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ON CURVES OF CONSTANT BREADTH

IN A 3-DIMENSIONAL LIE GROUP

D. W. YOON, Y. TUNÇER and M. K. KARACAN

Abstract. In this paper, we investigate the properties of curves of constant breadth
in a 3-dimensional Lie group. Also, we find the condition of general helix as constant
breadth curves and construct constant breadth curves which the tangent component
of the curve vanishes.

1. Introduction

In 1780, Euler introduced curves of constant breadth and studied those on a
Euclidean plane [6]. After him, many mathematicians investigated the geometric
properties of the plane curves of constant breadth [4], [12], [15]. As a extension,
Fujiwara [7] defined constant breadth for space curves and he obtained a problem
to determine whether there exists space curve of constant breadth or not. Fur-
thermore, Blaschke [2] defined the curves of constant breadth on a sphere. Many
geometers have been interested in studying curves of constant breadth when an
ambient space is the Euclidean space and the Minkowski space ([8], [10], [11],
[14], [16], [17], etc).

In this paper, we study curves of constant breadth in a 3-dimensional Lie group
and construct them.

2. Preliminaries

Let G be a Lie group with a bi-invariant Riemannian metric 〈 , 〉 and G be the Lie
algebra of G. Then G is isomorphic to TeG, where e is identity of G. Moreover,
the following equations

〈X, [Y, Z]〉 = 〈[X,Y ], Z〉(2.1)

and

DXY =
1

2
[X,Y ](2.2)

are satisfied with respect to bi-invariant metric for all X,Y, Z ∈ G, where D is the
Levi-Civita connection of Lie group G.
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Let α : I ⊂ R→ G be a parameterized curve with parameter t and {V1, V2, · · · ,
Vn} be an orthonormal basis of G. In this case, we write that any smooth vector
fields W and Z along the curve α as W =

∑n
i=1 wiVi and Z =

∑n
i=1 ziVi, where

wi : I → R and zi : I → R are smooth functions. Furthermore, the Lie bracket of
two vector fields W and Z, is given by

[W,Z] =

n∑
i,j=1

wizj [Vi, Vj ].(2.3)

Let Dα′(t)W be the covariant derivative of W along the curve α, V1 = α′ and

Ẇ =
∑n
i=1 ẇiVi, where ẇi = dwi/dt. Then we have (cf. [13])

Dα′(t)W = Ẇ +
1

2
[V1,W ].(2.4)

Let α : I → G be a parameterized curve with the Frenet frame {T,N,B} in a
3-dimensional Lie group G and s be arc-length of the curve α. Then the Frenet
formulas of the curve α is given by

DTT = k1N, DTN = −k1T + k2B, DTB = −k2N,
where k1 and k2 are the curvature functions of α.
For later use we define smooth function k2 as follows:

k2(s) =
1

2
〈[T,N ], B〉.(2.5)

Proposition 2.1 ([18]). Let α be a parameterized curve in a 3-dimensional
Lie group G with a bi-invariant metric. Then we have

[T,N ] = 〈[T,N ], B〉B = 2k2B,

[B, T ] = 〈[B, T ], N〉N = 2k2N,

[N,B] = 〈[N,B], T 〉T = 2k2T.

Remark. Let G be a 3-dimensional Lie group with a bi-invariant metric. Then
it is one of the Lie groups SO(3), S3 or a commutative group, and the following
statements hold (see [5]):

(i) If G is SO(3), then k2(s) = 1
2 .

(ii) If G is S3 ∼= SU(2), then k2(s) = 1.
(iii) If G is a commutative group, then k2(s) = 0.

Theorem 2.1 ([3]). A parameterized curve in a 3-dimensional Lie group G
with a bi-invariant metric is a general helix if and only if

k2(s)− k2(s) = ck1(s),(2.6)

where c is constant.

From (2.6), a curve with k1 6= 0 is a general helix if and only if (k2−k2k1
)(s) is

constant. In the Euclidean sense if both k1(s) 6= 0 and k2(s)−k2(s) are constants,
it is a cylindrical helix. We call such a curve a circular helix in a 3-dimensional
Lie group G.
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3. Curves of constant breadth in Lie group

In this section, we define space curves of constant breadth in a 3-dimensional Lie
group G and construct them.

Definition 3.1. A curve α : I → G in a 3-dimensional Lie group G is called
a curve of constant breadth if there exists a curve β : I → G such that at the
corresponding points of curves, the parallel tangent vectors of α and β at α(s) and
β(s∗) at s, s∗ ∈ I are opposite directions and the distance between these points is
always constant. In this case, (α, β) is called a curve pair of constant breadth.

Let now (α, β) be a curve pair of constant breadth and s, s∗ be arc-length of α
and β, respectively. Then we may write the following equation

β(s∗) = α(s) +m1(s)T (s) +m2(s)N(s) +m3(s)B(s),(3.1)

where mi (i = 1, 2, 3) are smooth functions of s.
Differentiating (3.1) with respect to s and using (2.4), we obtain

T ∗
ds∗

ds
= (1 +m′1 −m2k1)T + (m′2 +m1k1 −m3k2 +m3k2)N

+ (m′3 +m2k2 −m2k2)B,
(3.2)

where T ∗ denotes the tangent vector of β. Here the prime ′ denotes the derivative
with respect to s. Since T = −T ∗, from (3.2), we have

1 +m′1 −m2k1 = −ds∗

ds
,(3.3a)

m′2 +m1k1 −m3(k2 − k2) = 0,(3.3b)

m′3 +m2(k2 − k2) = 0.(3.3c)

If ϕ is the angle between the tangent vector of α and a given fixed direction, the
curvature of α is κ = dϕ

ds . We put ρ = 1/k1, ρ
∗ = 1/k1

∗, where k1
∗ is the curvature

function of β. If we take f(ϕ) = ρ+ ρ∗, then equation (3.3) can be rewritten as

dm1

dϕ
= m2 − f(ϕ),(3.4a)

dm2

dϕ
= −m1 +m3ρ(k2 − k2),(3.4b)

dm3

dϕ
= −m2ρ(k2 − k2).(3.4c)

Differentiating (3.4b) with respect to ϕ, we obtain the following equation

ρ(k2 − k2)(m2 − f(ϕ)) = − ρ(k2 − k2)
d2m2

dϕ2
−m2ρ

3(k2 − k2)3

+ (m1 +
dm2

dϕ
)

d

dϕ

(
ρ(k2 − k2)

)
.

(3.5)

If the distance between the opposite points of α and β is constant, then

‖α− β‖2 = m2
1 +m2

2 +m2
3 = constant,
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which implies

m1
dm1

dϕ
+m2

dm2

dϕ
+m3

dm3

dϕ
= 0.(3.6)

Combining (3.4) and (3.6), we get

m1

(
m2 −

dm1

dϕ

)
= 0.(3.7)

We consider two cases separately.
Case 1. Suppose m2 = dm1

dϕ . Then f(ϕ) = 0 in (3.4a), it follows that (3.5) becomes

m2ρ(k2 − k2) + ρ(k2 − k2)
d2m2

dϕ2
+m2ρ

3(k2 − k2)3

− (m1 +
dm2

dϕ
)

d

dϕ

(
ρ(k2 − k2)

)
= 0.

(3.8)

We consider m1 is non-zero constant and m2 = 0. Then from (3.8), ρ(k2 − k2) =
k2−k2
k1

= constant. It shows that α is a general helix.

Case 2. Suppose m1 = 0. Then equation (3.4) can be rewritten in the form

m2 = f(ϕ),(3.9a)

dm2

dϕ
= m3ρ(k2 − k2),(3.9b)

dm3

dϕ
= −m2ρ(k2 − k2).(3.9c)

Differentiating (3.9b) with respect to ϕ, we have

d2m2

dϕ2
−

d
dϕ (ρ(k2 − k2))

ρ(k2 − k2)

dm2

dϕ
+
(
ρ(k2 − k2)

)2
m2 = 0.(3.10)

To solve this equation, let

R(ϕ) =

d
dϕ

(
ρ(k2 − k2)

)
ρ(k2 − k2)

, S(ϕ) =
(
ρ(k2 − k2)

)2
(3.11)

and let the transformation be z = θ(ϕ) with dz
dϕ = (S(ϕ)/a2)1/2, where a is any

positive integer. Then, equation (3.10) may be written in the form

d2m2

dz2
+

(
d2z
dϕ2 −R(ϕ) dz

dϕ

( dz
dϕ )2

)
dm2

dz
+
S(ϕ)

( dz
dϕ )2

m2 = 0.(3.12)

Since dz
dϕ = (S(ϕ)/a2)1/2, equation (3.12) becomes

d2m2

dz2
+ a2m2 = 0,(3.13)

and its general solution is given by

m2 = c cos(az + b) = c cos

(∫ ϕ

0

k2 − k2
k1

dϕ+ b

)
,(3.14)
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which implies that from (3.9b), we have

m3 = −c sin

(∫ ϕ

0

k2 − k2
k1

dϕ+ b

)
,(3.15)

where b and c are constants of integration.
Using (3.14) and (3.15), an infinite number of β can be derived and the distance
between the corresponding points of a pair curve of constant breadth is c.

Thus, we have the following theorems

Theorem 3.1. The curve of constant breadth with the tangent component m1 =
non-zero constant and the principal normal component m2 = 0 is a general helix
in a 3-dimensional Lie group.

Example 3.2. We consider a curve parameterized by

α(s) =

(
1√
2

cos s,
1√
2

sin s,
1√
2
s

)
.

The curve has the curvature functions k1 = 1√
2

and k2 = 1√
2
. We put m1 =

1,m2 = 0, m3 = −1 and k2 = 0. Then we can construct the curve of constant
breadth of the curve α, this is, it is given by

β(s) =

(
1√
2

cos s−
√

2 sin s,
1√
2

sin s+
√

2 cos s,
1√
2
s

)
.

By a long computation, the curvature functions of the curve β are given by (k1)β =√
10
6 and (k2)β =

√
2
6 . Thus, the curve β is a helix in a commutative group G.

Theorem 3.3. Let (α, β) be a pair curve of constant breadth in a 3-dimensional
Lie group. If α is a curve with m1 = 0, then a curve β is expressed as

β = α+ c cos

(∫ ϕ

0

k2 − k2
k1

dϕ+ b

)
N − c sin

(∫ ϕ

0

k2 − k2
k1

dϕ+ b

)
B.
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