TOTAL VERTEX-EDGE DOMINATION IN TREES

H. ABDOLLAHZADEH AHANGAR, M. CHELLALI, S. M. SHEIKHOLESLAMI, M. SOROUDI and L. VOLKMANN

ABSTRACT. A subset $S \subseteq V$ is a dominating set of G if every vertex in $V \setminus S$ has a neighbor in S, and it is a total dominating set if every vertex in V has a neighbor in S. The total domination number of G, $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. A vertex v of a graph G is said to ve-dominate every edge incident to v, as well as every edge adjacent to these incident edges. A set $S \subseteq V$ is a vertex-edge dominating set (or simply, a ve-dominating set) if every edge of E is ve-dominated by at least one vertex of S. A total ve-dominating set of G is a ve-dominating set whose induced subgraph has no isolated vertex. The vertex-edge domination number $\gamma_{ve}(G)$ is the minimum cardinality of a total vedominating set and the total vertex-edge domination number $\gamma_{ve}^t(G)$ is the minimum cardinality of a total ve-dominating set in G. In this paper, we characterize all trees T with $\gamma_{ve}^t(T) = \gamma_t(T)$ or $\gamma_{ve}^t(T) = \gamma_{ve}(T)$, answering two open problems posed in [Boutrig R. and Chellali M., Total vertex-edge domination, Int. J. Comput. Math. **95** (2018), 1820–1828]. Moreover, we show that it is NP-hard to decide whether $\gamma_{ve}^t(G) = \gamma_{ve}(G)$ for a given connected $(K_4 - e)$ -free graph G.

1. INTRODUCTION

In this paper, G is a simple nontrivial connected graph with vertex set V = V(G)and edge set E = E(G). The order |V| of G is denoted by n = n(G). For a vertex $v \in V$, the open neighborhood of v is the set $N(v) = \{u \in V : uv \in E\}$, the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$, and the degree of v is $\deg_G(v) = |N(v)|$. A vertex of degree one is called a pendant vertex or a leaf and its neighbor is called a support vertex. A strong support vertex is a support vertex adjacent to at least two leaves and an end support vertex is a support vertex having at most one non-leaf neighbor. A pendant path P in G is an induced path such that one of the endpoints has degree one in G, and its other endpoint is the only vertex of P adjacent to some vertex in G - P. The distance between two vertices u and v in a connected graph G is the length of a shortest uv-path in G.

Received August 1, 2019; revised July 19, 2020.

²⁰²⁰ Mathematics Subject Classification. Primary 05C69, 05C05.

Key words and phrases. Vertex-edge dominating set; total vertex-edge dominating set; total vertex-edge domination number.

H. Abdollahzadeh Ahangar was supported by the Babol Noshirvani University of Technology under research Grant Number BNUT/385001/99.

The diameter of G, denoted by diam(G), is the maximum value among minimum distances between all pairs of vertices of G. For a vertex v in a rooted tree T, let C(v) and D(v) denote the set of children and descendants of v, respectively, and let $D[v] = D(v) \cup \{v\}$. Also, the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . We write P_n for the path of order n. A double star $DS_{p,q}$ is a tree obtained from $K_{1,p}$ and $K_{1,q}$ by connecting the center of $K_{1,p}$ with that of $K_{1,q}$. If $A \subseteq V(G)$ and f is a mapping from V(G) into some set of numbers, then $f(A) = \sum_{x \in A} f(x)$ and the sum f(V(G)) is called the weight $\omega(f)$ of f.

A subset $S \subseteq V$ is a *dominating set* of G if every vertex in $V \setminus S$ is adjacent to a vertex in S, and it is a *total dominating set* (**TDS**) if every vertex in Vis adjacent to a vertex in S. The *total domination number*, $\gamma_t(G)$ of G, is the minimum cardinality of a total dominating set of G. A total dominating set of Gwith minimum cardinality is called a $\gamma_t(G)$ -set. Total domination was introduced by Cockayne, Daws, and Hedetniemi [6]. The reader is referred to Henning and Yeo's book [7] for more details on total domination. In additional, we refer to [1, 2, 3].

A vertex v ve-dominates every edge incident to any vertex in N[v]. A set $S \subseteq V$ is a vertex-edge dominating set (or simply, a ve-dominating set), if for every edge $e \in E$, there exists a vertex $v \in S$ that ve-dominates e. The vertex-edge domination number, $\gamma_{ve}(G)$ of G, is the minimum cardinality of a ve-dominating set of G. Vertex-edge domination was introduced by Peters [12] in his 1986 PhD thesis, and studied further in [5, 8, 9, 10, 11]. It is worth noting that Lewis showed that the decision problem corresponding to the problem of computing $\gamma_{ve}(G)$ is NP-complete for bipartite graphs, and it is linearly solvable for trees.

A total ve-dominating set (or simply, total ve-dominating set) of G is a ve-dominating set whose induced subgraph has no isolated vertex. The total vertex-edge domination number $\gamma_{ve}^t(G)$ is the minimum cardinality of a total ve-dominating set of G. The concept of total vertex-edge domination in graphs was introduced by Boutrig and Chellali in [4], who showed that the decision problem corresponding to the problem of computing $\gamma_{ve}^t(G)$ is NP-complete for bipartite graphs. They also observed that for any nontrivial connected graph G,

(1)
$$\gamma_{ve}(G) \le \gamma_{ve}^t(G) \le \gamma_t(G)$$

Moreover, they posed the following open problems.

Problem 1. Characterize the nontrivial connected graphs G with $\gamma_{ve}^t(G) = \gamma_t(G)$.

Problem 2. Characterize the nontrivial connected graphs G with $\gamma_{ve}^t(G) = \gamma_{ve}(G)$.

In this paper, we settle the above problems for trees by providing a characterization of all trees T with $\gamma_{ve}^t(T) = \gamma_t(T)$ or $\gamma_{ve}^t(T) = \gamma_{ve}(T)$. Moreover, we show that it is NP-hard to decide whether $\gamma_{ve}^t(G) = \gamma_{ve}(G)$ for a given connected $(K_4 - e)$ -free graph G.

2. Preliminaries

In this section, we provide some definitions and observations that are useful throughout the paper.

Definition 2.1. Let u be a vertex of a graph G. A subset S of vertices is said to be an *almost total ve-dominating set* with respect to u if the conditions: (i) any edge not incident to u is *ve*-dominated by a vertex in S, (ii) every vertex in $S \setminus \{u\}$ is adjacent to a vertex in S, are fulfilled. Define

 $\gamma_{ve}^t(G; u) = \min\{|S|. S \text{ is an almost total } ve\text{-dominating set with respect to } u\}.$

Clearly, any total ve-dominating set in G is an almost total ve-dominating set with respect to any vertex of G. Hence $\gamma_{ve}^t(G; u)$ is well defined, and thus $\gamma_{ve}^t(G; u) \leq \gamma_{ve}^t(G)$ for each $u \in V(G)$. Define

$$W_{G}^{1} = \{ u \in V \mid \gamma_{ve}^{t}(G; u) = \gamma_{ve}^{t}(G) \}.$$

Definition 2.2. For a graph G, define

 $W_G^2 = \{ v \in V \mid v \text{ belongs to no } \gamma_{ve}(G) \text{-set} \}.$

Definition 2.3. Let u be a vertex of a graph G. A subset $S \subseteq V$ is said to be an *almost ve-dominating set* with respect to u, if any edge not incident to u is *ve*-dominated by a vertex in S. Suppose

 $\gamma_{ve}(G; u) = \min\{|S|; S \text{ is an almost } ve \text{-dominating set with respect to } u\}.$

Since any ve-dominating set on G is an almost ve-dominating set with respect to any vertex of G, $\gamma_{ve}(G; u)$ is well defined and thus $\gamma_{ve}(G; u) \leq \gamma_{ve}(G)$ for each $u \in V$. Let

$$W_G^3 = \{ u \in V \mid \gamma_{ve}(G; u) = \gamma_{ve}(G) \}.$$

Definition 2.4. For a graph G, define

 $W_G^4 = \{ v \in V \mid v \text{ belongs to some } \gamma_{ve}^t(G) \text{-set} \}.$

Proposition 2.5. Let G be a nontrivial connected graph and let u be a vertex of G. If G' is the graph obtained from G by adding a path $P_4 = x_1x_2x_3x_4$ and joining u to x_1 , then $\gamma_t(G') = \gamma_t(G) + 2$ and $\gamma_{ve}^t(G') \leq \gamma_{ve}^t(G) + 2$.

Proof. Clearly, any $\gamma_t(G)$ -set can be extended to a TDS of G' by adding x_2, x_3 , and so $\gamma_t(G') \leq \gamma_t(G) + 2$. To prove the inverse inequality, let $v \in N_G(u)$ and D be a $\gamma_t(G')$ -set containing no leaves. Then $x_2, x_3 \in D$ and $D \cap N_G[v] \neq \emptyset$. If $x_1 \notin D$, then $D \smallsetminus \{x_2, x_3\}$ is a TDS of G, yielding $\gamma_t(G') \geq \gamma_t(G) + 2$. Hence assume that $x_1 \in D$. Then $(D \smallsetminus \{x_1, x_2, x_3\}) \cup \{u\}$ when $v \in D$, or $(D \smallsetminus \{x_1, x_2, x_3\}) \cup \{v\}$ when $v \notin D$, is a TDS of G, implying that $\gamma_t(G') \geq \gamma_t(G) + 2$. Hence $\gamma_t(G') = \gamma_t(G) + 2$.

Also, any $\gamma_{ve}^t(G)$ -set can be extended to a total *ve*-dominating set of G' by adding x_2, x_3 , and this implies that $\gamma_{ve}^t(G') \leq \gamma_{ve}^t(G) + 2$.

Observation 2.6. Let H be a subgraph of a graph G. If $\gamma_{ve}^t(H) = \gamma_t(H)$, $\gamma_t(G) \leq \gamma_t(H) + s$, and $\gamma_{ve}^t(G) \geq \gamma_{ve}^t(H) + s$ for some non-negative integer s, then $\gamma_{ve}^t(G) = \gamma_t(G)$.

Proof. We deduce from the assumptions that

$$\gamma_{ve}^t(G) \ge \gamma_{ve}^t(H) + s \ge \gamma_{ve}^t(H) + s \ge \gamma_t(G)$$

which leads to the desired result by (1).

Observation 2.7. Let H be a subgraph of a graph G. If $\gamma_{ve}^t(G) = \gamma_t(G)$, $\gamma_{ve}^t(G) \leq \gamma_{ve}^t(H) + s$, and $\gamma_t(G) \geq \gamma_t(H) + s$ for some non-negative integer s, then $\gamma_{ve}^t(H) = \gamma_t(H)$.

Proof. By inequality (1) and the assumptions, we have

$$\gamma_t(G) = \gamma_{ve}^t(G) \le \gamma_{ve}^t(H) + s \le \gamma_t(H) + s \le \gamma_t(G).$$

Thus all inequalities in the above chain must be equalities. In particular, $\gamma_{ve}^t(H) = \gamma_t(H)$.

Observation 2.8. Let H be a subgraph of a graph G. If $\gamma_{ve}^t(H) = \gamma_{ve}(H)$, $\gamma_{ve}^t(G) \leq \gamma_{ve}^t(H) + s$, and $\gamma_{ve}(G) \geq \gamma_{ve}(H) + s$ for some non-negative integer s, then $\gamma_{ve}^t(G) = \gamma_{ve}(G)$.

Proof. We deduce from the assumptions that

$$\gamma_{ve}(G) \ge \gamma_{ve}(H) + s = \gamma_{ve}^t(H) + s \ge \gamma_{ve}^t(G)$$

which leads to the result by (1).

Observation 2.9. Let H be a subgraph of a graph G. If $\gamma_{ve}^t(G) = \gamma_{ve}(G)$, $\gamma_{ve}(G) \leq \gamma_{ve}(H) + s$, and $\gamma_{ve}^t(G) \geq \gamma_{ve}^t(H) + s$ for some non-negative integer s, then $\gamma_{ve}^t(H) = \gamma_{ve}(H)$.

Proof. By the assumptions and inequality (1), we have

$$\gamma_{ve}^t(G) = \gamma_{ve}(G) \le \gamma_{ve}(H) + s \le \gamma_{ve}^t(H) + s \le \gamma_{ve}^t(G).$$

Thus all inequalities occurring in the above chain, must be equalities. In particular, $\gamma_{ve}^t(H) = \gamma_{ve}(H)$.

We close this section with two simple observations.

Observation 2.10. If T is a nontrivial tree with diameter at most 4, then $\gamma_{ve}(T) = 1$ and $\gamma_{ve}^t(T) = 2$.

Observation 2.11. Let G be a graph and $u \in V(G)$ a support vertex or a non-leaf vertex adjacent to an end-support vertex. If G' is the graph obtained from G by adding a vertex v attached to u, then $\gamma_{ve}^t(G) = \gamma_{ve}^t(G')$, $\gamma_{ve}(G) = \gamma_{ve}(G')$, and $\gamma_t(G) = \gamma_t(G')$.

130

Proof. If G' is a star, then the results are immediate. Suppose G' is not a star. Clearly, any $\gamma_t(G)$ -set (resp., $\gamma_t(G')$ -set) containing no leaves, contains u, and so is a TDS of G' (resp., G) yielding $\gamma_t(G') \leq \gamma_t(G)$ (resp., $\gamma_t(G) \leq \gamma_t(G')$). Hence $\gamma_t(G') = \gamma_t(G)$.

Assume now that D is a $\gamma_{ve}^t(G')$ -set containing no leaves. Then $u \in D$ if u is adjacent to an end-support vertex, and $D \cap N[u] \neq \emptyset$ when u is a support vertex. In both cases, D is clearly a total ve-dominating set of G, implying that $\gamma_{ve}^t(G') \geq \gamma_{ve}^t(G)$. On the other hand, any $\gamma_{ve}^t(G)$ -set is a total ve-dominating set of G', and so $\gamma_{ve}^t(G') \leq \gamma_{ve}^t(G)$. Hence $\gamma_{ve}^t(G') = \gamma_{ve}^t(G)$. Similarly, we can see that $\gamma_{ve}(G') = \gamma_{ve}(G)$.

3. TREES T WITH $\gamma_{ve}^t(T) = \gamma_t(T)$

In this section, we provide a constructive characterization of all trees T with $\gamma_{ve}^t(T) = \gamma_t(T)$. For this purpose, we define the family \mathcal{T} of unlabeled trees T that can be obtained from a sequence T_1, T_2, \ldots, T_k $(k \ge 1)$ of trees such that $T_1 \in \{P_2, P_3, P_4\}$ and $T = T_k$. If $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of the following operations.

Operation \mathcal{O}_1 : If $u \in V(T_i)$ is a support vertex or a non-leaf vertex adjacent to an end-support vertex, then \mathcal{O}_1 adds a new vertex x and an edge ux to obtain T_{i+1} . **Operation** \mathcal{O}_2 : If $u \in W_{T_i}^1$, then \mathcal{O}_2 adds a path $P_4 = x_4 x_3 x_2 x_1$ and an edge ux_1 to obtain T_{i+1} .

The next lemma is an immediate consequence of Observation 2.11.

Lemma 3.1. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_t(T_{i+1})$.

Lemma 3.2. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_t(T_{i+1})$.

Proof. By Proposition 2.5, we have $\gamma_t(T_{i+1}) = \gamma_t(T_i) + 2$. Assume next that D is a $\gamma_{ve}^t(T_{i+1})$ -set such that $d(x_4, D)$ is as large as possible. Clearly, $x_1, x_2 \in D$, and thus $D \setminus \{x_1, x_2\}$ is an almost total ve-dominating set of T_i . We deduce from the assumption $u \in W_{T_i}^1$ that $\gamma_{ve}^t(T_{i+1}) \geq \gamma_{ve}^t(T_i; u) + 2 = \gamma_{ve}^t(T_i) + 2$. By Observation 2.6, we obtain $\gamma_{ve}^t(T_{i+1}) = \gamma_t(T_{i+1})$.

Theorem 3.3. If $T \in \mathcal{T}$, then $\gamma_{ve}^t(T) = \gamma_t(T)$.

Proof. Let $T \in \mathcal{T}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \geq 1)$ such that $T_1 \in \{P_2, P_3, P_4\}$, and if $k \geq 2$, then T_{i+1} can be obtained from T_i by one of the aforementioned operations. We proceed by induction on the number of operations used to construct T. If k = 1, then $T \in \{P_2, P_3, P_4\}$ and clearly $\gamma_{ve}^t(T) = \gamma_t(T)$. Assume that the result holds for each tree of \mathcal{T} which can be obtained from a sequence of operations of length k - 1 and let $T' = T_{k-1}$. By the induction hypothesis, $\gamma_{ve}^t(T') = \gamma_t(T')$. Since $T = T_k$ is obtained from T' by Operation \mathcal{O}_1 or \mathcal{O}_2 , we conclude from Lemmas 3.1 and 3.2 that $\gamma_{ve}^t(T) = \gamma_t(T)$.

H. ABDOLLAHZADEH AHANGAR ET AL.

Now we are ready to state the main theorem of this section.

Theorem 3.4. Let T be a tree of order $n \ge 2$. Then $\gamma_{ve}^t(T) = \gamma_t(T)$ if and only if $T \in \mathcal{T}$.

Proof. According to Theorem 3.3, we need only to prove necessity. We proceed by induction on n. If $n \leq 3$, then $T \in \{P_2, P_3\}$ and clearly $T \in \mathcal{T}$. Let $n \geq 4$ and let the result hold for every tree T' of order less than n, satisfying $\gamma_{ve}^t(T') = \gamma_t(T')$. Let T be a tree of order n with $\gamma_{ve}^t(T) = \gamma_t(T)$. If diam(T) = 2, then T is a star that can be obtained from P_3 by using Operation \mathcal{O}_1 , and so $T \in \mathcal{T}$. If diam(T) =3, then T is a double star $DS_{p,q}$, $(q \geq p \geq 1)$ and we have $\gamma_{ve}^t(T) = \gamma_t(T)$. If q = 1, then $T = P_4 \in \mathcal{T}$, while if q > 1, then T can be obtained from P_4 by frequently use of \mathcal{O}_1 , and thus $T \in \mathcal{T}$. Henceforth, we assume that diam $(T) \geq 4$.

If any support vertex, say x, of T is adjacent to two or more leaves, then let T' be the tree obtained from T by removing a leaf adjacent to x. By Observation 2.11 and the induction hypothesis, we have $T' \in \mathcal{T}$. Now T can be obtained from T' by operation \mathcal{O}_1 , and so $T \in \mathcal{T}$. Henceforth, we assume that T has no strong support vertex.

Let $v_1v_2...v_k$ $(k \ge 5)$ be a diametrical path in T. Root T at v_k . Clearly, $\deg_T(v_2) = \deg_T(v_{k-1}) = 2$. Let D be a $\gamma_t(T)$ -set containing no leaves. Clearly, such a set D exists since diam $(T) \ge 4$. Moreover, D contains all support vertices of T. Hence $\{v_2, v_3\} \subseteq D$. We claim that v_4 does not belong to D. Indeed, if $v_4 \in D$, then $D - \{v_2\}$ is a total ve-dominating set of T of size $\gamma_t(T) - 1$, a contradiction. Therefore $v_4 \notin D$. In the following, we consider the following cases.

<u>Case 1.</u> deg_T(v_3) ≥ 3 .

We claim that v_3 has no children with depth 1 different from v_2 . Suppose, to the contrary, that y_2 is a child of v_3 with depth 1 and let $v_3y_2y_1$ be a pendant path in T. Let $T' = T - T_{v_2}$. Then $\{v_2, v_3, y_2\} \subseteq D$, and the set $D \setminus \{v_2\}$ is a TDS of T', implying that $\gamma_t(T) \ge \gamma_t(T') + 1$. Suppose now that S is a $\gamma_{ve}^t(T')$ -set containing no leaves. Then clearly $v_3 \in S$, and so the set S is also a total ve-dominating set of T, yielding $\gamma_{ve}^t(T) \le \gamma_{ve}^t(T')$. It follows from (1) and the assumption that

$$\gamma_t(T') \ge \gamma_{ve}^t(T') \ge \gamma_{ve}^t(T) = \gamma_t(T) \ge \gamma_t(T') + 1,$$

a contradiction.

Thus we may assume that v_3 has at least one children with depth 0, say x. Let $T' = T - \{x\}$. Clearly, $\gamma_t(T) \ge \gamma_t(T')$ since D remains a TDS of T'. Suppose now that S is a $\gamma_{ve}^t(T')$ -set. To ve-dominate the edge v_1v_2 , we must have $|\{v_2, v_3\} \cap S| \ge 1$ and hence S is a total ve-dominating set of T, yielding $\gamma_{ve}^t(T) \le \gamma_{ve}^t(T')$. We conclude from Observation 2.7 that $\gamma_{ve}^t(T') = \gamma_t(T')$, and by the induction hypothesis, we have $T' \in \mathcal{T}$. Now T can be obtained from T' by operation \mathcal{O}_1 , and so $T \in \mathcal{T}$.

<u>Case 2.</u> $\deg_T(v_3) = 2.$

We claim that $\deg_T(v_4) = 2$. Suppose, to the contrary, that $\deg_T(v_4) \ge 3$. Observe that if v_4 has a child with depth 1 or 2, then $v_4 \in D$, contradicting the fact that v_4 does not belong to D. Hence every child of v_4 has depth 2. According to the Case 1, we can assume that every child of v_4 has degree two. Let z_3 be a child of

 v_4 different from v_3 , and let z_2 and z_1 be the children of z_3 and z_2 , respectively. Clearly, $\{v_2, v_3, z_2, z_3\} \subseteq D$, but then $\{v_4\} \cup D \smallsetminus \{v_2, z_2\}$ is a total ve-dominating set of T of size $\gamma_t(T) - 1$, a contradiction. Therefore, $\deg_T(v_4) = 2$. Now, let $T' = T - T_{v_4}$. Note that T' is nontrivial for otherwise $T = P_5$ and $\gamma_{ve}^t(P_5) < \gamma_t(P_5)$. We conclude from Proposition 2.5 and Observation 2.7 that $\gamma_{ve}^t(T') = \gamma_t(T')$. By induction on T', we have $T' \in \mathcal{T}$. Now let us show that $v_5 \in W_{T'}^1$. Suppose, to the contrary, that $v_5 \notin W_{T'}^1$, and let S' be an almost total ve-dominating set of T' with respect to v_5 of cardinality at most $\gamma_{ve}^t(T') - 1$. Then $S' \cup \{v_3, v_4\}$ is a total ve-dominating set of T with cardinality $\gamma_{ve}^t(T') + 1$, which is a contradiction. Hence $v_5 \in W_{T'}^1$. Now since T can be obtained from T' by Operation \mathcal{O}_2 , we have $T \in \mathcal{T}$. This completes the proof.

4. Graphs G with $\gamma_{ve}^t(G) = \gamma_{ve}(G)$

4.1. Hardness result

We show that it is NP-hard to decide whether $\gamma_{ve}^t(G) = \gamma_{ve}(G)$ for a given $(K_4 - e)$ -graph G by reducing the 3-satisfiability problem (3-SAT problem) to our problem.

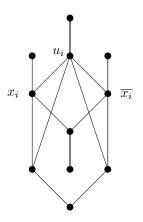


Figure 1. The graph H_i .

Theorem 4.1. It is NP-hard to decide whether $\gamma_{ve}^t(G) = \gamma_{ve}(G)$ for a given $(K_4 - e)$ -free graph G.

Proof. Let $U = \{x_1, x_2, \ldots, x_n\}$ and $\mathcal{C} = \{C_1, C_2, \ldots, C_m\}$ be an arbitrary instance of the 3-SAT problem. We construct a graph G whose order is polynomially bounded in terms of n and m such that \mathcal{C} is satisfiable if and only if $\gamma_{ve}^t(G) = \gamma_{ve}(G)$.

For each variable $x_i \in U$, associate the connected graph H_i as shown in Figure 1. Corresponding to each clause $C_j = \{x_j, y_j, z_j\} \in C$, associate a path $P_2 = c_j w_j$. For every literal $x \in \{x_i, \overline{x}_i\}$ and every clause C_j such that x appears in C_j , add an edge between c_j and the vertex denoted x in H_i . Clearly, G is $(K_4 - e)$ -free. Also, for every ve-dominating set D of G, we have $|D \cap V(H_i)| \geq 2$, and thus $\gamma_{ve}(G) \leq 2n$. The equality is obtained from the fact that all x_i 's and \overline{x}_i 's form a ve-dominating set of G. Furthermore, $\gamma_{ve}^t(G) = 2n$ holds if and only if every total ve-dominating set of G, that contains u_i and one vertex of $\{x_i, \overline{x}_i\}$ for every i. Clearly, such a total ve-dominating set of G indicates a satisfying truth assignment for C. Moreover, from any satisfying truth assignment for C, we can construct a total ve-dominating set of G of cardinality 2n. Therefore, $\gamma_{ve}^t(G) = \gamma_{ve}(G)$ if and only if C is satisfiable. \Box

4.2. Trees T with $\gamma_{ve}^t(T) = \gamma_{ve}(T)$

In this subsection, we provide a constructive characterization of all trees T with $\gamma_{ve}^t(T) = \gamma_{ve}(T)$. For this purpose, we define the family \mathcal{F} of unlabeled trees T that can be obtained from a sequence T_1, T_2, \ldots, T_k $(k \ge 1)$ of trees such that $T_1 \in \{P_6\}$ and $T = T_k$. If $k \ge 2$, then T_{i+1} can be obtained recursively from T_i by one of the following operations.

Operation \mathcal{T}_1 : If $u \in V(T_i)$ is a support vertex or a non-leaf vertex adjacent to an end-support vertex, then \mathcal{T}_1 adds a new vertex x and an edge ux to obtain T_{i+1} .

Operation \mathcal{T}_2 : If $u \in V(T_i)$ has degree at least two and is adjacent to an endsupport vertex w, then \mathcal{T}_2 adds a path $P_2 = x_2 x_1$ and an edge $u x_2$ to obtain T_{i+1} .

Operation \mathcal{T}_3 : If $u \in V(T_i)$ is a leaf of an induced path $uvy_3y_2y_1$ such that $\deg_{T_i}(y_2) = \deg_{T_i}(y_3) = 2$ and $\deg_{T_i}(y_1) = 1$, then \mathcal{T}_3 adds a path $P_2 = x_2x_1$ and joins u to x_2 to obtain T_{i+1} .

Operation \mathcal{T}_4 : If $u \in V(T_i)$ and there is a path $ux_3x_2x_1$ in T_i such that $\deg_{T_i}(x_2) = \deg_{T_i}(x_3) = 2$ and $\deg_{T_i}(x_1) = 1$, then \mathcal{T}_4 adds a new vertex y and an edge uy to obtain T_{i+1} .

Operation \mathcal{T}_5 : If $u \in W^2_{T_i} \cap W^3_{T_i}$, then \mathcal{T}_5 adds a path $P_6 = x_6 x_5 x_4 x_3 x_2 x_1$ and joins u to x_5 to obtain T_{i+1} .

Operation \mathcal{T}_6 : If $u \in W_{T_i}^4$ is a leaf and its support vertex, say v, is adjacent to the center vertex of a pendant star $K_{1,s}$ centered at x, then \mathcal{T}_6 adds a path $P_3 = y_3 y_2 y_1$ and joins u to y_3 to obtain T_{i+1} .

Operation \mathcal{T}_7 : If $u \in W_{T_i}^2 \cap W_{T_i}^3$ and there exists a vertex $v \in N_{T_i}[u]$ such that $v \in W_{T_i}^4$, then \mathcal{T}_7 adds a path $P_6 = x_6 x_5 x_4 x_3 x_2 x_1$ and an edge $u x_6$ to obtain T_{i+1} . **Operation** \mathcal{T}_8 : If $u \in V(T_i)$ such that $N_{T_i}(u) \cap W_{T_i}^4 \neq \emptyset$ and $u y_2 y_1$ is a pendant

path in T_i , then \mathcal{T}_8 adds a path $P_3 = x_3 x_2 x_1$ and joins u to x_3 to obtain T_{i+1} .

Operation \mathcal{T}_9 : If $u \in V(T_i)$, then \mathcal{T}_9 adds the graph H (see Figure 2) and joins u to v to obtain T_{i+1} .

Operation \mathcal{T}_{10} : If $u \in V(T_i)$ is adjacent to the vertex y_4 of a path $y_6y_5y_4y_3y_2y_1$ such that $\deg_{T_i}(y_4) = 3$, $\deg_{T_i}(y_6) = \deg_{T_i}(y_1) = 1$, and $\deg_{T_i}(y_5) = \deg_{T_i}(y_3) = \deg_{T_i}(y_2) = 2$, then \mathcal{T}_{10} adds a path $P_6 = x_6x_5x_4x_3x_2x_1$ and joins u to x_4 to obtain T_{i+1} . **Operation** \mathcal{T}_{11} : If $u \in V(T_i)$ and there is a path $y_5y_4uy_3y_2y_1$ in T_i such that $\deg_{T_i}(y_5) = \deg_{T_i}(y_1) = 1$ and $\deg_{T_i}(y_4) = \deg_{T_i}(y_3) = \deg_{T_i}(y_2) = 2$, then \mathcal{T}_{11} adds a path $P_2 = x_2x_1$ and joins u to x_2 to obtain T_{i+1} .

Operation \mathcal{T}_{12} : If $u \in V(T_i)$ is adjacent to a support vertex of a pendant path P_6 and there exists a vertex $v \in N_{T_i}[u]$ such that $v \in W_{T_i}^4$, then \mathcal{T}_{12} adds a new vertex x and an edge ux to obtain T_{i+1} .

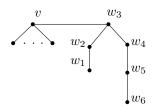


Figure 2. The graph H with $|L_v| \ge 0$ used in Operation \mathcal{T}_9 .

The next result is an immediate consequence of Observation 2.11.

Lemma 4.2. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_1 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.3. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_2 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Clearly, any $\gamma_{ve}^t(T_i)$ -set containing no leaves, contains u and so such a set remains a total ve-dominating set of T_{i+1} , implying that $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i)$. On the other hand, it is not hard to see that T_{i+1} has a $\gamma_{ve}(T_{i+1})$ -set D containing u and not x_2 . Thus D ve-dominates $E(T_i)$, yielding $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i)$. Now, by Observation 2.8, we have $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.4. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_3 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Let S be a $\gamma_{ve}^t(T_i)$ -set containing no leaves. Clearly, $|S \cap \{v, y_3, y_2\}| = 2$ and the set $(S \setminus \{v, y_3, y_2\}) \cup \{u, v, y_3\}$ is a total ve-dominating set of T_{i+1} , implying that $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 1$. On the other hand, it is not hard to see that T_{i+1} has a $\gamma_{ve}(T_{i+1})$ -set D containing u, y_3 , and so $D \setminus \{u\}$ is a ve-dominating set of T_i , yielding $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i) + 1$. Therefore, we conclude from Observation 2.8 that $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.5. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_4 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Clearly, any $\gamma_{ve}^t(T_i)$ -set containing no leaves, contains u, x_3 , and thus remains a total ve-dominating set of T_{i+1} , implying that $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i)$. Since every $\gamma_{ve}(T_{i+1})$ -set that does not contain y is a ve-dominating set of T_i , we have $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i)$. Now, by Observation 2.8, we obtain $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

H. ABDOLLAHZADEH AHANGAR ET AL.

Lemma 4.6. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_5 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Obviously, any $\gamma_{ve}^t(T_i)$ -set can be extended to a total ve-dominating set of T_{i+1} by adding x_3, x_4 , implying that $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 2$. Assume now that D is a $\gamma_{ve}(T_{i+1})$ -set containing no leaves. Without loss of generality, we may assume that $x_3 \in D$. If $|D \cap \{x_i \mid 1 \leq i \leq 6\}| \geq 2$, then $D \setminus \{x_i \mid 1 \leq i \leq 6\}$ is an almost ve-dominating set of T_i with respect to u, and so $\gamma_{ve}(T_i) = \gamma_{ve}(T_i; u) \leq$ $\gamma_{ve}(T_{i+1}) - 2$ because of $u \in W_{T_i}^3$. Hence let $|D \cap \{x_i \mid 1 \leq i \leq 6\}| = 1$. To ve-dominate the edge x_5x_6 , we must have $u \in D$, and thus $D \setminus \{x_3\}$ is a vedominating set of T_i containing u. Since $u \in W_{T_i}^2$, we deduce that $\gamma_{ve}(T_{i+1}) =$ $|D| \geq \gamma_{ve}(T_i) + 2$. Now, by Observation 2.8, we have $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$. \Box

Lemma 4.7. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_6 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Since $u \in W_{T_i}^4$, let S be a $\gamma_{ve}^t(T_i)$ -set containing u. Then $S \cup \{y_3\}$ is a total ve-dominating set of T_{i+1} , and thus $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 1$. Now, let D be a $\gamma_{ve}(T_{i+1})$ -set containing no leaves. Clearly $|D \cap \{v, x\}| \geq 1$ and $|D \cap \{y_2, y_3\}| = 1$. Without loss of generality, we assume that $v, y_3 \in D$. Then $D \setminus \{y_3\}$ is a ve-dominating set of T_i , implying that $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i) + 1$. It follows from Observation 2.8 that $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.8. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_7 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Since there exists a vertex $v \in N_{T_i}[u]$ with $v \in W_{T_i}^4$, let S be a $\gamma_{ve}^t(T_i)$ -set containing v. Then $S \cup \{x_3, x_4\}$ is a total ve-dominating set of T_{i+1} , and thus $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 2$. On the other hand, let D be a $\gamma_{ve}(T_{i+1})$ -set. To ve-dominate the edges ux_6, x_ix_{i-1} for $2 \leq i \leq 6$, we must have $|D \cap \{x_1, x_2, x_3\}| \geq 1$ and $|D \cap \{u, x_i \mid 1 \leq i \leq 6\}| \geq 2$. If $D \cap \{x_6, u\} \neq \emptyset$, then $(D \setminus \{u, x_i \mid 1 \leq i \leq 6\}) \cup \{u\}$ is a ve-dominating set of T_i containing u, implying that $\gamma_{ve}(T_{i+1}) = |D| \geq \gamma_{ve}(T_i) + 2$ (because of $u \in W_{T_i}^2$). If $D \cap \{x_6, u\} = \emptyset$, then $D \setminus \{x_i \mid 1 \leq i \leq 6\}$) is a ve-dominating set of T_i , and so $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i) + 2$. Now, by Observation 2.8, we obtain $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.9. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_8 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Clearly, any $\gamma_{ve}^t(T_i)$ -set S containing no leaves, must contain u, and so it can be extended to a total ve-dominating set of T_{i+1} by adding y_3 , which implies that $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 1$. On the other hand, for any $\gamma_{ve}(T_{i+1})$ -set D containing no leaves, we have $|D \cap \{x_2, x_3\}| = 1$, and $|D \cap \{u, y_2\}| = 1$. Then $D \setminus \{x_2, x_3\}$ is a ve-dominating set of T_i , yielding $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i) + 1$. By Observation 2.8, we have $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.10. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_9 , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Clearly, any $\gamma_{ve}^t(T_i)$ -set can be extended to a total ve-dominating set of T_{i+1} by adding w_3, w_4 , and so $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 2$. On the other hand, let D be a $\gamma_{ve}(T_{i+1})$ -set D. Then we must have $|D \cap \{w_1, w_2, w_3\}| \geq 1$, and $|D \cap \{w_4, w_5, w_6\}| \geq 1$. Without loss of generality, let $w_3, w_4 \in D$. If $|D \cap V(H)| \geq 3$, then $(D \smallsetminus V(H)) \cup \{u\}$ is a ve-dominating set of T_i and if $|D \cap V(H)| = 2$, then $D \smallsetminus V(H)$ is a ve-dominating set of T_i of size $\gamma_{ve}(T_{i+1}) - 2$. In any case, $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i) + 2$. It follows from Observation 2.8 that $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.11. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_{10} , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Clearly, any $\gamma_{ve}^t(T_i)$ -set can be extended to a total ve-dominating set of T_{i+1} by adding x_3, x_4 , and so $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i) + 2$. Now let D be a $\gamma_{ve}(T_{i+1})$ -set. Without loss of generality, we may assume that $x_3, x_4, y_3, y_4 \in D$. Then $D \setminus \{x_3, x_4\}$ is a ve-dominating set of T_i , and so $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i) + 2$. By Observation 2.8, we obtain $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.12. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_{11} , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Clearly, any $\gamma_{ve}^t(T_i)$ -set D such that $d(D, \{y_1, y_5\})$ is as large as possible, contains y_3, u , and so it is a total ve-dominating set of T_{i+1} , yielding $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i)$. Since there is a $\gamma_{ve}(T_{i+1})$ -set that does not contain neither x_1 nor x_2 , such a set is a ve-dominating set of T_i , and so $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i)$. By Observation 2.8, we obtain $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Lemma 4.13. If T_i is a tree with $\gamma_{ve}^t(T_i) = \gamma_{ve}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{T}_{12} , then $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Proof. Since there exists a vertex $v \in N_{T_i}[u]$ with $v \in W_{T_i}^4$, let S be a $\gamma_{ve}^t(T_i)$ set containing v. Then S is a total ve-dominating set of T_{i+1} , and thus $\gamma_{ve}^t(T_{i+1}) \leq \gamma_{ve}^t(T_i)$. On the other hand, any $\gamma_{ve}(T_{i+1})$ -set containing no leaf is a ve-dominating
set of T_i , implying that $\gamma_{ve}(T_{i+1}) \geq \gamma_{ve}(T_i)$. Now, by Observation 2.8, we obtain $\gamma_{ve}^t(T_{i+1}) = \gamma_{ve}(T_{i+1})$.

Theorem 4.14. If $T \in \mathcal{F}$, then $\gamma_{ve}^t(T) = \gamma_{ve}(T)$.

Proof. Let $T \in \mathcal{F}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that $T_1 = P_6$, and if $k \ge 2$, then T_{i+1} can be obtained from T_i by one of the aforementioned operations. We proceed by induction on the number of operations used to construct T. If k = 1, then $T = P_6$ and clearly $\gamma_{ve}^t(T) = \gamma_{ve}(T)$. Assume that the result holds for each tree of \mathcal{F} which can be obtained from a sequence of operations of length k - 1 and let $T' = T_{k-1}$. By the induction hypothesis, $\gamma_{ve}^t(T') = \gamma_{ve}(T')$. Since $T = T_k$ is obtained by one of the Operations \mathcal{T}_i $(i = 1, 2, \ldots, 12)$ from T', we conclude from the Lemmas 4.2–4.13 that $\gamma_{ve}^t(T) = \gamma_{ve}(T)$.

Now we are ready to state the main theorem of this section.

Theorem 4.15. Let T be a tree of order $n \ge 6$. Then $\gamma_{ve}^t(T) = \gamma_{ve}(T)$ if and only if $T \in \mathcal{F}$.

Proof. According to Theorem 4.14, we need only to prove necessity. Let T be a tree with $\gamma_{ve}^t(T) = \gamma_{ve}(T)$. By Observation 2.10, diam $(T) \geq 5$, and so $n \geq 6$. We proceed by induction on n. If n = 6, then $T = P_6$ and clearly $T \in \mathcal{F}$. Let $n \geq 7$ and let the result hold for every tree T' of order less than n, satisfying $\gamma_{ve}^t(T') = \gamma_{ve}(T')$. Let T be a tree of order n with $\gamma_{ve}^t(T) = \gamma_{ve}(T)$. Let $v_1v_2 \ldots v_k$ $(k \geq 6)$ be a diametral path in T such that deg $_T(v_2)$ is as large as possible. Among these paths, we choose a path such that deg $_T(v_3)$ is as large as possible. Root T at v_k . If deg $_T(v_2) \geq 3$, then let $T' = T - v_1$. By Observation 2.11 and the induction hypothesis, we have $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_1 . Henceforth, we assume that deg $_T(v_2) = 2$. By the choice of diametrical path, we may assume that all end-support vertices on diametrical paths have degree two. In particular, any child of v_3 with depth 1 has degree 2.

First let $\deg_T(v_3) \geq 3$. We distinguish the following two situations:

• v_3 has a child y_2 with depth 1 different from v_2 .

Let $v_3y_2y_1$ be a pendant path in T, and let $T' = T - T_{v_2}$. Clearly, any $\gamma_{ve}^t(T)$ -set D containing no leaves, contains v_3 , and thus total *ve*-dominates E(T'), yielding $\gamma_{ve}^t(T') \leq \gamma_{ve}^t(T)$. On the other hand, if S is a $\gamma_{ve}(T')$ -set such that $d(v_1, S)$ is as large as possible, then clearly $v_3 \in S$, and so S is a *ve*-dominating set of T', implying that $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. It follows form Observation 2.9 and the induction hypothesis $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it is obtained from T' by Operation \mathcal{T}_2 .

• All children of v_3 but v_2 are leaves. Let x be a leaf adjacent to v_3 and let T' = T - x. By Observation 2.11 and the induction hypothesis, we have $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_1 .

From now on, we assume that $\deg_T(v_3) = 2$. Recall that by the choice of the diametrical path, we may assume that all children of v_4 with depth 2, have degree two. Also, according to the above cases, we may assume that $\deg(v_{k-1}) = \deg(v_{k-2}) = 2$. We consider the following cases:

<u>Case 1.</u> $\deg_T(v_4) \ge 3.$

We distinguish the following subcases.

<u>Subcase 1.1.</u> v_4 has a child z_3 with depth 2, different from v_3 .

Let $v_4z_3z_2z_1$ be a pendant path in T and let $T' = T - T_{v_2}$. Assume that D is a $\gamma_{ve}^t(T)$ -set such that $d(D, \{v_1, z_1\})$ is maximum. Then clearly $\{v_3, z_3, v_4\} \subseteq D$, and so $D \setminus \{v_3\}$ is a total ve-dominating set of T', implying that $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 1$. On the other hand, any $\gamma_{ve}(T')$ -set can be extended to a ve-dominating set of T' by adding v_2 , yielding $\gamma_{ve}(T) \le \gamma_{ve}(T') + 1$. We deduce from Observation 2.9 and the induction hypothesis that $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ since it is obtained from T' by Operation \mathcal{T}_3 .

<u>Subcase 1.2.</u> v_4 has a child y_2 with depth 1 and degree at least 3. Let x be a leaf adjacent to y_2 and let T' = T - x. By Observation 2.11 and the induction hypothesis, we have $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ because it is obtained from T' by Operation \mathcal{T}_1 .

<u>Subcase 1.3.</u> v_4 has a child with depth 0.

Let y be a leaf adjacent to v_4 and let T' = T - y. If D is a $\gamma_{ve}^t(T)$ -set such that $d(D, v_1)$ is maximum, then clearly $\{v_3, v_4\} \subseteq D$. Hence D is a total vedominating set of T', yielding $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T')$. On the other hand, if S is a $\gamma_{ve}(T')$ -set such that $d(S, v_1)$ is maximum, then $v_3 \in S$, and thus S ve-dominates E(T). Hence $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. By Observation 2.9 and the induction hypothesis we have $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it is obtained from T' by Operation \mathcal{T}_4 .

<u>Subcase 1.4.</u> deg_T(v_4) ≥ 4 and any child of v_4 is of depth 1 and degree 2. Let $v_4y_2y_1$ and $v_4z_2z_1$ be two pendant paths in T and let $T' = T - \{z_2, z_1\}$. Clearly, any $\gamma_{ve}(T')$ -set D such that $d(D, \{y_1, v_1\})$ is as large as possible, contains v_3, v_4 , and so D ve-dominates E(T), yielding $\gamma_{ve}(T) \leq \gamma_{ve}(T')$. On the other hand, any $\gamma_{ve}^t(T)$ -set D such that $d(D, \{y_1, v_1\})$ is as large as possible, contains v_3, v_4 , and so it is a total ve-dominating set of T', yielding $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T')$. By Observation 2.9 and the induction hypothesis, we have $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_{11} .

<u>Subcase 1.5.</u> deg_T(v_4) = 3 and v_4 has exactly one child with depth 1 and degree 2.

Let $v_4y_2y_1$ be a pendant path in T. We distinguish the following.

(a) v_5 is a support vertex or $\deg_T(v_5) = 2$.

Assume that D is a $\gamma_{ve}^t(T)$ -set. Clearly $\{v_3, v_4\} \subseteq D$. Suppose first that $v_5 \in D$, and let $T' = T - T_{v_3}$. Clearly, $D \setminus \{v_3\}$ is a total ve-dominating set of T', implying that $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 1$. On the other hand, if S is a $\gamma_{ve}(T')$ -set, then $S \cup \{v_3\}$ is a ve-dominating set of T, implying that $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. By Observation 2.9 and the induction hypothesis, we obtain $T' \in \mathcal{F}$, where $D \smallsetminus \{v_3\}$ is $\gamma_{ve}^t(T')$ -set containing v_5 , that is, $v_5 \in W_{T'}^4$. It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_8 . Suppose now that $v_5 \notin D$, and let $T' = T - T_{v_5}$. Note that, we can assume that v_5 has no child with depth 1 or 2 for otherwise v_5 belongs to some $\gamma_{ve}^t(T)$ -set, and such a case was already considered. Moreover, if v_5 has a child with depth 3, then this situation is considered more generally in items (c) and (d). Hence we can assume that every child of v_5 besides v_4 (if any) is a leaf. Also we note that if k = 6, then T is isomorphic to H that belongs to \mathcal{F} (it can be obtained from T_1 by using Operation \mathcal{T}_2 and possibly Operation \mathcal{T}_1). Hence we assume that T' is nontrivial. Obviously, $D \setminus \{v_3, v_4\}$ is a total ve-dominating set of T', yielding $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2$. Also, if S is a $\gamma_{ve}(T')$ -set, then $S \cup \{v_3, v_4\}$ is a ve-dominating set of T, implying that $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 2$. By Observation 2.9 and the induction hypothesis, we have $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_9 .

(b) $\deg_T(v_5) \ge 3$ and v_5 has a child with depth 1 or 2. Let $T' = T - T_{v_3}$. It is not hard to see that $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 1$, $\gamma_{ve}(T) \le \gamma_{ve}^t(T') + 1$. $\gamma_{ve}(T') + 1$, and v_5 belongs to some $\gamma_{ve}^t(T')$ -set. We deduce from Observation 2.9 and the induction hypothesis that $T' \in \mathcal{F}$, where $v_5 \in W_{T'}^4$. Therefore, $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_8 .

(c) $\deg_T(v_5) \geq 3$ and v_5 has a child y_4 with depth 3 and degree at least 3. Let $v_5y_4y_3y_2y_1$ be a path in T. Then $v_k \ldots v_5y_4y_3y_2y_1$ is a diametral path in T and by the assumption, we have $\deg(y_2) = \deg(y_3) = 2$. Also, according to the above cases and subcases above, we have T_{y_4} is isomorphic to T_{v_4} . Let $T' = T - T_{v_4}$. Clearly for every $\gamma_{ve}^t(T)$ -set D containing v_3, v_4, y_3, y_4 , we have $D \setminus \{v_3, v_4\}$ is a total *ve*-dominating set of T', yielding $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2$. Also, if S is a $\gamma_{ve}(T')$ set, then $S \cup \{v_3, v_4\}$ is a *ve*-dominating set of T, and so $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 2$. It follows from Observation 2.9 and the induction hypothesis that $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it can be obtained from T' by Operation \mathcal{T}_{10} .

(d) $\deg_T(v_5) \geq 3$ and all children of v_5 of depth 3, but v_4 have degree two. Note that v_5 can be a support vertex. Let $T' = T - T_{v_5}$. It is easy to see that $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2\deg_T(v_5) - 2$ and $\gamma_{ve}(T) \leq \gamma_{ve}(T') + \deg_T(v_5)$. This leads to $\gamma_{ve}(T) \leq \gamma_{ve}^t(T) - \deg_T(v_5) + 2 < \gamma_{ve}^t(T)$, a contradiction.

<u>Case 2.</u> $\deg_T(v_4) = 2.$

Considering the arguments above, we may assume that for any diametrical path $z_1z_2...z_k$ in T, $\deg_T(z_i) = 2$ for all $i \in \{2, 3, 4, k - 1, k - 2, k - 3\}$. Since $n \ge 7$, it follows that $\operatorname{diam}(T) \ge 6$. Consider the following subcases:

<u>Subcase 2.1.</u> v_5 has at least two children with depth 0. Let $\{x, y\} \subseteq L_{v_5}$ and let T' = T - x. By Observation 2.11, we have $\gamma_{ve}^t(T') = \gamma_{ve}(T')$, and by the induction hypothesis, $T' \in \mathcal{F}$. Therefore, $T \in \mathcal{F}$ because it can be obtained from T' by Operation \mathcal{T}_1 .

<u>Subcase 2.2.</u> v_5 has a child with depth 1.

Let $T' = T - T_{v_3}$. Clearly, v_3, v_4, v_5 belong to any $\gamma_{ve}^t(T)$ -set, and so $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 1$. Also, if S is a $\gamma_{ve}(T')$ -set, then $S \cup \{v_3\}$ is a ve-dominating set of T, and thus $\gamma_{ve}(T) \le \gamma_{ve}(T') + 1$. It follows from Observation 2.9 and the induction hypothesis that $T' \in \mathcal{F}$, where in particular, $v_4 \in W_{T'}^4$ (since it has a child with depth 1). It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_6 .

<u>Subcase 2.3.</u> v_5 has a child y_3 with depth 2. Let $v_5y_3y_2y_1$ be a path in T and let $T' = T - T_{v_4}$. Clearly, $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. Also if D is a $\gamma_{ve}^t(T)$ -set containing no leaves, then D must contain v_3, v_4, y_3, v_5 , and so $D \setminus \{v_3, v_4\}$ is a total ve-dominating set of T'. Hence $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2$, and thus

$$\gamma_{ve}(T) = \gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2 \ge \gamma_{ve}(T') + 2 \ge \gamma_{ve}(T) + 1,$$

a contradiction.

<u>Subcase 2.4.</u> v_5 has a child z_4 with depth 3.

Let $v_5z_4z_3z_2z_1$ be a path in T and let $T' = T - T_{v_4}$. According to cases above, $\deg_T(z_i) = 2$ for $i \in \{2, 3, 4\}$. Now, if D is a $\gamma_{ve}^t(T)$ -set such that $d(D, \{v_1, z_1\})$ is as large as possible, then $\{v_3, z_3, v_4, z_4\} \subseteq D$, and so $D \setminus \{v_3, v_4\}$ is a total ve-dominating set of T', yielding $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2$. Also, it is easy to see that $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. These two inequalities lead to a contradiction as in Subcase 2.3.

<u>Subcase 2.5.</u> deg_T(v_5) = 3 and v_5 has one child w with depth 0.

• v_6 is a support vertex.

Let $z \in L_{v_6}$ and let T' = T - z. If D is a $\gamma_{ve}^t(T)$ -set containing no leaves, then clearly D contains a vertex $N_T[v_6]$, and so D remains a total *ve*-dominating set of T'. Hence $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T')$. Also, since there exists a $\gamma_{ve}(T')$ -set S containing at least one vertex of $N_{T'}[v_6]$, we have $\gamma_{ve}(T) \le \gamma_{ve}(T')$. By Observation 2.9, $\gamma_{ve}(T') = \gamma_{ve}^t(T')$, where some vertex of $N_{T'}[v_6]$ belongs to $W_{T'}^4$. It follows from the induction hypothesis that $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_{12} .

• v_6 is not a support vertex.

Let $T' = T - T_{v_5}$. Assume that D is a $\gamma_{ve}^t(T)$ -set. Clearly $\{v_3, v_4\} \subseteq D$. If $v_5 \notin D$, then $D \smallsetminus \{v_3, v_4\}$ is a total ve-dominating set of T', and so $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2$. If $v_5 \in D$ and $v_6 \in D$, then $(D \smallsetminus \{v_3, v_4, v_5\}) \cup \{v_7\}$ is a total ve-dominating set of T'. If $v_5 \in D$ and $v_6 \notin D$, then $N_{T'}[v_7] \notin D$, for otherwise $D \smallsetminus \{v_5\}$ is a total ve-dominating set of T with cardinality less than |D|, a contradiction. Hence $D \cap (N(v_8) - \{v_7)\} \neq \emptyset$ to total ve-dominate edge $v_7 v_8$, and thus $(D \smallsetminus \{v_5\}) \cup \{v_8\}$ is a total ve-dominating set of T'. In any case, we have $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2$.

Now let S be a $\gamma_{ve}(T')$ -set. If $v_6 \in S$, then $S \cup \{v_3\}$ is a ve-dominating set of T, and thus $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. Hence

$$\gamma_{ve}(T) = \gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2 \ge \gamma_{ve}(T') + 2 \ge \gamma_{ve}(T) + 1,$$

a contradiction. Hence $v_6 \notin S$, and more gererally, $v_6 \in W_{T'}^2$. Thus $S \cup \{v_3, v_5\}$ is a *ve*-dominating set of T, implying that $\gamma_{ve}(T) \leq \gamma_{ve}(T')+2$. By Observation 2.9, we have $\gamma_{ve}(T') = \gamma_{ve}^t(T')$, and thus $\gamma_{ve}^t(T) = \gamma_{ve}^t(T')+2$ and $\gamma_{ve}(T) = \gamma_{ve}(T')+2$. It follows from the induction hypothesis that $T' \in \mathcal{F}$. We prove now that $v_6 \in W_{T'}^3$. Suppose, to the contrary, that $v_6 \notin W_{T'}^3$ and let S' be an almost *ve*-dominating set of T' with respect to v_6 of cardinality at most $\gamma_{ve}(T') - 1$. Hence $S' \cup \{v_3, v_5\}$ is a *ve*-dominating set of T, and so $\gamma_{ve}(T) \leq \gamma_{ve}(T'; v_6) + 2 \leq \gamma_{ve}(T') + 1$, a contradiction. Therefore, $v_6 \in W_{T'}^3$, and so $v_6 \in W_{T'}^2 \cap W_{T'}^3$. It follows that $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_5 .

<u>Subcase 2.6.</u> $\deg(v_5) = 2.$

According to the previous cases above, we may assume that for any diametrical path $z_1 z_2 \ldots z_k$ in T, $\deg(z_i) = 2$ for every $i \in \{2, 3, 4, 5, z_{k-4}, z_{k-3}, z_{k-2}, z_{k-1}\}$. We distinguish the following subcases:

(i) v_6 has a child y_2 with depth 1 or a child y_3 with depth 2 or a child y_4 with depth 3.

Let $v_6y_ix_{i-1}\ldots x_1$ be a path in T, where $i \in \{2, 3, 4\}$, and let $T' = T - T_{v_4}$. Clearly, $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. If D is a $\gamma_{ve}^t(T)$ -set such that $d(D, x_1)$ is maximum, then $v_3, v_4 \in D$ and $D \cap \{v_6, y_i\} \neq \emptyset$. Hence $D \smallsetminus \{v_3, v_4\}$ is a total ve-dominating set of T', and so $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2$. This leads to a contradiction as in Subcase 2.3.

(ii) v_6 has a child z_5 with depth 4, different from v_5 . Let $v_6 z_5 z_4 z_3 z_2 z_1$ be a pendant path in T and let $T' = T - T_{v_5}$. Since there is a $\gamma_{ve}^t(T)$ -set D containing $v_3, z_3, v_4, z_4, D \setminus \{v_3, v_4\}$ is a total ve-dominating set of T', implying that $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2$. Also, since there is a $\gamma_{ve}(T')$ -set Sthat contains a vertex of $N_{T'}[v_6]$ (because of the edge z_5v_6), then $S \cup \{v_3\}$ is a ve-dominating set of T, and so $\gamma_{ve}(T) \le \gamma_{ve}(T') + 1$. As in Subcase 2.3, this leads to a contradiction.

(iii) $\deg(v_6) \ge 3$ and any child of v_6 is of depth 0.

Let $T' = T - T_{v_4}$. Then $\gamma_{ve}(T) \leq \gamma_{ve}(T') + 1$. Let D be a $\gamma_{ve}^t(T)$ -set such that $d(v_1, D)$ is maximum. Then $\{v_3, v_4\} \subseteq D$. If $v_5 \notin D$ or $v_5, v_6 \in D$, then $D \setminus \{v_3, v_4\}$ is a total ve-dominating set of T', and hence $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 2$. This situation leads to a contradiction as above. Hence assume that $v_5 \in D$ and $v_6 \notin D$. Let $T'' = T - T_{v_6}$. Then $D - \{v_3, v_4, v_5\}$ is a total ve-dominating set of T'', and so $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T'') + 3$. Also, it is easy to see that $\gamma_{ve}(T) \leq \gamma_{ve}(T'') + 2$, which leads to a contradiction as above.

(iv)
$$\deg_T(v_6) = 2.$$

Since $\gamma_{ve}^t(T) = \gamma_{ve}(T)$, we have diam $(T) \ge 7$. Let $T' = T - T_{v_6}$. Then $\gamma_{ve}(T) \le 1$ $\gamma_{ve}(T')+2$. Let D be a $\gamma_{ve}^t(T)$ -set such that $d(D, v_1)$ is maximum. Then $v_3, v_4 \in D$. If $v_5 \in D$ and $v_6 \notin D$, then $D \setminus \{v_3, v_4, v_5\}$ is a total ve-dominating set of T', yielding $\gamma_{ve}^t(T) \geq \gamma_{ve}^t(T') + 3$, and this leads to a contradiction as above. If $v_5, v_6 \notin D$, then D contains a vertex of $N_{T'}[v_7]$, and thus $D - \{v_3, v_4\}$ is a total ve-dominating set of T', and so $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2$. If $v_5, v_6 \in D$, then $(D \setminus \{v_3, v_4, v_5, v_6\}) \cup \{v_7, v_8\}$ is a total ve-dominating set of T', and so $\gamma_{ve}^t(T) \ge 1$ $\gamma_{ve}^t(T') + 2$. If $v_5 \notin D$ and $v_6 \in D$, then $v_7 \in D$, and so $(D \setminus \{v_3, v_4, v_6\}) \cup \{v_8\}$ is a total ve-dominating set of T', yielding $\gamma_{ve}^t(T) \ge \gamma_{ve}^t(T') + 2$. By Observation 2.9, we obtain $\gamma_{ve}^t(T') = \gamma_{ve}(T')$, implying also $\gamma_{ve}^t(T) = \gamma_{ve}^t(T') + 2$ and $\gamma_{ve}(T) = \gamma_{ve}^t(T') + 2$. $\gamma_{ve}(T') + 2$. By the induction hypothesis, $T' \in \mathcal{T}$. Next we show that $v_7 \in \mathcal{T}$ $W^2_{T'} \cap W^3_{T'}$. If $v_7 \notin W^2_{T'}$, then any $\gamma_{ve}(T')$ -set containing v_7 can be extended to a ve-dominating set of T by adding v_3 , which leads to a contradiction (since $\gamma_{ve}(T) = \gamma_{ve}(T') + 2$). If $v_7 \notin W_{T'}^3$, then any almost total ve-dominating set of T'of weight less than $\gamma_{ve}(T')$ can be extended to a ve-dominating set of T by adding v_3, v_6 , which leads to a contradiction too. Hence $v_7 \in W^2_{T'} \cap W^3_{T'}$. Note that any total ve-dominating set of T' defined above, contains a vertex of $N_{T'}[v_7]$ and is a $\gamma_{ve}^t(T')$ -set, that is $N_{T'}[v_7] \cap W_{T'}^4 \neq \emptyset$. Therefore, $T \in \mathcal{F}$ since it can be obtained from T' by Operation \mathcal{T}_7 .

This completes the proof.

References

- Abdollahzadeh Ahangar H., Amjadi J., Chellali M., Nazari-Moghaddam S., Chellali M. and Sheikholeslami S. M., *Total Roman reinforcement in graphs*, Discuss. Math. Graph Theory 39 (2019), 787–803.
- Abdollahzadeh Ahangar H., Amjadi J., Jafari Rad N. and Samodivkin V., Total k-rainbow domination numbers in graphs, Commun. Comb. Optim. 3 (2018), 37–50.
- Abdollahzadeh Ahangar H., Chellali M., Sheikholeslami S. M. and Valenzuela-Tripodoro J. C., Total Roman {2}-dominating functions in graphs, Discuss. Math. Graph Theory, to appear.

- Boutrig R. and Chellali M., Total vertex-edge domination, Int. J. Comput. Math. 95 (2018), 1820–1828.
- Boutrig R., Chellali M., Haynes T. W. and Hedetniemi S. T., Vertex-edge domination in graphs, Aequationes Math. 90 (2016), 355–366.
- Cockayne E. J., Dawes R. M. and Hedetniemi S. T., *Total domination in graphs*, Networks 10 (1980), 211–219.
- Henning M. A. and Yeo A., *Total Domination in Graphs*, Springer Monographs in Mathematics, 2013.
- 8. Krishnakumari B., Venkatakrishnan Y. B. and Krzywkowski M., Bounds on the vertex-edge domination number of a tree, C. R. Acad. Sci. Paris, Ser.I 352 (2014), 363–366.
- 9. Lewis J. R., Vertex-edge and Edge-vertex Domination in Graphs, Ph.D. Thesis, Clemson University, 2007.
- Lewis J. R., Hedetniemi S. T., Haynes T. W. and Fricke G. H., Vertex-edge domination, Util. Math. 81 (2010), 193–213.
- Miao F., Fan W., Chellali M., Khoeilar R., Sheikholeslami S. M. and Soroudi M., On two open problems on double vertex-edge domination in graphs, Mathematics 7 (2019), Art. ID 1010.
- Peters J. W., Theoretical and Algorithmic Results on Domination and Connectivity, Ph.D. Thesis, Clemson University, 1986.

H. Abdollahzadeh Ahangar, Department of Mathematics, Babol Noshirvani University of Technology, Shariati Ave., Babol, Postal Code: 47148-71167, I.R. Iran, *e-mail*: ha.ahangar@nit.ac.ir

M. Chellali, LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria,

e-mail: m_chellali@yahoo.com

S. M. Sheikholeslami, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran,

e-mail: s.m.sheikholeslami@azaruniv.ac.ir

M. Soroudi, Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran,

e-mail: m.soroudi@azaruniv.ac.ir

L. Volkmann, Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany, *e-mail*: volkm@math2.rwth-aachen.de