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SIGNLESS LAPLACIAN SPECTRAL DETERMINATION

OF PATH-FRIENDSHIP GRAPHS

R. SHARAFDINI and A. Z. ABDIAN

Abstract. A graph G is said to be DQS if there is no other non-isomorphic graph
with the same signless Laplacian spectrum as G. Let k, ti (1 ≤ i ≤ k), and

s be natural numbers. A path-friendship graph, Gs,t1,...,tk , is a graph of order

n = 2s + t1 + · · · + tk + 1 which consists of s triangles and k paths of lengths
t1, t2, . . . , tk sharing a common vertex. In this paper, we show that these graphs

are DQS and using this result, we respond to a conjecture in [F. Wen, Q. Huang,

X. Huang and F. Liu, The spectral characterization of wind-wheel graphs, Indian J.
Pure Appl. Math. 46(2015), 613–631].

1. Introduction

In the past decades, graphs that are determined by their spectrum have received
more and more attention since they have been applied to several fields such as ran-
domized algorithms, combinatorial optimization problems, and machine learning.
An important part of spectral graph theory is devoted to determining whether
given graphs or classes of graphs are determined by their spectra or not. So, find-
ing and introducing any class of graphs which are determined by their spectra can
be an interesting and important problem. Let G = (V,E) be a simple graph with
vertex set V = V (G) and edge set E = E(G), where |V (G)| = n and |E(G)| = m.
The line graph of G is denoted by L(G). We denote the degree sequence of G by
deg(G) = (d1, d2, . . . , dn), where di = di(G) is the i-th largest vertex degree of G
for i = 1, . . . , n.

We denote the adjacency matrix of G by A(G). The matrix Q(G) = D(G) +
A(G) is called the signless Laplacian matrix of G, where D(G) denotes the degree
matrix of G; namely D(G) = diag(d1, d2, . . . , dn).

The characteristic polynomials of G with respect to A(G), and Q(G), respec-
tively, are denoted by ϕ(G,λ)=det(λI−A(G)) and ψ(G, q)=det(qI−Q(G)). Con-
ventionally, the adjacency eigenvalues and signless Laplacian eigenvalues of graph
G are, respectively, ordered in non-increasing sequence as follows: λ1≥λ2≥· · ·≥
λn and q1 ≥ q2 ≥ · · · ≥ qn. The multi-set SpecQ(G) = {[q1]m1 , [q2]m2 , . . . , [qn]mn}
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of eigenvalues of Q(G) is called the signless Laplacian spectrum (Q-spectrum)
of G, where mi denote the multiplicities of qi. Two graphs are Q-cospectral
(A-cospectral) if they have the same Q-spectrum (A-spectrum). A graph G is
said to be DQS if there is no other non-isomorphic graph Q-cospectral with it.

By sG, we mean s copies of a graph G, where s is a natural number. In fact,
sG = G ∪ · · · ∪G︸ ︷︷ ︸

s times

. Let G and H be two graphs with specific vertices v ∈ V (G) and

u ∈ V (H). A coalescence G ◦H(u, v) is the graph obtained from graphs G and H
by identifying u and v in G ∪ H. Let Fs denote the friendship graph consisting
of s triangles intersecting in a single vertex. Note that Fs may be described as
a coalescence of s cycles C3. A wind-wheel graph Gs,t on 2s + t + 1 vertices is
the graph obtained by appending s triangle(s) to a pendant vertex of the path
Pt+1. The lollipop graph of order n, denoted by Hn,p, is obtained by appending
a cycle Cp to a pendant vertex of a path Pn−p. By Br,s, we denote a butterfly
graph that consists of s triangles sharing a common vertex having an additional
r pendant vertices. A tree with exactly one vertex v of degree greater that 2 is
called a starlike tree. By Tt1,t2,...,tk , we denote the starlike tree with maximum
degree k such that

Tt1,t2,...,tk − v = Pt1 ∪ Pt2 ∪ · · · ∪ Ptk ,

where v is the vertex of degree k and t1, t2, . . . , tk are any positive integers. We
may describe a starlike tree as a coalescence of Pt1+1, Pt2+1, . . . , Ptk+1. In fact, if
vi is a specific pendant vertex of Pti+1 for i = 1, . . . , k, then we have

Tt1,t2,...,tk = Pt1+1 ◦ Pt2+1 ◦ · · · ◦ Ptk+1(v1, v2, . . . , vk).

A path-friendship graph, Gs,t1,...,tk , is a graph of order n = 2s+ t1 + · · ·+ tk +1,
which consists of s triangles and k paths of lengths t1, t2, . . . , tk sharing a common
vertex. Note that Gs,t1,...,tk = F ◦ T (u, v), where u and v are, respectively, the
unique vertices of F = Fs and T = Tt1,t2,...,tk with the maximum degrees 2s and
k, respectively. It is worth noting that Gs,1, . . . , 1︸ ︷︷ ︸

r times

= Br,s and for any positive

integer k, Gs,0, . . . , 0︸ ︷︷ ︸
k times

= Fs. A rose graph with p petals (or p-rose graph) is a graph

obtained by taking p cycles with just a vertex in common.
Van Dam and Haemers [12] conjectured that almost all graphs are determined

by their spectra. Nevertheless, the set of graphs that are known to be deter-
mined by their spectra is too small. So, discovering infinite classes of graphs that
are determined by their spectra can be an interesting problem. About the back-
ground of the question “Which graphs are determined by their spectrum?”, we
refer to [12]. We are interested in DQS graphs being a coalescence of DQS graphs.
All paths, starlike trees except K1,3, friendship graphs, butterfly graph, and wind-
wheel graphs and roses (for ‘p ≥ 3’, are DQS, (see [1, 13, 2, 9, 12, 15]). In [15],
it was asked whether path-friendship graphs are determined by their Q-spectrum.
In this paper, we prove that all path-friendship graphs are DQS.
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2. Some definitions and preliminaries

In this section, some useful established results which play an important role
throughout this paper, are presented.

Lemma 2.1 ([6]). Let G be a graph with second maximum degree d2(G). Then
q2(G) ≥ d2(G)−1. If the equalsity holds, then the maximum and second maximum
degree vertices are adjacent and d1(G) = d2(G). Moreover, if G is connected, then
qn(G) < dn(G).

Lemma 2.2 ([3, 4]). Let G be a connected graph of order n ≥ 2. Then

(i) q1(G) ≤ max {d(v) +m(v) | v ∈ V (G)}, where m(v) =
∑ d(u)

d(v) and the sum

is extended to the neighborhood of v.
(ii) q1(G) ≥ d1(G) + 1 with equalsity if and only if G is the star K1,n−1.

Lemma 2.3 ([6]). Let G be a graph with n vertices. Then q1(G) ≤ d1(G) +
d2(G) with equalsity if and only if G is a regular graph or G = K1,n−1.

For any two graphs G and H, by NG(H), we denote the number of subgraphs
of G being isomorphic to H. For instance, NG(C3) is the number of triangles of G.

Lemma 2.4 ([4, 11]). Let G be a graph with n vertices, m edges, NG(C3)

triangles, and deg(G) = (d1, . . . , dn). Let Tk =
n∑

i=1

qki , (k = 0, 1, 2, . . . , n) be the

k-th spectral moment of the Q-spectrum of G. Then

T0 = n, T1 =

n∑
i=1

di = 2m,

T2 = 2m+

n∑
i=1

d2
i , T3 = 6NG(C3) + 3

n∑
i=1

d2
i +

n∑
i=1

d3
i .

The following lemma is a consequence of Lemma 2.4.

Lemma 2.5 ([15]). Let H be a graph Q-cospectral to G. Then

(i) G and H have the same number of vertices.
(ii) G and H have the same number of edges.

(iii)
n∑

i=1

d2
i (G) =

n∑
i=1

d2
i (H).

(iv) 6NG(C3) +
n∑

i=1

d3
i (G) = 6NH(C3) +

n∑
i=1

d3
i (H).

Since tr(A(G)3) = 6NG(C3), from Lemma 2.5, we have the following corollary.

Corollary 2.6 ([15]). If G and H are Q-cospectral and have the same degree
of sequences, then NG(C3) = NH(C3).

Note that

q′3(G) = tr(A(G)3) +

n∑
i=1

(di − 2)3
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is a graph invariant. The following lemma shows that q′3(G) is also a Q-cospectral
invariant.

Lemma 2.7 ([15]). If G and H are Q-cospectral, then q′3(G) = q′3(H).

Lemma 2.8 ([4]). Let q1(G) be the spectral radius of the signless Laplacian
matrix of G. Then

(i) q1(G) = 0 if and only if G has no edges,
(ii) 0 < q1(G) < 4 if and only if all components of G are paths,
(iii) For a connected graph G, we have q1(G) = 4 if and only if G is a cycle Cn

or the star graph K1,3.

Recall that for any graph G, qn(G) ≥ 0.

Lemma 2.9 ([4]). In any graph G, the multiplicity of the eigenvalue 0 in the
Q-spectrum is equal to the number of bipartite components of G.

Let S(G) be the subdivision graph of G obtained by replacing each edge of
G by a path of length two. The lemma below gives the relation between the
Q-polynomial of G and the A-polynomial of its subdivision graph S(G).

Lemma 2.10 ([14]). Let G be a graph of order n and size m. Then

ϕ(S(G), λ) = λm−nψ(G,λ2).

Lemma 2.11 ([12]). The adjacency eigenvalues of the path Pn are as follows:

λi = 2 cos
πi

n+ 1
, i = 1, 2, . . . , n.

Lemma 2.12 ([8]). For i = 1, 2, let Gi be an ri-regular graph on ni vertices.
Then

ψ(G1 5G2, x) =
ψ(G1, (x− n2))ψ(G2, (x− n1))

(x− 2r1 − n2)(x− 2r2 − n1)
f(x),

where f(x) = x2 − (2(r1 + r2) + (n1 + n2))x+ 2(2r1r2 + r1n1 + r2n2).

Note that connected graphs with A-index (the largest eigenvalue of the adja-
cency matrix) less than 2, are proper subgraphs of the Smith graphs (namely,
those graphs whose A-index equals 2; see [5, 10])

Lemma 2.13 ([5, 10]). Let Π2
A denote the set of connected graphs whose

A-index is strictly less than 2. Then

Π2
A =

{
Pn | n ≥ 1

}
∪
{
T1,1,n−3 | n ≥ 4

}
∪
{
T1,2,k | k = 2, 3, 4

}
,

where Ta,b,c is a starlike tree depicted in Figure 1.

Lemma 2.14 ([16]). If two graphs G and H are Q-cospectral, then their line
graphs are A-cospectral. The converse is true if G and H have the same number
of vertices and edges.
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Figure 1. The tree Ta,b,c in Lemma 2.13.

3. Main results

Lemma 3.1. For a path-friendship graph Γ = Gs,t1,...,tk , we have q2(Γ) < 4.
Moreover,

(i) If ti ≥ 1 for each 1 ≤ i ≤ k, then 2s+ k + 1 ≤ q1(Γ) ≤ 2s+ k + 2.
(ii) If ti = 0 for each 1 ≤ i ≤ k, then

qn(Γ) = 1, q1(Γ) =
2s+ 3 +

√
(2s+ 3)2 − 16s

2
.

Proof. Let v be the vertex of Γ with maximum degree. Then

Γ− v = sK2 ∪ Pt1 ∪ · · · ∪ Ptk .

By Lemma 2.11, λ1(S(Γ) − v) < 2 and by interlacing theorem, λ2(S(Γ)) < 2.
Finally, by Lemma 2.10, we have q2(Γ) < 4.

(i) If ti ≥ 1 for each 1 ≤ i ≤ k, then d1(Γ) = d(v) = 2s + k and d2(Γ) = 2, by
Lemmas 2.2 and 2.3, we get

2s+ k + 1 ≤ q1(Γ) ≤ d1(Γ) + d2(Γ) = 2s+ k + 2.

(ii) If ti = 0 for each 1 ≤ i ≤ k, then Γ is nothing but the friendship graph
Fs = sK2 5K1. Therefore, by Lemma 2.12, the proof is straightforward. �

Lemma 3.2. Let H be Q-cospectral with Γ = Gs,t1,...,tk . Then H is a connected
graph.

Proof. Assume that H = H1 ∪ · · · ∪Hy, where Hi (1 ≤ i ≤ y) is a connected
component of H. Since Γ is a non-bipartite graph, by Lemma 2.9, any of Hi’ is

non-bipartite. In view of the fact that ψ(H) =
y∏

i=1

ψ(Hi) = ψ(Γ), by Lemma 2.10,

we obtain that

ϕ(S(H)) =

y∏
i=1

ϕ(S(Hi)) = ϕ(S(Γ)),
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implying that there exists some component, say H1, such that

λ1(S(H)) = λ1(S(H1)) = λ1(S(Γ)).

On the other hand, by the proof of Lemma 3.1(i), we get

λ2(S(H)) = max {λ2(S(H1)), λ1(S(Hi)) | 2 ≤ i ≤ y} = λ2(S(Γ)) < 2.

Therefore, by Lemma 2.13 we get S(Hi) ∈ Π2
A. Hence S(Hi) is a tree and Hi is

also a tree, for 2 ≤ i ≤ y, a contradiction. �

Let G be a connected graph with n vertices and m edges. If m = n+k−1, then
G is k-cyclic graph. Clearly, Γ = Gs,t1,...,tk is a s-cyclic graph, where s denotes
the number of triangles.

Corollary 3.3. Let H be Q-cospectral with Γ = Gs,t1,...,tk . Then H has at
most s triangles.

Proof. From Lemma 3.2, H is a connected graph. Since H and Γ are Q-co-
spectral, they have the same number of vertices and the same of number of edges.
Therefore, H is a s-cyclic graph. This means that H consists of s cycles. Therefore,
H has at most s triangles. �

Lemma 3.4. Suppose that H and Γ = Gs,t1,...,tk are Q-cospectral. Then the
degree sequence of H is determined by the shared Q-spectrum.

Proof. By Lemma 3.2, H is a connected graph. In addition, it follows from
Lemma 2.1 that d2(H) ≤ 4 since q2(H) < 4. Also, since H and Γ are Q-cospectral,
by Lemma 2.5, they have the same order, size and the sum of the squares of degrees
of vertices. Assume that H has ni vertices of degree i for i = 1, 2, . . . , d1(H).
Therefore,

d1(H)∑
i=1

ni = n(Γ),(1)

d1(H)∑
i=1

ini = 2m(Γ),(2)

d1(H)∑
i=1

i2ni = n′1 + 4n′2 + d2
1(Γ),(3)

where n′i (i = 1, 2) is the number of vertices of degree i belonging to Γ. Clearly,
n(Γ) = n, m(Γ) = n+ s− 1, n′1 = k, n′2 = n− (k + 1), and d1(Γ) = 2s+ k. By
summing up equations (1), (2), and (3) with coefficients 2, −3, 1, respectively, we
get

(4)

d1(H)∑
i=1

(i2 − 3i+ 2)ni = 4s2 + 4sk − 6s+ k2 − 3k + 2.

Since q1(H) = q1(Γ), by Lemma 3.1(i), 2s+ k+ 1 ≤ q1(Γ) ≤ 2s+ k+ 2. It follows
from Lemma 2.2 that d1(H) ≤ 2s+ k + 1. On the other hand, by Lemma 2.3, we
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obtain that 2s+k+ 1 ≤ q1(Γ) ≤ d1(H) +d2(H) ≤ d1(H) + 4, that is, 2s+k− 3 ≤
d1(H). Consequently, 2s+k− 3 ≤ d1(H) ≤ 2s+k+ 1. It follows from Lemma 2.7
that

(5) 6NH(C3) +

n∑
i=1

(di(H)− 2)3 = q3(H) = q3(Γ) = 6s+ (2s+ k − 2)3 − k

or

(6) NH(C3) =
1

6

(
6s+ (2s+ k − 2)3 − k −

n∑
i=1

(di(H)− 2)3
)
.

Let us consider the following cases:
Case 1 d1(H) = 2s+ k − 3. If n2s+k−3 ≥ 2, then

(s, k) ∈
{

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3)
}

because 2s+k−3 = d1(H) = d2(H) ≤ 4. So, let us consider the following subcases:
Case 1-a (s, k) = (1, 1). Then d1(H) = d2(H) = 0, a contradiction, since H is

a connected graph.
Case 1-b (s, k) = (1, 2). Then d1(H) = d2(H) = 1. So H = P2 and Γ = P2.

On the other hand, d1(Γ) = 4, an impossibility.
Case 1-c (s, k) = (1, 3). Then d1(H) = d2(H) = 2, and so n1 = 0 and n2 = n.

This means that H is a connected 2-regular graph. On the other hand, 2(n+s−1)
n =

2 or s = 1, and so H consists of a triangle, and since H is a regular graph, so
H = C3 = Γ. On the other hand, if (s, k) = (1, 3), then |V (H)| ≥ 5 (since
d1(Γ) = 5), a contradiction.

Case 1-d (s, k) = (1, 4). Then d1(H) = d2(H) = 3. So by equations (1), (2),
and (4), we get 

n1 = 10,

n2 = n− 20,

n3 = 10.

By Lemma 2.14, L(Γ) and L(H) are A-cospectral, and so the number of triangles of

them are the same. Therefore, 20 =

(
6

3

)
= NL(Γ)(C3) = NL(H)(C3) = 10

(
3

3

)
=

10, a contradiction.
Case 1-e (s, k) = (1, 5). Then d1(H) = d2(H) = 4. So by equations (1), (2),

and (4), we get 
n1 = 15− n4,

n2 = n+ 3n4 − 30,

n3 = 15− 3n4.

It follows from Lemma 2.14 that L(Γ) and L(H) are A-cospectral and so the
number of triangles of them are the same. Therefore,

15 + n4 = (15− 3n4)

(
3

3

)
+ n4

(
4

3

)
= NL(H)(C3) = NL(Γ)(C3) =

(
7

3

)
= 35

and as a result n4 = 20, a contradiction, since n1 < 0.
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Case 1-f (s, k) = (2, 1). Then d1(H) = d2(H) = 2. So{
n1 = −2,

n2 = n+ 2.

A contradiction.
Case 1-g (s, k) = (2, 2). Then d1(H) = d2(H) = 3. By equations (1), (2), and

(4), we get 
n1 = 8,

n2 = n− 18,

n3 = 10.

It follows from equation (6) that NH(C3) = 12. It follows from Corollary 3.3 that
12 ≤ 2, a contradiction.

Case 1-h (s, k) = (2, 3). Then d1(H) = d2(H) = 4. By equations (1), (2), and
(4), we get 

n1 = 13− n4,

n2 = n+ 3n4 − 28,

n3 = 15− 3n4.

By Lemma 2.14, L(Γ), and L(H) are A-cospectral and so the number of triangles
of them are the same. Therefore,

15 + n4 = (15− 3n4)

(
3

3

)
+ n4

(
4

3

)
= NL(H)(C3) = NL(Γ)(C3) =

(
7

3

)
= 35,

and as a result n4 = 20, a contradiction, since n1 < 0. So we can deduce that
n2s+k−3 = 1.

Combining equations (1), (2), and (4), we obtain
n1 = 6s+ 4k − 12− n4,

n2 = −12s+ 3n4 + n− 7k + 20,

n3 = 6s− 3n4 + 3k − 9.

By Lemma 2.14, L(Γ) and L(H) are A-cospectral, and so the number of triangles
of them are the same. Therefore,

4n4 + n3 +

(
2s+ k − 3

3

)
= NL(H)(C3) = NL(Γ)(C3) =

(
2s+ k

3

)
,

and so

n4 = 6s2 + 6ks− 21s+ 1.5k2 − 10.5k + 19.

It is easy to see that n4 ≤ 2s + k − 3, since n3 ≥ 0. Therefore, f(s, k) =
(6s2 − 23s + 22) + (1.5k2 − 11.5k + 6ks) ≤ 0. Obviously, for any natural num-
ber s, we always have 6s2 − 23s + 22 ≥ 0. On the other hand, if s ≥ 2, then
6s2 − 23s + 22 ≥ 0. By n2s+k−3 and d1(H) = 2s + k − 3, we can assume that
for s = 1, we have k ≥ 2, and so 1.5k2 − 11.5k + 6ks > 0, which implies that
f(s, k) > 0, a contradiction.
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Case 2 d1(H) = 2s+ k − 2. If n2s+k−2 ≥ 2, then

(s, k) ∈
{

(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2)

}
because 2s + k − 2 = d1(H) =

d2(H) ≤ 4. So, let us consider the following subcases:
Case 2-a (s, k) = (1, 1). Then d1(H) = d2(H) = 1, and since H is connected,

H = K2. On the other hand, if (s, k) = (1, 1), then |V (H)| ≥ 4, a contradiction.
Case 2-b (s, k) = (1, 2). Then d1(H) = d2(H) = 2. Now if d3(H) = · · · =

dn(H) = 2, then H is a connected 2-regular graph. On the other hand, 2(n+s−1)
n =

2 or s = 1. This means that H = C3. On the other hand, if (s, k) = (1, 2), then
|V (H)| ≥ 5, a contradiction. So, the vertex degrees of H are either 2 or 1. In
other words, H = Pn. By equation (5), −2 = 12, a contradiction (Note that any
path has exactly two vertices of degree 1).

Case 2-c (s, k) = (1, 3). Then d1(H) = d2(H) = 3. So by equation (4), n3 = 6,
and by equations (1) and (2), n2 = n − 12 and n1 = 6. It follows from equation
(6) that NH(C3) = 5, a contradiction to Corollary 3.3.

Case 2-d (s, k) = (1, 4). Then d1(H) = d2(H) = 4. So by equations (1), (2),
and (4), we get 

n1 = 10− n4,

n2 = n+ 3n4 − 20,

n3 = 10− 3n4.

By equation (6), we have NH(C3) = 11 − n4. It follows from Corollary 3.3 that
11− n4 ≤ 1 or n4 ≥ 10. This means that n3 < 0, a contradiction.

Case 2-e (s, k) = (2, 1). Then d1(H) = d2(H) = 3. So
n1 = 4,

n2 = n− 10,

n3 = 6.

By equation (6), NH(C3) = 6. It follows from Corollary 3.3 that 6 ≤ 2, a contra-
diction.

Case 2-f (s, k) = (2, 2). Then d1(H) = d2(H) = 4. By equations (1), (2), and
(4), we get 

n1 = 8− n4,

n2 = n+ 3n4 − 18,

n3 = 10− 3n4.

It follows from equation (6) that NH(C3) = 12−n4. It follows from Corollary 3.3
that n4 ≥ 10, which means that n1 < 0, a contradiction. Therefore, n2s+k−2 = 1.
Obviously (s, k) 6= (1, 1), otherwise n1 = 1, and so n4 = 0 and as a result, we
obtain that n1 = 0, which is impossible. Also, (s, k) 6= (1, 2). Otherwise, n2 = 1,
and so d1(H) = 2, which means thatH = P3, and so Γ = P3. Therefore, d1(Γ) = 4,
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which is impossible. Combining equations (1), (2), and (4), we obtain
n1 = 4s+ 3k − 7− n4,

n2 = n− 8s− 5k + 3n4 + 11,

n3 = 4s+ 2k − 3n4 − 5.

Obviously,
8s− n+ 5k − 11

3
≤ n4 ≤

4s− 5 + 2k

3
. On the other hand, by equation

(6) and Corollary 3.3,

n4 ≥ 4s2 − 12s+ 4sk + k2 − 6k + 9.

We claim that

4s2 − 12s+ 4sk + k2 − 6k + 9 >
4s− 5 + 2k

3
or

(12s2 − 40s+ 12sk) + (3k2 − 20k + 32) > 0.

To prove this claim, set g(s, k) = 12s2− 40s+ 12sk and f(k) = 3k2− 20k+ 32. It
is easy to see that f(3) < 0, f(4) = 0, and f(k) > 0 otherwise, and g(s, k) < 0 if
(s, k) = (2, 1) and g(s, k) > 0, otherwise. Therefore, for k ≥ 2, g(s, k) + f(k) > 0.
Now, we determine the sign of the function g(s, k) + f(k) for k ∈ {1, 2, 3, 4}.
Obviously, g(s, 3) + f(3) = 12s2 − 4s− 1 > 0 and g(s, 4) + f(4) = 12s2 + 8s > 0.
Clearly g(2, 1) + f(1) = 7. Therefore, the claim is proved.

By a direct calculation, we obtain that NH(C3) = 4s2 − 11s+ 4sk + k2 − 6k +
9− n4. By Corollary 3.3, we obtain that

4s2 − 11s+ 4sk + k2 − 6k + 9− n4 ≤ s
or

n4 ≥ 4s2 − 12s+ 4sk + k2 − 6k + 9 >
4s− 5 + 2k

3
≥ n4,

which is a contradiction.

Case 3 d1(H) = 2s+k−1. If n2s+k−1 ≥ 2, then 2s+k−1 = d1(H) = d2(H) ≤ 4.
Therefore,

(s, k) ∈
{

(1, 1), (1, 2), (1, 3), (2, 1)
}
.

Let us consider the following subcases:
Case 3-a (s, k) = (1, 1). Then d1(H) = d2(H) = 2. Now, if d3(H) = · · · =

dn(H) = 2, then H is a connected 2-regular graph. Moreover, 2(n+s−1)
n = 2 or

s = 1. This means that H = C3. On the other hand, if (s, k) = (1, 1), then
|V (H)| ≥ 4, a contradiction. So, the vertex degrees of H are either 2 or 1. In
other words, H = Pn. By equation (6), −2 = 6, a contradiction.

Case 3-b (s, k) = (1, 2). Then d1(H) = d2(H) = 3. By equations (1), (2), and
(4), we get 

n1 = 3,

n2 = n− 6,

n3 = 3.
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It follows from equation (6) that NH(C3) = 2. It follows from Corollary 3.3 that
2 ≤ 1, a contradiction.

Case 3-c (s, k) = (1, 3). Then d1(H) = d2(H) = 4. By equations (1), (2), and
(4), we get 

n1 = 6− n4,

n2 = n− 12 + 3n4,

n3 = 6− 3n4.

It follows from equation (6) that NH(C3) = 5− n4. It follows from Corollary 3.3
that n4 ≥ 4, a contradiction, since n3 < 0.

Case 3-d (s, k) = (2, 1). Then d1(H) = d2(H) = 4. By equations (1), (2), and
(4), we get 

n1 = 4− n4,

n2 = n− 10 + 3n4,

n3 = 6− 3n4.

It follows from equation (6) that NH(C3) = 6− n4. It follows from Corollary 3.3
that n4 ≥ 4, a contradiction, since n3 < 0. Hence n2s+k−1 = 1. By equations (1),
(2), and (4), we get 

n1 = 2k + 2s− 3− n4,

n2 = n− 3k − 4s+ 4 + 3n4,

n3 = k + 2s− 2− 3n4.

It follows from equation (6) that

NH(C3) =
4s2 − 8s+ 4sk + k2 − 5k + 6− 2n4

2
.

It follows from Corollary 3.3 that

4s2 − 8s+ 4sk + k2 − 5k + 6− 2n4

2
≤ s.

We conclude that 4s2 − 10s+ 4sk + k2 − 5k + 6− 2n4 ≤ 0, and so

2k + 2s− 3 ≥ n4 ≥ 2s2 − 5s+ 2sk + 3 +
k2 − 5k

2
or

2s2 − 7s+ 2sk + 6 +
k2 − 9k

2
≤ 0.

Thus

f(s, k) = 4s2 − 14s+ 4sk + 12 + k2 − 9k ≤ 0.

For s ≥ 3, f(s, k) > 0, a contradiction. Consider the following subcases:

1. s = 1.
(a) k = 1. Then n2 = 1 (d1(H) = 2), which implies that n3 = n4 = 0. On

the other hand, n3 = 1, which is impossible.
(b) k = 2. Then n3 = 1. As a result n4 = 0. On the other hand, for

(s, k) = (1, 2), n3 = 2, a contradiction.
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(c) k = 3. Then n4 = 1. So, n3 = 0. By Lemma 2.14, L(Γ), and
L(H) are A-cospectral and so the number of triangles of them are the

same. Therefore, 10 =

(
5

3

)
= NL(Γ)(C3) = NL(H)(C3) =

(
4

3

)
= 4, a

contradiction.
(d) k = 4. Then n5 = 1. As a result n3 = 4 − 3n4. If n4 = 0, then

n3 = 4. Lemma 2.14 implies that 20 = NL(Γ)(C3) = NH(Γ) = 14, a
contradiction. If n4 = 1, then n3 = 1. It follows from Lemma 2.14
that 20 = NL(Γ)(C3) = NL(H)(C3) = 17, which is impossible.

2. s = 2.
(a) For k ≥ 5, f(s, k) > 0, a contradiction.
(b) k = 1. Then n4 = 1, and so n3 = 0. It follows from Lemma 2.14 that

10 = NL(Γ)(C3) = NL(H)(C3) = 4, a contradiction.

Figure 2. The path-friendship graph Gs,t1,...,tk and its connected components after removing
the vertex v.

Case 4 Suppose that d1(H) = 2s + k + 1. If n2s+k+1 ≥ 2, then 2s + k +
1 = d1(H) = d2(H) ≤ 4. Therefore, (s, k) = (1, 1). By equation (4), we get
n3 + 3n4 = 1. On the other hand, since n4 ≥ 2, so 1 = n3 + 3n4 ≥ n3 + 6
or n3 ≤ −5, a contradiction. Therefore, n2s+k+1 = 1, then by equation (4),
0 ≤ n3 + 3n4 = −2s− k + 2 < 0, a contradiction. So, this case cannot happen.

Case 5 Suppose that d1(H) = 2s + k. If n2s+k ≥ 2, then 2s + k = d1(H) =
d2(H) ≤ 4. Therefore, (s, k) ∈ {(1, 1), (1, 2)}. If (s, k) = (1, 1), then d1(H) =
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d2(H) = 3, and so n3 ≥ 2. By equation (4), we get n3 = 1, a contradiction. If
(s, k) = (1, 2), then d1(H) = d2(H) = 4. By equation (4), we get n3 +3n4 = 3. On
the other hand, since n4 ≥ 2, so 3 = n3 +3n4 ≥ n3 +6 or n3 ≤ −3, a contradiction.
Therefore, n2s+k = 1. By equation (4), n3 = n4 = 0 and by equations (1) and (2),
n1 = k and n2 = n− (k + 1). Also, it is clear that in this case, NH(C3) = s.

Hence, it is proved that deg(H) = deg(Γ). �

Lemma 3.5. Any graph H Q-cospectral with a path-friendship graph
Γ = Gs,t1,...,tk is a path-friendship graph.

Proof. By Lemma 3.4, H has a unique vertex v that dH(v) = 2s + k ≥ 4, and
also H has exactly s triangles. Note that these s triangles are common in v (v
is the vertex with maximum degree belonging to H). Because dH(v) = 2s + k,
n2s+k = 1, and the vertex degrees of H belong to {1, 2, 2s+ k}. By removing the
vertex v, H − v = sK2 ∪G1 ∪ · · · ∪Gh, where h is a natural number. In addition,
the vertex degrees of Gi belong to {0, 1, 2}, and so every Gi is either a path or a
cycle. By contradiction, suppose that G1 = Ck, where k ≥ 3 is a natural number.
Therefore, H must have a vertex with the degree greater than two, a contradiction,
since the vertex degrees of H belong to {1, 2, 2s+ k} (Note that dH(v) = 2s + k
and n2s+k = 1). So, none of Gi’s (1 ≤ i ≤ k) are cycles. Since H has s triangles
and the vertex degrees of H belong to {1, 2, 2s+ k}. Hence, it is proved that H is
also a path-friendship graph (see Figure 2). �

Before proving the main result, we state an essential lemma.

Lemma 3.6 ([7]). Suppose G is a nontrivial simple connected graph. Let u
be a vertex of G. For nonnegative integers k and l, let G(k, l) denote the graph
obtained from G by adding pendant paths of length k and l at u. If k ≥ l ≥ 1, then

q1(G(k, l)) > q1(G(k + 1, l − 1)).

Theorem 3.7. All path-friendship graphs are DQS.

Proof. Let H be any graph Q-cospectral with Gs,t1,...,tk = Γ. By Lemma 3.5,
H is a path-friendship graph. Therefore, H = Gs,l1,...,lk . If H and Γ are non
isomorphic, then there exists some 1 ≤ i ≤ k, ti 6= li. It follows from Lemma 3.6
that q1(H) 6= q1(Γ), which is impossible, since H and Γ are Q-cospectral. �
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