operation T10: If u ∈ V (Ti) is adjacent to the vertex y4 of a path y6y5y4y3y2y1
such that degTi

(y4) = 3, degTi
(y6) = degTi

(y1) = 1, and degTi
(y5) = degTi

(y3) =
degTi

(y2) = 2, then T10 adds a path P6 = x6x5x4x3x2x1 and joins u to x4 to
obtain Ti+1.
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Operation T11: If u ∈ V (Ti) and there is a path y5y4uy3y2y1 in Ti such that
degTi

(y5) = degTi
(y1) = 1 and degTi

(y4) = degTi
(y3) = degTi

(y2) = 2, then T11
adds a path P2 = x2x1 and joins u to x2 to obtain Ti+1.

Operation T12: If u ∈ V (Ti) is adjacent to a support vertex of a pendant path
P6 and there exists a vertex v ∈ NTi [u] such that v ∈ W 4

Ti
, then T12 adds a new

vertex x and an edge ux to obtain Ti+1.

v w3

w2

w1

w4

w5

w6

Figure 2. The graph H with |Lv | ≥ 0 used in Operation T9.

The next result is an immediate consequence of Observation 2.11.

Lemma 4.2. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T1, then γtve(Ti+1) = γve(Ti+1).

Lemma 4.3. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T2, then γtve(Ti+1) = γve(Ti+1).

Proof. Clearly, any γtve(Ti)-set containing no leaves, contains u and so such a
set remains a total ve-dominating set of Ti+1, implying that γtve(Ti+1) ≤ γtve(Ti).
On the other hand, it is not hard to see that Ti+1 has a γve(Ti+1)-set D containing
u and not x2. Thus D ve-dominates E(Ti), yielding γve(Ti+1) ≥ γve(Ti). Now, by
Observation 2.8, we have γtve(Ti+1) = γve(Ti+1). �

Lemma 4.4. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T3, then γtve(Ti+1) = γve(Ti+1).

Proof. Let S be a γtve(Ti)-set containing no leaves. Clearly, |S ∩{v, y3, y2}| = 2
and the set (Sr{v, y3, y2})∪{u, v, y3} is a total ve-dominating set of Ti+1, implying
that γtve(Ti+1) ≤ γtve(Ti) + 1. On the other hand, it is not hard to see that Ti+1

has a γve(Ti+1)-set D containing u, y3, and so D r {u} is a ve-dominating set of
Ti, yielding γve(Ti+1) ≥ γve(Ti) + 1. Therefore, we conclude from Observation 2.8
that γtve(Ti+1) = γve(Ti+1). �

Lemma 4.5. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T4, then γtve(Ti+1) = γve(Ti+1).

Proof. Clearly, any γtve(Ti)-set containing no leaves, contains u, x3, and thus
remains a total ve-dominating set of Ti+1, implying that γtve(Ti+1) ≤ γtve(Ti).
Since every γve(Ti+1)-set that does not contain y is a ve-dominating set of Ti,
we have γve(Ti+1) ≥ γve(Ti). Now, by Observation 2.8, we obtain γtve(Ti+1) =
γve(Ti+1). �
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Lemma 4.6. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T5, then γtve(Ti+1) = γve(Ti+1).

Proof. Obviously, any γtve(Ti)-set can be extended to a total ve-dominating set
of Ti+1 by adding x3, x4, implying that γtve(Ti+1) ≤ γtve(Ti) + 2. Assume now
that D is a γve(Ti+1)-set containing no leaves. Without loss of generality, we may
assume that x3 ∈ D. If |D ∩ {xi | 1 ≤ i ≤ 6}| ≥ 2, then D r {xi | 1 ≤ i ≤ 6} is
an almost ve-dominating set of Ti with respect to u, and so γve(Ti)=γve(Ti;u)≤
γve(Ti+1)−2 because of u ∈ W 3

Ti
. Hence let |D ∩ {xi | 1 ≤ i ≤ 6}| = 1. To

ve-dominate the edge x5x6, we must have u ∈ D, and thus D r {x3} is a ve-
dominating set of Ti containing u. Since u ∈ W 2

Ti
, we deduce that γve(Ti+1) =

|D| ≥ γve(Ti) + 2. Now, by Observation 2.8, we have γtve(Ti+1) = γve(Ti+1). �

Lemma 4.7. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T6, then γtve(Ti+1) = γve(Ti+1).

Proof. Since u ∈ W 4
Ti

, let S be a γtve(Ti)-set containing u. Then S ∪ {y3} is a

total ve-dominating set of Ti+1, and thus γtve(Ti+1) ≤ γtve(Ti)+1. Now, let D be a
γve(Ti+1)-set containing no leaves. Clearly |D∩{v, x}| ≥ 1 and |D∩{y2, y3}| = 1.
Without loss of generality, we assume that v, y3 ∈ D. Then D r {y3} is a ve-
dominating set of Ti, implying that γve(Ti+1) ≥ γve(Ti) + 1. It follows from
Observation 2.8 that γtve(Ti+1) = γve(Ti+1). �

Lemma 4.8. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T7, then γtve(Ti+1) = γve(Ti+1).

Proof. Since there exists a vertex v ∈ NTi [u] with v ∈W 4
Ti

, let S be a γtve(Ti)-set
containing v. Then S ∪ {x3, x4} is a total ve-dominating set of Ti+1, and thus
γtve(Ti+1) ≤ γtve(Ti) + 2. On the other hand, let D be a γve(Ti+1)-set. To
ve-dominate the edges ux6, xixi−1 for 2 ≤ i ≤ 6, we must have |D∩{x1, x2, x3}| ≥
1 and |D ∩ {u, xi | 1 ≤ i ≤ 6}| ≥ 2. If D ∩ {x6, u} 6= ∅, then (D r {u, xi |
1 ≤ i ≤ 6}) ∪ {u} is a ve-dominating set of Ti containing u, implying that
γve(Ti+1) = |D| ≥ γve(Ti) + 2 (because of u ∈ W 2

Ti
). If D ∩ {x6, u} = ∅, then

Dr {xi | 1 ≤ i ≤ 6}) is a ve-dominating set of Ti, and so γve(Ti+1) ≥ γve(Ti) + 2.
Now, by Observation 2.8, we obtain γtve(Ti+1) = γve(Ti+1). �

Lemma 4.9. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T8, then γtve(Ti+1) = γve(Ti+1).

Proof. Clearly, any γtve(Ti)-set S containing no leaves, must contain u, and
so it can be extended to a total ve-dominating set of Ti+1 by adding y3, which
implies that γtve(Ti+1) ≤ γtve(Ti) + 1. On the other hand, for any γve(Ti+1)-set
D containing no leaves, we have |D ∩ {x2, x3}| = 1, and |D ∩ {u, y2}| = 1. Then
D r {x2, x3} is a ve-dominating set of Ti, yielding γve(Ti+1) ≥ γve(Ti) + 1. By
Observation 2.8, we have γtve(Ti+1) = γve(Ti+1). �

Lemma 4.10. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T9, then γtve(Ti+1) = γve(Ti+1).
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Proof. Clearly, any γtve(Ti)-set can be extended to a total ve-dominating set
of Ti+1 by adding w3, w4, and so γtve(Ti+1) ≤ γtve(Ti) + 2. On the other hand,
let D be a γve(Ti+1)-set D. Then we must have |D ∩ {w1, w2, w3}| ≥ 1, and
|D∩{w4, w5, w6}| ≥ 1. Without loss of generality, let w3, w4 ∈ D. If |D∩V (H)| ≥
3, then (DrV (H))∪{u} is a ve-dominating set of Ti and if |D∩V (H)| = 2, then
DrV (H) is a ve-dominating set of Ti of size γve(Ti+1)−2. In any case, γve(Ti+1) ≥
γve(Ti) + 2. It follows from Observation 2.8 that γtve(Ti+1) = γve(Ti+1). �

Lemma 4.11. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T10, then γtve(Ti+1) = γve(Ti+1).

Proof. Clearly, any γtve(Ti)-set can be extended to a total ve-dominating set of
Ti+1 by adding x3, x4, and so γtve(Ti+1) ≤ γtve(Ti) + 2. Now let D be a γve(Ti+1)-
set. Without loss of generality, we may assume that x3, x4, y3, y4 ∈ D. Then
D r {x3, x4} is a ve-dominating set of Ti, and so γve(Ti+1) ≥ γve(Ti) + 2. By
Observation 2.8, we obtain γtve(Ti+1) = γve(Ti+1). �

Lemma 4.12. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T11, then γtve(Ti+1) = γve(Ti+1).

Proof. Clearly, any γtve(Ti)-set D such that d(D, {y1, y5}) is as large as possible,
contains y3, u, and so it is a total ve-dominating set of Ti+1, yielding γtve(Ti+1) ≤
γtve(Ti). Since there is a γve(Ti+1)-set that does not contain neither x1 nor x2, such
a set is a ve-dominating set of Ti, and so γve(Ti+1) ≥ γve(Ti). By Observation 2.8,
we obtain γtve(Ti+1) = γve(Ti+1). �

Lemma 4.13. If Ti is a tree with γtve(Ti) = γve(Ti) and Ti+1 is a tree obtained
from Ti by Operation T12, then γtve(Ti+1) = γve(Ti+1).

Proof. Since there exists a vertex v ∈ NTi [u] with v ∈ W 4
Ti

, let S be a γtve(Ti)-

set containing v. Then S is a total ve-dominating set of Ti+1, and thus γtve(Ti+1) ≤
γtve(Ti). On the other hand, any γve(Ti+1)-set containing no leaf is a ve-dominating
set of Ti, implying that γve(Ti+1) ≥ γve(Ti). Now, by Observation 2.8, we obtain
γtve(Ti+1) = γve(Ti+1). �

Theorem 4.14. If T ∈ F , then γtve(T ) = γve(T ).

Proof. Let T ∈ F . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1)
such that T1 = P6, and if k ≥ 2, then Ti+1 can be obtained from Ti by one of
the aforementioned operations. We proceed by induction on the number of oper-
ations used to construct T . If k = 1, then T = P6 and clearly γtve(T ) = γve(T ).
Assume that the result holds for each tree of F which can be obtained from a
sequence of operations of length k − 1 and let T ′ = Tk−1. By the induction
hypothesis, γtve(T

′) = γve(T
′). Since T = Tk is obtained by one of the Opera-

tions Ti (i = 1, 2, . . . , 12) from T ′, we conclude from the Lemmas 4.2–4.13 that
γtve(T ) = γve(T ). �

Now we are ready to state the main theorem of this section.
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Theorem 4.15. Let T be a tree of order n ≥ 6. Then γtve(T ) = γve(T ) if and
only if T ∈ F .

Proof. According to Theorem 4.14, we need only to prove necessity. Let T
be a tree with γtve(T ) = γve(T ). By Observation 2.10, diam(T ) ≥ 5, and so
n ≥ 6. We proceed by induction on n. If n = 6, then T = P6 and clearly
T ∈ F . Let n ≥ 7 and let the result hold for every tree T ′ of order less than n,
satisfying γtve(T

′) = γve(T
′). Let T be a tree of order n with γtve(T ) = γve(T ).

Let v1v2 . . . vk (k ≥ 6) be a diametral path in T such that degT (v2) is as large as
possible. Among these paths, we choose a path such that degT (v3) is as large as
possible. Root T at vk. If degT (v2) ≥ 3, then let T ′ = T−v1. By Observation 2.11
and the induction hypothesis, we have T ′ ∈ F . It follows that T ∈ F since it can
be obtained from T ′ by Operation T1. Henceforth, we assume that degT (v2) = 2.
By the choice of diametrical path, we may assume that all end-support vertices
on diametrical paths have degree two. In particular, any child of v3 with depth 1
has degree 2.

First let degT (v3) ≥ 3. We distinguish the following two situations:

• v3 has a child y2 with depth 1 different from v2.
Let v3y2y1 be a pendant path in T , and let T ′ = T − Tv2 . Clearly, any
γtve(T )-set D containing no leaves, contains v3, and thus total ve-dominates
E(T ′), yielding γtve(T

′) ≤ γtve(T ). On the other hand, if S is a γve(T
′)-set

such that d(v1, S) is as large as possible, then clearly v3 ∈ S, and so S is
a ve-dominating set of T ′, implying that γve(T ) ≤ γve(T ′). It follows form
Observation 2.9 and the induction hypothesis T ′ ∈ F . Therefore, T ∈ F
because it is obtained from T ′ by Operation T2.

• All children of v3 but v2 are leaves.
Let x be a leaf adjacent to v3 and let T ′ = T −x. By Observation 2.11 and
the induction hypothesis, we have T ′ ∈ F . It follows that T ∈ F since it
can be obtained from T ′ by Operation T1.

From now on, we assume that degT (v3) = 2. Recall that by the choice of
the diametrical path, we may assume that all children of v4 with depth 2, have
degree two. Also, according to the above cases, we may assume that deg(vk−1) =
deg(vk−2) = 2. We consider the following cases:

Case 1. degT (v4) ≥ 3.
We distinguish the following subcases.

Subcase 1.1. v4 has a child z3 with depth 2, different from v3.
Let v4z3z2z1 be a pendant path in T and let T ′ = T − Tv2 . Assume that D is a
γtve(T )-set such that d(D, {v1, z1}) is maximum. Then clearly {v3, z3, v4} ⊆ D, and
so Dr{v3} is a total ve-dominating set of T ′, implying that γtve(T ) ≥ γtve(T ′)+1.
On the other hand, any γve(T

′)-set can be extended to a ve-dominating set of T ′

by adding v2, yielding γve(T ) ≤ γve(T ′) + 1. We deduce from Observation 2.9 and
the induction hypothesis that T ′ ∈ F . Therefore, T ∈ F since it is obtained from
T ′ by Operation T3.
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Subcase 1.2. v4 has a child y2 with depth 1 and degree at least 3.
Let x be a leaf adjacent to y2 and let T ′ = T − x. By Observation 2.11 and the
induction hypothesis, we have T ′ ∈ F . It follows that T ∈ F because it is obtained
from T ′ by Operation T1.

Subcase 1.3. v4 has a child with depth 0.
Let y be a leaf adjacent to v4 and let T ′ = T − y. If D is a γtve(T )-set such
that d(D, v1) is maximum, then clearly {v3, v4} ⊆ D. Hence D is a total ve-
dominating set of T ′, yielding γtve(T ) ≥ γtve(T

′). On the other hand, if S is a
γve(T

′)-set such that d(S, v1) is maximum, then v3 ∈ S, and thus S ve-dominates
E(T ). Hence γve(T ) ≤ γve(T

′). By Observation 2.9 and the induction hypothesis
we have T ′ ∈ F . Therefore, T ∈ F because it is obtained from T ′ by Operation T4.

Subcase 1.4. degT (v4) ≥ 4 and any child of v4 is of depth 1 and degree 2.
Let v4y2y1 and v4z2z1 be two pendant paths in T and let T ′ = T−{z2, z1}. Clearly,
any γve(T

′)-set D such that d(D, {y1, v1}) is as large as possible, contains v3, v4,
and so D ve-dominates E(T ), yielding γve(T ) ≤ γve(T ′). On the other hand, any
γtve(T )-set D such that d(D, {y1, v1}) is as large as possible, contains v3, v4, and
so it is a total ve-dominating set of T ′, yielding γtve(T ) ≥ γtve(T ′). By Observation
2.9 and the induction hypothesis, we have T ′ ∈ F . It follows that T ∈ F since it
can be obtained from T ′ by Operation T11.

Subcase 1.5. degT (v4) = 3 and v4 has exactly one child with depth 1 and de-
gree 2.
Let v4y2y1 be a pendant path in T . We distinguish the following.

(a) v5 is a support vertex or degT (v5) = 2.
Assume that D is a γtve(T )-set. Clearly {v3, v4} ⊆ D. Suppose first that v5 ∈ D,
and let T ′ = T−Tv3 . Clearly, Dr{v3} is a total ve-dominating set of T ′, implying
that γtve(T ) ≥ γtve(T ′)+1. On the other hand, if S is a γve(T

′)-set, then S∪{v3} is
a ve-dominating set of T, implying that γve(T ) ≤ γve(T ′) + 1. By Observation 2.9
and the induction hypothesis, we obtain T ′ ∈ F , where D r {v3} is γtve(T

′)-set
containing v5, that is, v5 ∈ W 4

T ′ . It follows that T ∈ F since it can be obtained
from T ′ by Operation T8. Suppose now that v5 6∈ D, and let T ′ = T − Tv5 . Note
that, we can assume that v5 has no child with depth 1 or 2 for otherwise v5 belongs
to some γtve(T )-set, and such a case was already considered. Moreover, if v5 has
a child with depth 3, then this situation is considered more generally in items (c)
and (d). Hence we can assume that every child of v5 besides v4 (if any) is a leaf.
Also we note that if k = 6, then T is isomorphic to H that belongs to F (it can be
obtained from T1 by using Operation T2 and possibly Operation T1) . Hence we
assume that T ′ is nontrivial. Obviously, D r {v3, v4} is a total ve-dominating set
of T ′, yielding γtve(T ) ≥ γtve(T

′) + 2. Also, if S is a γve(T
′)-set, then S ∪ {v3, v4}

is a ve-dominating set of T, implying that γve(T ) ≤ γve(T
′) + 2. By Observation

2.9 and the induction hypothesis, we have T ′ ∈ F . Therefore, T ∈ F since it can
be obtained from T ′ by Operation T9.

(b) degT (v5) ≥ 3 and v5 has a child with depth 1 or 2.
Let T ′ = T − Tv3 . It is not hard to see that γtve(T ) ≥ γtve(T

′) + 1, γve(T ) ≤
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γve(T
′) + 1, and v5 belongs to some γtve(T

′)-set. We deduce from Observation 2.9
and the induction hypothesis that T ′ ∈ F , where v5 ∈ W 4

T ′ . Therefore, T ∈ F
since it can be obtained from T ′ by Operation T8.

(c) degT (v5) ≥ 3 and v5 has a child y4 with depth 3 and degree at least 3.
Let v5y4y3y2y1 be a path in T . Then vk . . . v5y4y3y2y1 is a diametral path in T and
by the assumption, we have deg(y2) = deg(y3) = 2. Also, according to the above
cases and subcases above, we have Ty4 is isomorphic to Tv4 . Let T ′ = T − Tv4 .
Clearly for every γtve(T )-set D containing v3, v4, y3, y4, we have D r {v3, v4} is a
total ve-dominating set of T ′, yielding γtve(T ) ≥ γtve(T ′)+2. Also, if S is a γve(T

′)-
set, then S ∪ {v3, v4} is a ve-dominating set of T , and so γve(T ) ≤ γve(T ′) + 2. It
follows from Observation 2.9 and the induction hypothesis that T ′ ∈ F . Therefore,
T ∈ F because it can be obtained from T ′ by Operation T10.

(d) degT (v5) ≥ 3 and all children of v5 of depth 3, but v4 have degree two.
Note that v5 can be a support vertex. Let T ′ = T − Tv5 . It is easy to see that
γtve(T ) ≥ γtve(T ′) + 2 degT (v5)− 2 and γve(T ) ≤ γve(T ′) + degT (v5). This leads to
γve(T ) ≤ γtve(T )− degT (v5) + 2 < γtve(T ), a contradiction.

Case 2. degT (v4) = 2.
Considering the arguments above, we may assume that for any diametrical path
z1z2 . . . zk in T , degT (zi) = 2 for all i ∈ {2, 3, 4, k − 1, k − 2, k − 3}. Since n ≥ 7,
it follows that diam(T ) ≥ 6. Consider the following subcases:

Subcase 2.1. v5 has at least two children with depth 0.
Let {x, y} ⊆ Lv5 and let T ′ = T − x. By Observation 2.11, we have γtve(T

′) =
γve(T

′), and by the induction hypothesis, T ′ ∈ F . Therefore, T ∈ F because it
can be obtained from T ′ by Operation T1.

Subcase 2.2. v5 has a child with depth 1.
Let T ′ = T − Tv3 . Clearly, v3, v4, v5 belong to any γtve(T )-set, and so γtve(T ) ≥
γtve(T

′) + 1. Also, if S is a γve(T
′)-set, then S ∪ {v3} is a ve-dominating set of T,

and thus γve(T ) ≤ γve(T ′) + 1. It follows from Observation 2.9 and the induction
hypothesis that T ′ ∈ F , where in particular, v4 ∈ W 4

T ′ (since it has a child with
depth 1). It follows that T ∈ F since it can be obtained from T ′ by Operation T6.

Subcase 2.3. v5 has a child y3 with depth 2.
Let v5y3y2y1 be a path in T and let T ′ = T − Tv4 . Clearly, γve(T ) ≤ γve(T ′) + 1.
Also if D is a γtve(T )-set containing no leaves, then D must contain v3, v4, y3, v5,
and so Dr{v3, v4} is a total ve-dominating set of T ′. Hence γtve(T ) ≥ γtve(T ′)+2,
and thus

γve(T ) = γtve(T ) ≥ γtve(T ′) + 2 ≥ γve(T ′) + 2 ≥ γve(T ) + 1,

a contradiction.

Subcase 2.4. v5 has a child z4 with depth 3.
Let v5z4z3z2z1 be a path in T and let T ′ = T − Tv4 . According to cases above,
degT (zi) = 2 for i ∈ {2, 3, 4}. Now, if D is a γtve(T )-set such that d(D, {v1, z1})
is as large as possible, then {v3, z3, v4, z4} ⊆ D, and so D r {v3, v4} is a total
ve-dominating set of T ′, yielding γtve(T ) ≥ γtve(T

′) + 2. Also, it is easy to see
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that γve(T ) ≤ γve(T
′) + 1. These two inequalities lead to a contradiction as in

Subcase 2.3.

Subcase 2.5. degT (v5) = 3 and v5 has one child w with depth 0.
• v6 is a support vertex.
Let z ∈ Lv6 and let T ′ = T − z. If D is a γtve(T )-set containing no leaves, then
clearly D contains a vertex NT [v6], and so D remains a total ve-dominating set
of T ′. Hence γtve(T ) ≥ γtve(T ′). Also, since there exists a γve(T

′)-set S containing
at least one vertex of NT ′ [v6], we have γve(T ) ≤ γve(T

′). By Observation 2.9,
γve(T

′) = γtve(T
′), where some vertex of NT ′ [v6] belongs to W 4

T ′ . It follows from
the induction hypothesis that T ′ ∈ F . It follows that T ∈ F since it can be
obtained from T ′ by Operation T12.
• v6 is not a support vertex.
Let T ′ = T −Tv5 . Assume that D is a γtve(T )-set. Clearly {v3, v4} ⊆ D. If v5 6∈ D,
then D r {v3, v4} is a total ve-dominating set of T ′, and so γtve(T ) ≥ γtve(T ′) + 2.
If v5 ∈ D and v6 ∈ D, then (D r {v3, v4, v5}) ∪ {v7} is a total ve-dominating
set of T ′. If v5 ∈ D and v6 6∈ D, then NT ′ [v7] 6∈ D, for otherwise D r {v5} is a
total ve-dominating set of T with cardinality less than |D|, a contradiction. Hence
D∩ (N(v8)−{v7)) 6= ∅ to total ve-dominate edge v7v8, and thus (Dr{v5})∪{v8}
is a total ve-dominating set of T ′. In any case, we have γtve(T ) ≥ γtve(T ′) + 2.

Now let S be a γve(T
′)-set. If v6 ∈ S, then S ∪ {v3} is a ve-dominating set of

T , and thus γve(T ) ≤ γve(T ′) + 1. Hence

γve(T ) = γtve(T ) ≥ γtve(T ′) + 2 ≥ γve(T ′) + 2 ≥ γve(T ) + 1,

a contradiction. Hence v6 6∈ S, and more gererally, v6 ∈W 2
T ′ . Thus S∪{v3, v5} is a

ve-dominating set of T, implying that γve(T ) ≤ γve(T ′)+2. By Observation 2.9, we
have γve(T

′) = γtve(T
′), and thus γtve(T ) = γtve(T

′)+2 and γve(T ) = γve(T
′)+2. It

follows from the induction hypothesis that T ′ ∈ F . We prove now that v6 ∈W 3
T ′ .

Suppose, to the contrary, that v6 6∈ W 3
T ′ and let S′ be an almost ve-dominating

set of T ′ with respect to v6 of cardinality at most γve(T
′)− 1. Hence S′ ∪ {v3, v5}

is a ve-dominating set of T , and so γve(T ) ≤ γve(T
′; v6) + 2 ≤ γve(T

′) + 1, a
contradiction. Therefore, v6 ∈W 3

T ′ , and so v6 ∈W 2
T ′ ∩W 3

T ′ . It follows that T ∈ F
since it can be obtained from T ′ by Operation T5.

Subcase 2.6. deg(v5) = 2.
According to the previous cases above, we may assume that for any diametrical
path z1z2 . . . zk in T , deg(zi) = 2 for every i ∈ {2, 3, 4, 5, zk−4, zk−3, zk−2, zk−1}.
We distinguish the following subcases:

(i) v6 has a child y2 with depth 1 or a child y3 with depth 2 or a child y4 with
depth 3.
Let v6yixi−1 . . . x1 be a path in T, where i ∈ {2, 3, 4}, and let T ′ = T−Tv4 . Clearly,
γve(T ) ≤ γve(T

′) + 1. If D is a γtve(T )-set such that d(D,x1) is maximum, then
v3, v4 ∈ D and D∩{v6, yi} 6= ∅. Hence Dr{v3, v4} is a total ve-dominating set of
T ′, and so γtve(T ) ≥ γtve(T ′) + 2. This leads to a contradiction as in Subcase 2.3.

(ii) v6 has a child z5 with depth 4, different from v5.
Let v6z5z4z3z2z1 be a pendant path in T and let T ′ = T − Tv5 . Since there is
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a γtve(T )-set D containing v3, z3, v4, z4, D r {v3, v4} is a total ve-dominating set
of T ′, implying that γtve(T ) ≥ γtve(T

′) + 2. Also, since there is a γve(T
′)-set S

that contains a vertex of NT ′ [v6] (because of the edge z5v6), then S ∪ {v3} is a
ve-dominating set of T, and so γve(T ) ≤ γve(T ′) + 1. As in Subcase 2.3, this leads
to a contradiction.

(iii) deg(v6) ≥ 3 and any child of v6 is of depth 0.
Let T ′ = T − Tv4 . Then γve(T ) ≤ γve(T

′) + 1. Let D be a γtve(T )-set such
that d(v1, D) is maximum. Then {v3, v4} ⊆ D. If v5 6∈ D or v5, v6 ∈ D, then
D r {v3, v4} is a total ve-dominating set of T ′, and hence γtve(T ) ≥ γtve(T

′) + 2.
This situation leads to a contradiction as above. Hence assume that v5 ∈ D and
v6 6∈ D. Let T ′′ = T − Tv6 . Then D − {v3, v4, v5} is a total ve-dominating set of
T ′′, and so γtve(T ) ≥ γtve(T ′′)+3. Also, it is easy to see that γve(T ) ≤ γve(T ′′)+2,
which leads to a contradiction as above.

(iv) degT (v6) = 2.
Since γtve(T ) = γve(T ), we have diam(T ) ≥ 7. Let T ′ = T − Tv6 . Then γve(T ) ≤
γve(T

′)+2. LetD be a γtve(T )-set such that d(D, v1) is maximum. Then v3, v4 ∈ D.
If v5 ∈ D and v6 6∈ D, then D r {v3, v4, v5} is a total ve-dominating set of
T ′, yielding γtve(T ) ≥ γtve(T

′) + 3, and this leads to a contradiction as above.
If v5, v6 6∈ D, then D contains a vertex of NT ′ [v7], and thus D − {v3, v4} is a
total ve-dominating set of T ′, and so γtve(T ) ≥ γtve(T

′) + 2. If v5, v6 ∈ D, then
(Dr {v3, v4, v5, v6})∪ {v7, v8} is a total ve-dominating set of T ′, and so γtve(T ) ≥
γtve(T

′) + 2. If v5 6∈ D and v6 ∈ D, then v7 ∈ D, and so (D r {v3, v4, v6}) ∪ {v8}
is a total ve-dominating set of T ′, yielding γtve(T ) ≥ γtve(T ′) + 2. By Observation
2.9, we obtain γtve(T

′) = γve(T
′), implying also γtve(T ) = γtve(T

′)+2 and γve(T ) =
γve(T

′) + 2. By the induction hypothesis, T ′ ∈ T . Next we show that v7 ∈
W 2

T ′ ∩ W 3
T ′ . If v7 6∈ W 2

T ′ , then any γve(T
′)-set containing v7 can be extended

to a ve-dominating set of T by adding v3, which leads to a contradiction (since
γve(T ) = γve(T

′) + 2). If v7 6∈W 3
T ′ , then any almost total ve-dominating set of T ′

of weight less than γve(T
′) can be extended to a ve-dominating set of T by adding

v3, v6, which leads to a contradiction too. Hence v7 ∈ W 2
T ′ ∩W 3

T ′ . Note that any
total ve-dominating set of T ′ defined above, contains a vertex of NT ′ [v7] and is a
γtve(T

′)-set, that is NT ′ [v7] ∩W 4
T ′ 6= ∅. Therefore, T ∈ F since it can be obtained

from T ′ by Operation T7.
This completes the proof. �
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