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NOTE ON THE DAVENPORT CONSTANT FOR FINITE

ABELIAN GROUPS WITH RANK THREE

M. ZAKARCZEMNY

Abstract. Let G be a finite abelian group and D(G) denote the Davenport constant
of G. We derive new upper bound for the Davenport constant for all finite abelian

groups of rank three. Our main result is that

D(Cn1 ⊕ Cn2 ⊕ Cn3 ) ≤ (n1 − 1) + (n2 − 1) + (n3 − 1) + 1 + (a3 − 3)(n1 − 1),

where 1 < n1|n2|n3 ∈ N and a3 ≤ 20369 is a constant.

Therefore, D(Cn1 ⊕ Cn2 ⊕ Cn3 ) grows linearly with the variables n1, n2, n3.
The new result is the given upper bound for a3. Finally, we give an application of

the Davenport constant to smooth numbers.

1. Introduction

We study the Davenport constant, a central combinatorial invariant which has
been investigated since Davenport popularized it in the 60’s, see [8, 10, 14] for
a survey. We derive new explicit upper bound for the Davenport constant for
groups of rank three. The exact value of the Davenport constant for groups of
rank three is still unknown and this is an open and well-studied problem, see
[11, 15, 16, 17].

2. Basic notations

Let N denote the set of the positive integers (natural numbers). We set [a, b] =
{x : a ≤ x ≤ b, x ∈ Z}, where a, b ∈ Z. Let G be a non-trivial additive finite
abelian group. G can be uniquely decomposed as a direct sum of cyclic groups
Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr with the integers satisfying 1 < n1| . . . |nr. The number of
summands in the above decomposition of G is denoted by r = r(G) and called
the rank of G. The integer nr denotes the exponent exp(G). In addition, we

define D∗(G) as D∗(G) = 1 +
r∑
i=1

(ni − 1). We denote By F(G) the free, abelian,

multiplicatively written monoid with basis G. An element S ∈ F(G) is called
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sequence over G. We write any finite sequence S of l elements of G in the form∏
g∈G g

νg(S) = g1 · . . . · gl, where l is the length of S, denoted by |S|; νg(S) is

the multiplicity of g in S. The sum of S is defined as σ(S) =
∑
g∈G νg(S)g. Our

notation and terminology are consistent with [14] and [4].
The Davenport constant D(G) is defined as the smallest natural number t such

that each sequence over G of length at least t has a non-empty zero-sum subse-
quence. Equivalently, D(G) is the maximal length of a zero-sum sequence of the
elements of G and with no proper zero-sum subsequence. The best bounds for
D(G) known so far are

(1) D∗(G) ≤ D(G) ≤ exp(G)
(

1 + log |G|
exp(G)

)
.

See [5, Theorem 7.1] and [1, Theorem 1.1]. The new lower bounds for abelian
non-p-groups were given recently in [13, Theorem 4.6].

3. Theorems and definitions

Definition 3.1. For an additive finite abelian group G, m ∈ N, we denote by:

1. Dm(G), the smallest natural number t such that every sequence S over G
of length |S| ≥ t contains at least m disjoint and non-empty subsequences
S′1, S

′
2, . . . , S

′
m such that σ(S′i) = 0 for i ∈ [1,m].

2. η(G), the smallest natural number t such that every sequence S over G of
length |S| ≥ t contains a non-empty subsequence S′ such that σ(S′) = 0,
|S′| ∈ [1, exp(G)].

3. s(G), the smallest natural number t such that every sequence S over G of
length |S| ≥ t contains a non-empty subsequence S′ such that σ(S′) = 0,
|S′| = exp(G).

Remark 3.2. Dm(G) is called the m-th Davenport constant and s(G) the
Erdös-Ginzburg-Ziv constant. In this notation, D(G) = D1(G), see [6, 7, 12].

Lemma 3.3. Let G be a finite abelian group, H a subgroup of G, and k a natural
number. Then

D(G) ≤ DD(H)(G/H),(2)

Dk(G) ≤ exp(G)(k − 1) + η(G).(3)

Proof. See [7, Remark 3.3.3, Theorem 3.6] and [10, Lemma 6.1.3]. �

Lemma 3.4. Let G be a finite abelian group.

1. If G = Cn1
⊕ Cn2

with 1 ≤ n1|n2, then

s(G) = 2n1 + 2n2 − 3, η(G) = 2n1 + n2 − 2,D(G) = n1 + n2 − 2.

2. For all finite abelian groups, D(G) ≤ η(G) ≤ s(G)− exp(G) + 1.

Proof. See [10, Theorem 5.8.3, Lemma 5.7.2] and [8, Theorem 6.3]. �
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Remark 3.5. Alon and Dubiner proved that for every natural r and every
prime p, we have

(4) s(Crp) ≤ c(r)p,

where c(r) is recursively defined as follows

(5) c(r) = 256r(log2 r + 5)c(r − 1) + (r + 1) for r ≥ 2, c(1) = 2.

There is a misprint in the corresponding formulas [2, (6)], [3, (1.4)].
It should be (5) instead of c(r) = 256(r log2 r + 5)c(r − 1) + (r + 1), for more

details, see [4, Remark 3.7]. Note that s(C2
p) = 4p−3 ≤ 4p (see, Lemma 3.4), thus

we can start a recurrence with initial term c(2) = 4 and get c(3) < 20233.005.

Remark 3.6. The method used in [2], yields that for every natural number
r ≥ 1, there exists ar > 0 such that for every natural number n, we have

(6) η(Crn) ≤ ar(n− 1) + 1.

We identify ar with its smallest possible value. It is known that

(7) 2r − 1 ≤ ar ≤ (cr log r)r,

where c > 0 is an absolute constant. We know also that a1 = 1, a2 = 3. See, [15]
and Lemma 3.4.

Theorem 3.7 (Edel, Elsholtz, Geroldinger, Kubertin, Rackam [4, Theorem 1.4]).
Let G = Cn1

⊕ · · ·⊕Cnr
with r = r(G) and 1 < n1| . . . |nr. Let b1, . . . , br ∈ N such

that for all primes p with p|nr and all i ∈ [1, r], we have s(Cip) ≤ bi(p − 1) + 1.
Then

(8) s(G) ≤
r∑
i=1

(br+1−i − br−i)ni − br + 1,

where b0 = 0. In particular, if n1 = · · · = nr = n, then s(G) ≤ br(n− 1) + 1.

Lemma 3.8. Let n ≥ 2 be a natural number. Then

(9) η(C3
n) ≤ 20369(n− 1) + 1 and s(C3

n) ≤ 20370(n− 1) + 1.

Therefore, a3 ≤ 20369.

Proof. For every finite abelian group G, by [10, Theorem 5.7.4], we have

(10) s(G) ≤ |G|+ exp(G)− 1.

Thus, if p is a prime number such that 2 ≤ p ≤ p34 = 139, then

(11) s(C3
p) ≤ p3 + p− 1 < 20370(p− 1) + 1.

Assume now that p is a prime number such that p ≥ p35 = 149. By Remark 3.5,
we have s(C3

p) < 20233.005 p < 20370(p − 1) + 1 since p ≥ 149. Therefore, for

all primes p, we have s(C3
p) < 20370(p − 1) + 1. By Lemma 3.4, we also have

s(Cp) = 2(p− 1) + 1, s(C2
p) = 4(p− 1) + 1 for all primes p. Hence by Theorem 3.7

we obtain the upper bound s(C3
n) ≤ 20370(n− 1) + 1 for all natural n ≥ 2. Thus,

by Lemma 3.4 we obtain η(C3
n) ≤ 20369(n− 1) + 1 for all natural n ≥ 2. �
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Theorem 3.9. For an abelian group Cn1
⊕Cn2

⊕Cn3
, where 1 < n1|n2|n3 ∈ N,

there exists an absolute constant a3 ≤ 20369 such that

(12)
D(Cn1 ⊕ Cn2 ⊕ Cn3) ≤ (n1 − 1) + (n2 − 1) + (n3 − 1) + 1

+ (a3 − 3)(n1 − 1).

Proof. This proof is build on the well-know strategy. Let G be a non-trivial
finite abelian group Cn1

⊕ Cn2
⊕ Cn3

such that 1 < n1|n2|n3 ∈ N. We have that
the exponent exp(G) = n3. Denoting a subgroup of G by H such that

(13) H ∼= Cn2

n1

⊕ Cn3

n1

,

where n2

n1
, n3

n1
∈ N. The quotient group G/H ∼= C3

n1
. By Lemma 3.3, we get

(14) D(G) ≤ DD(H)(G/H) = Dn2

n1
+
n3

n1
−1(C3

n1
)

since D(H) = n2

n1
+ n3

n1
− 1 (see Lemma 3.4). By Lemma 3.3, and (6)

D(G) ≤ exp(C3
n1

)(n2

n1
+ n3

n1
− 2) + η(C3

n1
)

≤ n1(n2

n1
+ n3

n1
− 2) + a3(n1 − 1) + 1

= (n1 − 1) + (n2 − 1) + (n3 − 1) + 1 + (a3 − 3)(n1 − 1),

(15)

where a3 is a constant. By Remark 3.6 and (9), we obtain a3 ≤ 20369. �

Remark 3.10. Let 1 < n1|n2|n3 ∈ N. By Theorem 3.9, we have

(16) D(Cn1
⊕ Cn2

⊕ Cn3
) ≤ 20367(n1 − 1) + (n2 − 1) + (n3 − 1) + 1.

If n3 >
20367(n1−1)+n2−1

logn1+logn2
, then the upper bound in (16) is smaller than the upper

bound from (1). See also [3].

Corollary 3.11. Let n ≥ 2 be a natural number and let ω(n) denote the number
of distinct prime factors of n. Then

(17) 3(n− 1) + 1 ≤ D(C3
n) ≤ min{20369, 3ω(n)}(n− 1) + 1.

Proof. Taking into account the inequality (1) and using Theorem 3.9, we obtain

3(n− 1) + 1 ≤ D(C3
n) ≤ 20369(n− 1) + 1.

By [3, Theorem 1.2], we get D(C3
n) ≤ 3ω(n)(n− 1) + 1. �

Under the assumption that the conjecture of Gao and Thangadurai [9, Conjec-
ture 0] is valid, we can surmise that a3 = 8. Thus, it seemes desirable to attempt
to put the following conjecture:

Conjecture 3.12. Let G be an abelian group Cn1
⊕ Cn2

⊕ Cn3
such that

1 < n1|n2|n3 ∈ N. Then

(18) D∗(G) ≤ D(G) ≤ D∗(G) + 5(n1 − 1),

where D∗(G) = n1 + n2 + n3 − 2.
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We conclude with an application of Theorem 3.9. If F is a set of prime integers,
then we shall refer to a positive integer from which each of whose prime factors
belongs to F as a smooth over a set F . The smooth numbers are related to the
Quadratic sieve and are imported in cryptography in the fastest known integer
factorization algorithms. Let |F | = r. By c(n, r) we denote the least positive
integer t such that any sequence S of length t of smooth integers over F, has
a nonempty subsequence S′ such that the product of all the terms of S′ is an n-th
power of integer. It is known that c(n, r) = D(Crn) see [3, Theorem 1.6]. Thus, by
Corollary 3.11, we obtain the following theorem

Theorem 3.13. If n ≥ 2 integer, then

(19) c(n, 3) ≤ min{20369, 3ω(n)}(n− 1) + 1.
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