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ON MEAN STRETCH CURVATURES OF FINSLER METRICS

A. TAYEBI, M. FAGHFOURI and N. JAZER

Abstract. In this paper, we prove that every compact Finsler manifold with posi-

tive (or negative) relatively isotropic mean stretch curvature is a weakly Landsberg

metric. Then, we show that weakly stretch Finsler surface has vanishing B̃-curvature
if and only if it has vanishing H-curvature.

1. Introduction

Let (M,F ) be a Finsler manifold. The third order derivatives of 1
2F

2
x at non-zero

vector y ∈ TxM0 is called the Cartan torsion Cy of F . The rate of change of C
along Finslerian geodesics is the Landsberg curvature L of F . The Finsler metric
F satisfying L = 0 is called a Landsberg metric. As an meaningful extension of
Landsberg curvature L, Berwald [2]( presented a new non-Riemannian quantity
called by the stretch curvature Σy of F . For a non-zero vector y ∈ TxM0, define
the stretch curvature Σy : TxM × TxM × TxM × TxM → R by Σy(q, u, v, w) :=
Σ ijkl(y)qiujvkwl, where

Σijkl := Lijk|l − Lijl|k,(1)

where “|” is the horizontal derivation with respect to the Berwald connection of
F . The family Σ := {Σy}y∈TM0

is called the stretch curvature. F is called a
stretch metric if Σ = 0. As a geometric meaning, Berwald showed that the stretch
curvature of F satisfies Σ = 0 if and only if the length of an arbitrary vector is
unchanged under the parallel displacement along an infinitesimal parallelogram.
F is said to be stretch metric whenever Σ = 0. Then, this curvature was studied
by researchers such as Shibata [9], Matsumoto [5], Tayebi-Tabatabaeifar [22], and
Tayebi-Najafi in [15]. In [20], Tayebi-Sadeghi showed that a regular (α, β)-metric
of non-Randers type satisfying S = 0 is a stretch metric if and only if it is a Berwald
metric. Let F be an almost regular non-Randers type (α, β)-metric. Suppose that
F is not Berwaldian. They found a family of stretch (α, β)-metrics which are not
Landsberg metrics [20].
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In [6], Najafi-Tayebi introduced a new non-Riemannian quantity named mean
stretch curvature. Taking trace with respect to gy in first and second variables of

Σy gives rise the mean stretch curvature Σ̄y. A Finsler metric is said to be weakly
stretch metric if Σ̄ = 0. F satisfying Σ̄ = 0 is called weakly stretch metric. The
class of weakly stretch metric metrics contains the class of stretch metrics. Najafi-
Tayebi [6] proved that every compact weakly stretch manifold with negative flag
curvature reduces to a Riemannian manifold. A Finsler metric F on a manifold
M is said to be of relatively isotropic mean stretch curvature if it satisfies

Σ̄ij = λF (Ii|j − Ij|i),(2)

where λ = λ(x, y) is a scalar function on TM . If λ ≥ 0 (λ ≤ 0 or λ = constant),
then F is said to be of positive (negative or constant) relatively isotropic mean
stretch curvature. It is obvious that every weakly stretch metric is of relatively
isotropic mean stretch curvature λ = 0.

Example 1. A Finsler metric F satisfying Fxk = FFyk is called a Funk metric.
Let 〈, 〉 and | · | be the Euclidean inner product and norm on Rn, respectively. The
standard Funk metric on the Euclidean unit ball Bn(1) is defined by

(3) Θ(x, y) :=

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+
〈x, y〉

1− |x|2
, y ∈ TxBn(1) ' Rn,

F is of constant relatively isotropic mean stretch curvature λ = −1/2 (see [18]).

In [6], Najafi-Tayebi showed that every complete weakly stretch Finsler manifold
with bounded mean Cartan torsion is a weakly Landsberg manifold. Thus, a
compact weakly stretch Finsler manifold reduces to a weakly Landsberg manifold.
In this paper, we generalize their result as follows.

Theorem 1.1. Every compact Finsler manifold with positive (or negative) rel-
atively isotropic mean stretch curvature is weakly Landsberg manifold. More pre-
cisely, every complete Finsler metric with constant relatively isotropic mean stretch
curvature and bounded mean Landsberg curvature is a weakly Landsberg metric.

In [1], Akbar-Zadeh defined the important and significant non-Riemannian
quantity H. The quantity H arises from the mean Berwald curvature E by the
covariant horizontal differentiation along geodesics. In the class of Finsler met-
rics of scalar flag curvature, vanishing H-curvature results that the metric is of

constant flag curvature [7, 23]. Similarly, Shen defined B̃-curvature which is ob-
tained from the Berwald curvature B by the covariant horizontal differentiation
along geodesics (see [8, page 138]). Then, every Finsler metric with vanishing

B̃-curvature has vanishing H-curvature. But the converse might not hold. In
this paper, we find a condition on 2-dimensional Finsler metrics under which the
converse of the mentioned problem holds. More precisely, we prove the following.

Theorem 1.2. Let (M,F ) be a weakly stretch Finsler surface. Then B̃ = 0 if
and only if H = 0.
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2. Preliminaries

A Finsler metric on an n-dimensional manifold M is a function F : TM → [0,∞)
such that: (i) F is C∞ on the slit tangent bundle TM0 = TM r {0}, (ii) F is
positively 1-homogeneous on the fibers of tangent bundle TM , and (iii) for each
y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

∂2

∂r∂s

[
F 2(y + ru+ sv)

]∣∣∣
r,s=0

, u, v ∈ TxM.

The Cartan tensor Cy : TxM × TxM × TxM → R is defined by Cy(u, v, w) :=
Cijk(y)uivjwk, where

Cy(u, v, w) :=
1

2

d

d t

[
gy+tw(u, v)

]∣∣∣
t=0

, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0
is called the Cartan torsion. It is well known that

C = 0 if and only if F is Riemannian [21].
Let (M,F ) be a Finsler manifold. For y ∈ TxM0, define Iy : TxM → R by

Iy(u) =

n∑
i=1

gij(y)Cy(u, ∂i, ∂j),

where {∂i} is a basis for TxM at x ∈M . The family I := {Iy}y∈TM0
is called the

mean Cartan torsion. By definition, Iy(y) = 0 and Iλy = λ−1Iy, λ > 0. Therefore,
Iy(u) := Ii(y)ui, where Ii := gjkCijk. Every positive-definite Finsler metric F is
Riemannian if and only if Iy = 0.

The Landsberg tensor Ly : TxM×TxM×TxM → R is defined by Ly(u, v, w) :=
Lijk(y)uivjwk, where

Lijk := Cijk|sy
s,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x, and w = wi ∂
∂xi |x. The family L := {Ly}y∈TM0

is said
the Landsberg curvature of F . F is called a Landsberg metric if L = 0. The mean
Landsberg curvature Jy : TxM → R is defined by Jy(u) := Ji(y)ui, where

Ji := gjkLijk.

A Finsler metric is said to be weakly Landsbergian if J = 0.
For a vector y ∈ TxM , the Landsberg and mean Landsberg curvature of F can

be defined by

Ly(u, v, w) :=
d

d t

[
Cσ̇(t)

(
U(t), V (t),W (t)

)]∣∣∣
t=0

, Jy(u) :=
d

d t

[
Iσ̇(t)

(
U(t)

)]∣∣∣
t=0

,

where σ = σ(t) is the geodesic with σ(0) = x, σ̇(0) = y, and U(t), V (t),W (t)
are three linearly parallel vector fields along σ with U(0) = u, V (0) = v,W (0) =
w. Then the Landsberg (resp., mean Landsberg) curvature measures the rate
of change of the Cartan (resp., mean Cartan) torsion along Finslerian geodesics
[10, 16].
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For y ∈ TxM0, define Σ̄y : TxM × TxM → R by Σ̄y(u, v) := Σ̄ij(y)uivj , where
Σ̄ij := gklΣklij . In local coordinate, it is defined by

Σ̄ij = 2(Ji|j − Jj|i).

F is called a weakly stretch metric if it satisfies Σ̄ = 0.

For a Finsler manifold (M,F ), one can define a global vector field G which is
induced by F on TM0 and to be said the spray associated to (M,F ). In a standard
coordinate (xi, yi) for TM0, G is defined by G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where

Gi(x, y) :=
1

4
gil(y)

{
∂2[F 2]

∂xk∂yl
(x, y)yk − ∂[F 2]

∂xl
(x, y)

}
, y ∈ TxM,

are local functions on TM .

For a tangent vector y ∈ TxM0, define By : TxM × TxM × TxM → TxM and

Ey : TxM ⊗ TxM → R by By(u, v, w) := Bijkl(y)ujvkwl ∂
∂xi |x and Ey(u, v) :=

Ejk(y)ujvk, where

Bijkl :=
∂3Gi

∂yj∂yk∂yl
and Ejk :=

1

2
Bmjkm.

The non-Riemannian quantities B and E are called the Berwald curvature and
mean Berwald curvature of F , respectively. F is a Berwald (resp. weakly Berwald)
metric if it satisfies B = 0 (resp., E = 0) [11, 12, 13, 14].

Let us define B̃y : TxM × TxM × TxM → TxM and Hy : TxM × TxM → R by

B̃y(u, v, w) := B̃ijkl(y)ujvkwl ∂
∂xi |x and Hy(u, v) := Hij(y)uivj , where

B̃ijkl := Bijkl|sy
s and Hij := Eij|sy

s.

Then B̃y and Hy are defined as the covariant derivative of B and E along geodesics,
respectively, [7, 19, 23].

Let (M,F ) be an n-dimensional Finsler manifold and fix a local frame {bi}
for TM . Let lift the local frame {bi} to a local frame {ei} for the pull-back
tangent bundle π∗TM by setting ei(x, y) := (y,bi(x)). Let {ωi, ωn+i} denote the
corresponding local coframe for T ∗(TM0). The Berwald connection forms are the
unique local 1-forms {ω i

j } satisfying

dωi = ωj ∧ ω i
j ,

d gij = gikω
k
j + gkjω

k
i − 2Lijkω

k + 2Cijkω
n+k,

where ωn+k := d yk + yjωkj and yi are viewed as local functions on TM , whose

values yi at y are defined by y = yibi.
In this paper, we use the Berwald connection of Finsler metrics, and the h- and

v- covariant derivatives of a tensor field are denoted by “|” and “,”, respectively.
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3. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. In order to prove it, we remark
the following.

Theorem 3.1 ([4]). Let M be a orientable manifold with volume form ω and
∇ be a torsion-free connection on M such that ∇ω = 0. Then for every vector
field X and v ∈ TxM , x ∈M , the following holds

(DivX)x = − trace(X 7→ ∇vX) = ∇iXi.

Also, the following theorem holds.

Theorem 3.2 ([4]). Let M be an orientable manifold with volume form ω and
∇ be a torsion-free connection on M such that ∇ω = 0. Then for every vector
field X on M , the following holds∫

M

(DivX)ω = 0.

Now, we can prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Let p ∈M , and y, u, v, w ∈ TpM . Let c : (−∞,∞)→M
be the unit speed geodesic passing from p and

d c

d t
(0) = y.

Suppose that U = U(t), V = V (t) and W = W (t) are the parallel vector fields
along c with U(0) = u, V (0) = v, and W (0) = w. Let us put

J(t) = J
(
U(t), V (t),W (t)

)
and J′(t) = J′

(
U(t), V (t),W (t)

)
.

By assumption, F has positive (negative or constant) relatively isotropic mean
stretch curvature. Thus

Ji|j − Jj|i = λF
(
Ii|j − Ij|i

)
,(4)

where λ = λ(x, y) is a positive (negative or constant) scalar function on TM .
Contracting (4) with yj implies that

Ji|jy
j = λFJi.(5)

First, let λ = λ(x, y) be a non-negative scalar function on TM . Let us put

ϕ := JmJm.

Then, we have

ϕ′ := ϕ|sy
s = 2JmJm|sy

s = 2λFϕ.(6)

By definition, F and ϕ have positive values. If λ is negative (positive), then ϕ′ is
negative (positive). By Theorem 3.1, we get

ϕ′ := ϕ|sy
s = ξ(ϕ) = Div(ϕξ).
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Note that ξ := yiδ/δxi is a geodesic vector field on unit sphere tangent bundle
SM and Div(ξ) = 0. Since M is compact, then SM is compact, too. The volume
form ωSM on SM is obtained from volume form ω on M . By Theorem 3.2, we get∫

SM

ϕ′ωSM = 0.

Since ϕ′ is homogeneous function and its sign is negative (positive), then ϕ′ = 0.
By (6), we have ϕ = 0 or λ = 0. If ϕ = 0, then J = 0. If λ = 0, then Σ̄ = 0. In
this case,

J′ = Ji|sy
s = 0.

Thus

J(t) = J(0),

which implies that

J(t) = J(0)t+ I(t).(7)

Letting t → ±∞ and using ‖I‖ < ∞, we get J(0) = 0. Thus J(t) = 0 and F is a
weakly Landsberg metric.

Now, suppose that λ = constant. In this case, by (5), we get

J(t) = etλ J(0).

Using ‖I‖ <∞ and letting t→ ±∞ implies that

J(0) = 0.

Thus J(t) = 0 and F is a weakly Landsberg metric. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we remark that the Berwald frame was founded
by Berwald in order to study Finsler surfaces [3]. It works under the assumption
that the fundamental tensor gij(x, y) is positive-definite. Then he defined a local
field of orthonormal frame (`,m) which is called the Berwald frame.

Proof of Theorem 1.2. Let (M,F ) be a Finsler surface. We refer to the Berwald’s
frame (`i,mi), where

`i :=
yi

F
,

mi is the unit vector with `im
i = 0, `i = gij`

j ,and gij is the fundamental tensor
of Finsler metric F . Then the Berwald curvature is given by

Bijkl =
1

F
(I,2m

i − 2I,1`
i)mjmkml,

where I = I(x, y) is 0-homogeneous function called the main scalar of F and

I2 = I,2 + I,1|2.
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For more details, see [17]. By the above relation, we have

(8) Bijkl = − 2yi

3F 2

(
mjhkl +mkhjl +mlhjk

)
I,1 +

I2
3F

(
hijhkl + hikhjl + hilhjk

)
,

where hij := mimj . Therefore, every two-dimensional Finsler metric satisfies

Bijkl = (µjhkl + µkhjl + µlhjk)yi + λ(hijhkl + hikhjl + hilhjk),(9)

where

µi = − 2

3F 2
I,1mi and λ =

I2
3F

.

Multiplying (9) with yj , and using

yjBijkl = 0, and yjhij = yj(δij − F−2yiyj) = 0,

imply that
yiµi = 0.

Thus by contracting (9) with yi, we have

(10) yiB
i
jkl = F 2(µjhkl + µkhjl + µlhjk) + λyi(h

i
jhkl + hikhjl + hilhjk).

By using yiB
i
jkl = −2Ljkl and yih

i
m = 0, the equation (10) reduces to

(11) Ljkl = −1

2
F 2
(
µjhkl + µkhjl + µlhjk

)
.

Contracting (11) with gkl yields

(12) Jj = −3

2
F 2µj .

By contracting i and l in (9), we get

(13) 2Eij = 3λhij .

Plugging (12) and (13) in (9), yields

(14) Bijkl =
2

3

(
Eklh

i
j + Ejlh

i
k + Ejkh

i
l

)
− 2

3F 2

(
Jjhkl + Jkhjl + Jlhjk

)
yi.

Taking a horizontal derivation of (14) implies that

Bijkl|s =
2

3

(
Ekl|sh

i
j + Ejl|sh

i
k + Ejk|sh

i
l

)
− 2

3F 2

(
Jj|shkl + Jk|shjl + Jl|shjk

)
yi

+
4

3F 2

(
JjLkls + JkLjls + JlLjks

)
yi.(15)

Contracting (15) with ys gives us

Bijkl|sy
s =

2

3

(
Hklh

i
j +Hjlh

i
k +Hjkh

i
l

)
− 2

3F 2

(
J ′jhkl + J ′khjl + J ′lhjk

)
yi,(16)

where J ′i := Ji|sy
s is the horizontal derivation of mean Landsberg tensor along

Finslerian geodesics. By assumption, F is weakly stretch metric, and then (16)
reduces to

Bijkl|sy
s =

2

3

(
Hklh

i
j +Hjlh

i
k +Hjkh

i
l

)
.(17)

According to (17), if H = 0, then B̃ = 0. The converse is trivial. �
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