CRITICAL POINT EQUATION
ON A COMPACT \((k,\mu)\)-ALMOST CO-KÄHLER MANIFOLD

C. DEY and A. K. MONDAL

ABSTRACT. Our aim is to study critical point equation conjecture on a compact \((k,\mu)\)-almost co-Kähler manifold. We prove that if a compact \((k,\mu)\)-almost co-Kähler manifold of dimension greater than three satisfies critical point equation, then either \(\mu\) is constant or the manifold is an Einstein manifold provided \(k < 0\).

1. INTRODUCTION

Let \((M, g)\) be a compact (without boundary) oriented Riemannian manifold with dimension \((2n + 1) \geq 3\). Also, assume that \(\mathcal{N}\) is the set of Riemannian metrics on \(M\) with unit volume and \(\mathcal{T} \subset \mathcal{N}\) is the subset of metrics with constant scalar curvature. Now, the total scalar curvature functional \(\mathcal{R}: \mathcal{N} \to \mathbb{R}\) is defined as follows:

\[
\mathcal{R}(g) = \int_M r_g dM_g,
\]

where \(r_g\) and \(dM_g\) are the scalar curvature and the volume form determined by the metric, respectively.

If we consider the above functional restricted to \(\mathcal{T}\), then the Euler-Lagrangian equation is given by

\[
\left(\frac{r}{2n} - S\right)\lambda - \text{Hess} \lambda = S - \frac{r}{2n + 1} g,
\]

for some smooth function \(\lambda\) on \(M\), where \(S\), \(r\), and \(\text{Hess} \lambda\), respectively, the Ricci tensor, scalar curvature, and Hessian of the smooth function \(\lambda\).

In particular, if \(\lambda\) is constant, then \(\lambda = 0\) and the metric will be Einstein. Therefore, we have the following definition.

Definition 1.1. A compact Riemannian manifold \((M, g)\) of dimension \((2n + 1) \geq 3\) with constant scalar curvature and unit volume together with a non-constant smooth potential function \(\lambda\) satisfying (1.2), is called critical point equation metric.

Received September 14, 2019.

2010 Mathematics Subject Classification. Primary 53C25, 53D15.

Key words and phrases. Critical point equation; compact \((k, \mu)\)-almost co-Kähler manifold; Einstein manifold.
The conjecture “a CPE metric will be Einstein” was proposed in 1984 by A. Besse [1], but has yet to be proved in different manifolds by many authors. Lafontaine [11] proved that the conjecture is true for a locally conformally flat manifold. Hwang [9] proved the CPE conjecture provided $\lambda \geq -1$. In [3], Chang et. al. were able to solve the conjecture for a manifold satisfying the parallel Ricci tensor condition, also in [22], they proved that if the manifold with the critical point metric has harmonic curvature, then it is isometric to a standard sphere. Several authors ([10], [12], [16], [17]) and many others have studied CPE metric in compact Riemannian and contact metric manifolds.

Motivated by the above studies in the present paper, we consider CPE conjecture on (k,μ)-almost co-Kähler manifolds. The present paper is organized as follows: after introduction in Section 2, we discuss some preliminaries of almost co-Kähler manifolds. In Section 3, we recall some fundamental formulas and properties of (k,μ)-almost co-Kähler manifolds. Section 4 is devoted to prove our main result. Our main Theorem can be presented as follows:

Theorem 1.2. If $M^{2n+1}(\phi,\xi,\eta,g)$, $n > 1$, be a compact (k,μ)-almost co-Kähler manifold with $k < 0$ and satisfies critical point equation, then either μ is constant or the manifold is an Einstein manifold.

2. Preliminaries

Let M be a $(2n + 1)$-dimensional smooth manifold and if there exist a $(1,1)$-type tensor field ϕ, a vector field ξ, and a 1-form η such that

\begin{equation}
\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi \xi = 0, \quad \eta \circ \phi = 0,
\end{equation}

then we say that the triplet (ϕ,ξ,η) is an almost contact structure on M^{2n+1}. In general, a smooth manifold M^{2n+1} equipped with an almost contact structure is called an almost contact manifold. If on an almost contact manifold M, there exists a Riemannian metric g satisfying

\begin{equation}
g(\phi U,\phi V) = g(U,V) - \eta(U)\eta(V)
\end{equation}

for any vector fields U, V, then M becomes an almost contact metric manifold equipped with an almost contact metric structure (ϕ,ξ,η,g). From (2.1), it follows that

\begin{equation}
g(U,\phi V) = -g(\phi U,V), \quad g(U,\xi) = \eta(U),
\end{equation}

for all vector fields U, V. An almost contact metric structure is said to be normal if the induced almost complex structure J on the product manifold $M^{2n+1} \times \mathbb{R}$ defined by

\begin{equation}
J(U,f \frac{d}{dt}) = (\phi U - f\xi,\eta(U)\frac{d}{dt})
\end{equation}

is integrable, where U is tangent to M, t is the coordinate of \mathbb{R}, and f is a smooth function on $M \times \mathbb{R}$. An almost contact metric structure becomes a contact metric
structure if
\[(2.4)\quad g(U, φV) = dη(U, V) = Φ(U, V)\]
for all \(U, V\) tangent to \(M\).

A normal almost contact metric manifold is said to be Sasakian. That is, an almost contact metric manifold is Sasakian if and only if
\[(2.5)\quad (\nabla_U φ)V = g(X, V)ξ - η(V)U\]
for any vector fields \(U, V\).

By an almost co-Kähler manifold we mean an almost contact metric manifold such that both the 1-form \(η\) and the 2-form \(Φ\) are closed. In particular, an almost co-Kähler manifold is said to be a co-Kähler manifold if the associated almost contact structure is normal, which is also equivalent to \(\nabla φ = 0\) or to \(\nabla Φ = 0\). It is well known that the Riemannian product of a real line and a (almost) Kähler manifold admit a (almost) co-Kähler structure. However, there exist some examples of (almost) co-Kähler manifolds which are not globally the product of a (almost) Kähler manifold and a real line (see, for example, Chinea et al. \[2\], Marrero and Padrón \[13\]). Note that almost co-Kähler manifolds are just the almost cosymplectic manifolds studied by Wang \([19\], \[20\]).

On an almost co-Kähler manifold \((M^{2n+1}, φ, ξ, η, g)\), we set \(h = \frac{1}{2} ξ φ\) and \(h' = h ◦ φ\) (both \(h\) and \(h'\) are symmetric operators with respect to the metric \(g\)). The following formulas can be found in Dacko \[5\], Endo \([7\], \[8\]) and Olszak \([14\], \[15\]):
\[(2.6)\quad hξ = 0, \quad hφ + φh = 0, \quad \text{tr} h = \text{tr} h',\]
\[(2.7)\quad \nabla ξ φ = 0, \quad \nabla ξ = h', \quad \text{div} ξ = 0,\]
\[(2.8)\quad S(ξ, ξ) + ∥h∥^2 = 0.\]
Here 'tr' and 'div' denote the trace and divergence operators, respectively, with respect to the metric \(g\). The Ricci tensor \(S\) is defined by \(S(U, V) = \text{tr} [\cdot → R(\cdot, U)V]\) and \(Q\) is the Ricci operator defined by \(g(QU, V) = S(U, V)\).

If we put \(l = R(\cdot, ξ)ξ\), then we can also show
\[(2.9)\quad φlφ - l = 2h^2,\]
where the Riemannian curvature tensor \(R\) is defined by
\[R(U, V)W = \nabla_U \nabla_V W - \nabla_V \nabla_U W - \nabla_{[U, V]} W.\]
The \((k, µ)\)-nullity distribution \(N(k, µ)\) on a contact metric manifold is defined by
\[N(k, µ) : p → N_p(k, µ) = \{W ∈ T_pM : R(U, V)W = (kI + µh)(g(V, W)U - g(U, W)V)\}\]
for all \(U, V ∈ T_pM\), where \((k, µ) ∈ \mathbb{R}^2\). A contact metric manifold \(M^{2n+1}\) with \(ξ ∈ N(k, µ)\) is called a \((k, µ)\)-manifold.
3. \((k, \mu)\)-almost co-Kähler manifolds

By a \((k, \mu)\)-almost co-Kähler manifold, we mean an almost co-Kähler manifold such that the Reeb vector field \(\xi\) belongs to the generalized \((k, \mu)\)-nullity distribution, that is,

\[R(U, V)\xi = k[\eta(V)U - \eta(U)V] + \mu[\eta(V)hU - \eta(U)hV] \]

for all \(U, V \in M^{2n+1}\), where \(k, \mu\) are smooth functions on \(M^{2n+1}\).

In this paper, we consider a \((k, \mu)\)-almost co-Kähler manifold as a \((k, \mu)\)-almost co-Kähler manifold with \(k < 0\) (for more details, see [8]). Such manifolds were generalized to \((k, \mu, v)\)-spaces by Dacko and Olszak [5]. Recently in [18], Suh and De studied \((k, \mu)\)-almost co-Kähler manifold. From equation (3.1), we obtain

\[l = -k\phi^2 + \mu k, \]

which together with (2.9) gives

\[h^2 = k\phi^2. \tag{3.2} \]

Now, we state the following Lemma, given by Wang [19].

Lemma 3.1. Let \(M^{2n+1}(\phi, \xi, \eta, g)\) be a \((k, \mu)\)-almost co-Kähler manifold of dimension greater than 3 with \(k < 0\). Then the Ricci operator \(Q\) of \(M^{2n+1}\) is given by

\[QV = \mu hV + 2nk\eta(V)\xi \]

for all \(U \in \chi(M)\), where \(D\) denotes the gradient operator with respect to \(g\).

Moreover, the scalar curvature of \(M^{2n+1}\) is \(2nk\).

4. Proof of the main Theorem

In this section, we consider a compact \((k, \mu)\)-almost co-Kähler manifold satisfying the critical point equation.

Taking trace of the equation (1.2), we have

\[\Delta \lambda = -\frac{r\lambda}{2n}. \tag{4.1} \]

Using (4.1) in (1.1), we obtain

\[\nabla_U D\lambda = (\lambda + 1)QU + fU, \quad \text{where } f = -r\left(\lambda \frac{1}{2n} + \frac{1}{2n+1}\right) \]

for any \(U \in \chi(M)\), where \(D\) denotes the gradient operator with respect to \(g\). Taking the covariant derivative of (4.2) with respect to \(V\), we get

\[\nabla_V \nabla_U D\lambda = (V\lambda)QU + (\lambda + 1)(\nabla_V Q)U + (Vf)U + j\nabla_V U \]

for any \(U, V \in \chi(M)\). Similarly, we get

\[\nabla_U \nabla_V D\lambda = (U\lambda)QV + (\lambda + 1)(\nabla_U Q)V + (Uf)V + j\nabla_V V. \]

Also, we have

\[\nabla_{[U,V]} D\lambda = (\lambda + 1)Q[U,V] + f[U,V], \]

where \([U,V]\) denotes the Lie bracket of \(U\) and \(V\).
and using (4.3), (4.4), and (4.5), we have

\[
R(U,V)D\lambda = \nabla_U \nabla_V D\lambda - \nabla_V \nabla_U D\lambda - \nabla_{[U,V]} D\lambda \\
= (U\lambda)QV - (V\lambda)QU + (\lambda + 1)[(\nabla_U Q)V - (\nabla_V Q)U] \\
+ (Uf)V - (Vf)U.
\]

(4.6)

By setting \(U = \xi\) in (4.6) and using (3.3), we have

\[
R(\xi,V)D\lambda = \mu(\xi\lambda)hV + 2nk(\xi\lambda)\eta(V)\xi - 2nk(V\lambda)\xi \\
+ (\lambda + 1)\left\{ (\nabla_\xi Q)V - (\nabla_V Q)\xi \right\} + (jf)V - (Vf)\xi.
\]

(4.7)

Taking covariant derivative of (3.3) with respect to arbitrary vector field \(U\), we get

\[
(\nabla_U Q)V = (U\mu)hV + \mu(\nabla_U h)V + 2nk(\nabla_U \eta)(V)\xi + 2nk\eta(V)\nabla_U \xi.
\]

(4.8)

In view of (4.8) and using (2.7), we have

\[
(\nabla_\xi Q)V - (\nabla_V Q)\xi = (\xi\mu)hV + \mu\left\{ (\nabla_\xi h)V - (\nabla_V h)\xi \right\} - 2nk\phi V.
\]

(4.9)

Taking inner product of both sides of (4.7) with respect to \(\xi\) and using the above relation yield

\[
g(R(\xi,V)D\lambda,\xi) = 2nk(\xi\lambda)\eta(V) - 2nk(V\lambda) + (jf)\eta(V) - (Vf).
\]

(4.10)

On the other hand, from (3.1), we get

\[
g(R(\xi,V)\xi,D\lambda) = k[\eta(V)g(D\lambda,\xi) - g(V,D\lambda)] - \mu g(hV,D\lambda).
\]

(4.11)

Combining (4.10) and (4.11), we have

\[
2nk(\xi\lambda)\eta(V) - 2nk(V\lambda) + (jf)\eta(V) - (Vf) \\
= k[\eta(V,D\lambda) - \eta(V)g(D\lambda,\xi)] + \mu g(hV,D\lambda).
\]

Removing \(V\) from the above equation, we get

\[
2nk(\xi\lambda)\xi + (jf)\xi = (2n + 1)kD\lambda - k\eta(D\lambda)\xi + Df + \mu hD\lambda.
\]

(4.12)

In virtue of \(f = -r(\frac{\lambda}{2n} + \frac{1}{m+1})\) and Lemma 3.1, we obtain

\[
\xi f = -k(\xi\lambda) \quad \text{and} \quad Df = -k(D\lambda).
\]

(4.13)

With the help of the above relations, (4.12) reduces to

\[
2nk(\xi\lambda)\xi - D\lambda = \mu hD\lambda.
\]

(4.14)

Applying \(h\) on both sides of (4.14) and since \(k < 0\), using (3.2), we obtain

\[
2nhD\lambda = \mu(D\lambda - \eta(D\lambda)\xi).
\]

Using the above expression in (4.14), we get

\[
(4n^2k + \mu^2)(\xi\lambda)\xi - D\lambda = 0.
\]

(4.15)

Now, there arise two cases:

Case 1. Let \(\mu^2 = -4n^2k\), this implies \(\mu\) is constant.

Case 2. Let \(D\lambda = (\xi\lambda)\xi\), and taking covariant derivative of this equation with
respect to U and using (2.7), we obtain $\nabla_U D\lambda = U(\xi(\lambda))\xi + (\xi)h'U$. Combining this relation with (4.2) yields
\[
(\lambda + 1)QU = U(\xi(\lambda))\xi + (\xi)h'U - fU.
\]
Equating the above relation with (3.3), we infer that
\[
(\lambda + 1)(\mu hU + 2nk\eta(U)\xi) = U(\xi(\lambda))\xi + (\xi)h'U - fU. \tag{4.15}
\]
Taking inner product of the above relation with V, we get
\[
(\lambda + 1)(\mu g(hU,V) + 2nk\eta(U)\eta(V)) = U(\xi(\lambda))\eta(V) + (\xi)g(h'U,V) - f g(U,V). \tag{4.16}
\]
Contracing (4.16), we obtain
\[
\xi(\xi(\lambda)) = 2nk(\lambda + 1) + (2n + 1)f. \tag{4.17}
\]
Since $\nabla_\xi D\lambda = \xi(\xi(\lambda))\xi$, putting $U = \xi$ in (4.2), we deduce that
\[
\xi(\xi(\lambda)) = \{2nk(\lambda + 1) + f\}. \tag{4.18}
\]
Now, (4.17) and (4.18) together imply $f = 0$, then from (4.2), we get $\lambda = -\frac{2n}{2n+1}$.
This implies that the manifold is an Einstein manifold.
This completes the proof.

Since an almost cosymplectic manifold and an almost co-Kähler manifold are
the same, we can say the following:
If we consider $k = -1$ and use $\mu^2 = -4n^2k$, we have $|\mu| > 2$, then the compact
(k,μ)-almost co-Kähler manifold M is locally isometric to a Lie group (see [6, Proposition 5.3]). Thus we state the following corollary.

Corollary 4.1. If a compact (k,μ)-almost co-Kähler manifold of dimension
greater than 3 satisfies critical point equation, then either the manifold is locally
isometric to a Lie group or the manifold is an Einstein manifold provided $k = -1$.

Remark. If we consider $k=0$ in compact (k,μ)-almost co-Kähler manifold,
then in view of the Theorem 2 of [4], we have ξ is killing and the manifold M is
locally isometric to a product of a real line and an almost Kähler manifold.

Acknowledgment. The authors are thankful to the referee for his/her valuable
suggestions towards the improvement of the paper.

References

5. Dacko P. and Olszak Z., On almost cosymplectic \((k,\mu,e)\)-space, Banach Center Publ. 69 (2005), 211–220.

C. Dey, Dhamla Jr. High School, Vill-Dhamla, P.O.-Kedarpur, Dist-Hooghly, Pin-712406, West Bengal, India,
e-mail: dey9chiranjib@gmail.com

A. K. Mondal, Department of Mathematics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata-700131, West Bengal, India,
e-mail: kalam_ju@yahoo.co.in