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PELL AND PELL-LUCAS NUMBERS
AS SUMS OF THREE REPDIGITS

C. A. ADEGBINDIN, F. LUCA AND A. TOGBE

ABSTRACT. In this paper, we find all Pell and Pell-Lucas numbers expressible as
sums of three base 10 repdigits.

1. INTRODUCTION

Let {P,}m>0 be the Pell sequence given by
(1) P2 =2Pyni1 + P,
for m > 0, where Py = 0 and P, = 1. Its first few terms are
0,1,2,5,12,29, 70,169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, . . .

The Binet formula for its general term is

a™ — pgm
@) Fn=—=7"
where a = 1 ++/2 and f=1-— \/2 are the two roots of the characteristic equation
22 -2 —-1=0.

Let {Qm }m>0 be the companion Lucas sequence of the Pell sequence also called

the sequence of Pell-Lucas numbers. It starts with Qo = 2, @1 = 2, and obeys
the same recurrence relation

(3) Qmi2 =2Qm+1+ Qm for all m >0

as the Pell sequence. Its first few terms are

2,2,6,14, 34, 82,108, 478, 1154, 2786, 6726, 16238, 39202, 94642, 228486, 551614, . . .
Its Binet formula is

(4) Qm=am+p™ for all m > 0.

In this paper, we study the Diophantine equations

R e R e e ]

Received January 15, 2020; revised October 25, 2020.
2010 Mathematics Subject Classification. Primary 11A25 11B39, 11J86.
Key words and phrases. Pell equation; Rep-digit; Linear forms in complex and p-adic logarithms.

for all m > 0,
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in integers n > 0, 1 < my < mg < mg, and dy,ds,ds € {1,2,...,9}.

Here, we prove the following results.

Theorem 1.1. The largest Pell number which is a sum of three repdigits is
(6) Py =985 = 888 + 88 + 9.

Theorem 1.2. The largest Pell-Lucas number which is a sum of three repdigits
18
(7) Q10 = 6726 = 6666 + 55 + 5.

We organize this paper as follows. In Section 2, we recall a result due to Matveev
concerning a lower bound of a linear forms of logarithms of algebraic numbers, and
describe a reduction method due to de Weger. The proofs of Theorem 1.1 and
Theorem 1.2 are achieved in Sections 3 and 4, respectively. We start with some
elementary considerations.

2. PRELIMINARIES

2.1. Linear forms in logarithms

We need some results from the theory of lower bounds for nonzero linear forms in
logarithms of algebraic numbers. We start by recalling [5, Theorem 9.4], which is
a modified version of a result of Matveev [15]. Let L be an algebraic number field
of degree dy,. Let n1,12,...,m € L not 0 or 1, and dy,...,d; be nonzero integers.
We put

D = max{|d4],...,|di|}

and

l
I' = Hngi — 1.
i=1

Let Aq,..., A; be positive integers such that
A; > h'(n;) == max{dph(n;), |logn;|,0.16} for j =1,...1,
where for an algebraic number 7 of minimal polynomial
FX) = ao(X =) - (X =) € Z[X]
over the integers with positive ag, we write h(n) for its Weil height given by
1 b ,
h(n) = z (log ap + ; max{0, log | })
The following consequence of Matveev’s theorem is in [5, Theorem 9.4].
Theorem 2.1. IfI' #0 and L C R, then
log |T| > —1.4-30""31%5¢2 (1 + log dp) (1 4 log D) A1 Ay . .. A;.
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2.2. The de Weger reduction

Here, we present a variant of the reduction method due to de Weger [16].
Let 91,72, 8 € R be given, and let 1, x5 € Z be unknowns. Let

(8) A =B+ x19 + z295.

Let ¢, 6 be positive constants. Set X = max{|z1|,|z2|}. Let Xo,Y be positive.
Assume that

9) |A] <c-exp(=6-Y),

(10) Y < X < Xo.
When S =0 in (8), we get
A = 2191 + 2999.

Put ¢ := —1 /2. We assume that z;1 and x5 are coprime, and z; is positive. Let
the continued fraction expansion of 9 be given by

[a07a17a27 .- ~],

and the kth convergent of ¥ be py/qx for Kk =0,1,2,.... We may assume without
loss of generality that |¥1] < |92| and 1 > 0. We have the following results.

Lemma 2.1 ([16, Lemma 3.1]). If (9) and (10) hold for x1,xo with X > 1
and B =0, then (—xa,21) = (Pk, qx) for an index k that satisfies

log(1 + XoV/5)

]{3 S *1 + = YQ.
log (1+2\/5>
Lemma 2.2 ([16, Lemma 3.2]). Let
A= Oglk%}%/o -
If (9) and (10) hold for x1, x2 with X > 1 and =0, then
1 c(A+2) 1 1 c(A+2)Xo
11 Y <=lo (7)+710 X<=lo (7)
- A T R T
When S # 0 in (8), we put 9 := /0. Then we have
A
% = ’l/) — $119 + 9.
Let p/q be a convergent of ¥ with ¢ > Xj. For a real number x we use the notation
|z]| := min{|z —n|,n € Z} for the distance from z to the nearest integer. We have

the following result.

Lemma 2.3 ([16, Lemma 3.3]). If (9) and (10) hold for x1,xo with X > 1
and B # 0, and suppose additionally that
2X,

llqll > ,
q
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then, the solutions of (9) and (10) satisfy

2
Y< %log (|19Z|§(0)'

3. THE PROOF OF THEOREM 1.1

3.1. An elementary estimate

We assume that

10™m — 1 10m2 — 1 10ms — 1
A
(12) 1 9 + d2 9 + ds 9
for some integers m; < mo < mg and dij,ds,ds € {1,2,...,9}. A quick compu-

tation with Maple reveals no solutions in the interval n € [10, 500]. For this com-
putation, we first note that Psgp has 191 digits. Thus, we generate the list of all
numbers which are sums of at most 2 repdigits with at most 191 digits each. Let us
call the list A. Then, for every n € [10,500], we compute M := |log P, /log10] +1
(the number of digits of P,,), and then check whether P, — d (mmT’l) is a member
of A for some digit d € {1,...,9} and some m € {M — 1, M }. This computation
takes a few seconds. So, from now on, we assume that n > 500. We next comment
the size of my, mg, mg versus n.

Lemma 3.1. All solutions of equation (12) satisfy
mslogl0 — 3 < nloga < m3log 10 + 3.

Proof. The proof follows easily from the fact that "2 < P, < o™~ !. One can
see that
a" 2 < P, <3-10ms.

Taking the logarithm on both sides, we get (n — 2) log a < log 3+ m3 log 10, which
leads to
nloga < 2log a4 log 3 + m3log 10 < mglog 10 + 3.

Similarly, the lower bound follows. O

3.2. Bounds of n,mi, ms, m3

We next return to equation (12) and use the Binet formula (2) to get
o —g" 10mr —1 10m2 —1 10ms —1
Tz ) () ra(T )

/2 1 9 + d2 9 +as 9

Equation (12) can be expressed as

(13) (@™ — B") — d110™ — dy10™2 — d310™ = —(dy + da + d3).

9
2v2

We examine (13) in three different steps as follows.
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Step 1. Equation (13) gives

9
—=B" = (d1 + da + d3),

9
——a” — d310™® = d;10™* + d210™2 +
3 1 2 o)

2V2

which we rewrite as

(14)

2\%@“ —ds10™ | = ]dlmml +da10™ 4 2\%5” —(dy +dg + d3)| < 48 - 102,
Thus, dividing both sides by d310™3, we get
9 48
(15) )(m)a"lo—ms - 1‘ < Tomo
Let
(16) Iy = < ) >a”10m3 ~1.
2/2d;

Suppose that I'1 = 0. Then, we have
n 2V/2d510M2
= 5 ,
so & € Q, a contradiction. Thus, I'; # 0. With the notations of Theorem 2.1,
we take

(67

a, n3=10, bi=1, by=n, by=-ms.

9
Ul*m7 N2 =

Since 10™3~1 < P, < o™ !, we have that ms < n. Therefore, we can take D = n.
Observe that L := Q(71,72,73) = Q(v/2), so di, = 2. We now need to take A; for
7 =1,2,3, such that

A; > max{dph(n;),|logn;|,0.16}.
Note that
h(m) < h(9) + h(2d3V2) < h(9) + h(18) + h(V/2).

This implies that
2h(m) < 10.9.

Thus, we can take

A :=10.9.
Clearly,
M) = 3 loga,  hlns) =log 10.
We have
(17) max{2h(n2), | log n2],0.16} =loga < 0.9 := Ay,
(18) max{2h(ns), |logns|,0.16} = 2log 10 < 4.7 := As.

Theorem 2.1 tells us that
log |Ty| > —1.4-30"31*5@2 (1 + log dL) (1 + log D) A; Ay As.
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Comparing this last inequality with (15) leads to
(m3 — ma)log 10 < log(48) + 4.48 - 10*3(1 + log n),
giving
(19) ms —mso < 2.09 - 10'3(1 + logn).
Step 2. Equation (13) becomes

9
——=f" — (d1 + da + d3),
2\@5 (dy +d> +ds)

9
——a" —d310™ — dy10™? = d,10™* +

2V2

which we rewrite as

(20)

9 _ 9
" — 102 (d310™ ™2 4 (: ‘d 10 + —~ " — (dy + dy + d
‘2\@ (ds 2) 1 2\/55 (di +d2 +d3)

< 39-10™.
Thus, dividing both sides by 10™2(d510™2~"2 4 dy), we get
(21) ‘( ) )a”lO‘mz - 1‘ <39
2\/§(d310m37m2 + d2) 10m2—7n1
Let
(22) Iy := ( 9 )a"lO_m2 —1.
2v/2(d310ms=m2 4 d,)

Suppose that I'y = 0. Then, we have
a =22 (
Conjugating in Q(v/2), we get

P (L)

dy10™> d310m3>
A

Consequently, we obtain

10ms d210™2  d310™s
<ov3(Bo—+ B —) =B < 1,
which is a contradiction. Thus, I'y # 0. To apply Theorem 2.1, we take

9

T SRy 10ma—mz  dy)

Again we take D = n. Furthermore, we have
9
hm) = h(2\/§(d310m3_m2 + d2))

(9) + h(2V2(d510™2 ™2 1 dy))
(9) + h(V2) + h(2ds) + h(2ds) + (m3 — m2)h(10) + log 2
<4+ 2-4(mg — mo).

;, me=a, n3 =10, b1 =1, by =n, by =—ma.

<h
<h
<9

That is,
2h(n1) < 18.8 + 4.8(m3 — ma).
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Thus, we take
A1 = 18.8 + 48(m3 - mg).

Since 72, m3 are the same as in I'y, we use the same values for Ay, As. From
Theorem 2.1, we obtain

log [Tg| > —1.4-30""31*5@2 (1 +logdy)(1 + log D) A; Ay As.

Comparing this last inequality with (21) leads to

(ma —mq)log10 < log39 4 4.11 - 10'?(18.8 4 4.8(m3 — my2))(1 + log n).
Hence, using inequality (19), we obtain
(mg —mq)log 10 —log 39 < 4.11-10"%(18.8 +-4.8(2.09 - 10'3(1 4 logn)))(1 +logn).
The above inequality gives us
(23) my —my < 1.8-10%(1 +logn)?.
Step 3. Equation (13) becomes

9
B — (di + dag + d3),

a”—dglO 3—d210 2 —d110™ = ——
! 2\/§

2V2

which we rewrite as
‘ a” 10™s (d210m2—m3 + dq10™—ms 4 d3)

(24)

202 9
_ B (di+da+d3) 4
22 9 )
Thus, dividing both sides by %, we get
25) |1 — 0 "10m (2v/3(d 1075 1+ dy10m - 4 dy)) j9| < 2O L
(25) |1-a (2v2(da +di +d3)/9| < - < TEmse
Put
2v2(da 10723 4 d,10™ ™3 4 g

(26) Iy:= 1—( V2(dy J; ! + 3))04—"10’"3.

The fact that I's # 0 can be justified by a similar argument as the fact that T'y #£ 0.
In order to apply Theorem 2.1, we take
2/2(dp10m27s 4 dy10™ ™S+ dy)
B 9

by =1, by =—n, b3 =ms.
We have D = n, and Ay and A3 are as in (17) and (18). As for A;, we have

2v/2(d10™2 73 4 d110™ 73 4 d
() = n( 22 - )

<2\/§(d21omz‘—m3 +dy10m ™2 4 d3))
9

< h(9) + h(V2) + h(2(da10™27™3 4 d;10™ ™2 4 dg))

m , N2 = Q, 773:107

IN

h
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< h(9) + h(V2) + h(2d1) + h(2d2) + h(2d3) + (ms — m2)h(10)
+ (mo — m1)h(10) + 2log 2
That is,
Qh(’lh) < 259+ 48(7713 — mg) + 48(777,2 — m1).
Thus, we can take
A =259+ 4.8(7713 — mg) + 4.8(m2 - ml).
Theorem 2.1 tells us that

log [Ty4| > —1.4-30"31*5@2 (1 + log dy) (1 + log D) A; Ay As.
Comparing this last inequality with (25) leads to
nloga — log(a®®®) < 4.11 - 10"%(25.9 4 4.8(ms3 — my) + 4.8(mg — m1))(1 + logn).
Hence, using inequalities (19) and (23), we obtain

nloga — log(a®®) < 4.11-10"%(25.94-4.8(2.09 - 10*3(1 4 logn))
+4.8(1.8 - 10%5(1 + logn)?))(1 + log n).
The above inequality gives us
n < 4.83-10%.
Lemma 3.1 implies
my < mo < ms < 2.1-10%.

We summarize what we have proved so far in the following lemma.

Lemma 3.2. All solutions of equation (12) satisfy

my < mg < ms < 2.1-10%, n < 4.83-10%.

3.3. Reducing the bound

To lower the above bounds, we return to equation (12). We rewrite it into the
form

d310™s 10m -1 10m—1 d
R

d d
e

Observe that the term in parentheses is always positive since
10m —1 10m2 —1  ds 10m -1 1
d d — —) >9 - - _ >
( Tg TR 9/) = 9 9~
Hence, we have
o dgloms 10m —1 10m2 —1  ds
- = ( 1 + do - 7)
2v/2 9 9 9 9
B 7 1
+—=2--—>0
2\@ — 4 2\@&500
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Thus, the number T'; from (16) appearing inside the absolute value in inequality
(15) is positive. Hence, with the above notations, we have

am” ds10™s  dzl0™s
Vi — 9 = 9 (e T — 1) > 0.

Let

A1 =nlogns —mglogns + logn;.
Therefore, we obtain

48

1Qms—m2 ’

0<A1 <exp(A1)71:F1 <
which implies that
48

10ms—mz

9
0 < log (2d3\/§> + m3(—log10) + nloga <

<109 exp(—2.30 - (m3 — m2)).
Thus,
Ay < 1059 exp(—2.30 - (m3 — ma)),
with YV := mg — mg < 2.1-10%.
Therefore, to apply Lemma 2.3, we take

1 2 2
c=10"%  §=23,  X,=21-10, ¢ = log(9/2dsv'2) di”\[),
log 10
1
_lc?gglo:)’ 91 =loga, 195 =logl0, 5= log(9/2d3\@).

The smallest value of ¢ > X is ¢ = q1092. We find that g9z satisfies the hypothesis
of Lemma 2.3 for all d3 = 1,...,9. Applying Lemma 2.3, we get mz — mo < 53.

We now take 0 < mz — mo < 53. Let
Ao = nlogne — mologns + logmn;.
From equation (13), we have
d310™3 + dg10™2 n 10m — 1 ds +d
310™3 + d,10 (eAzil):/B +d10 7(3+2>
9 2v2 9 9
()" 1™ 1

2\/50[" 9 3
Furthermore,
(=)™ o™ 1 1 7 1

7
> o> = >0,
2v/2am 9 3 2v/2a7 9 2y/2a5%0 9

Thus,

et2 —1>0.
So, from (20), we see that

Q' dgl0ms dylom <d310m3 dy 102 ) N
_ _ _ ~1) >0
9/2 9 9 g Ty ) -1)>0
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then by (21),
39

10ma=m

O<A2<€A2—1:F2<

)

which implies that

9
0<l n ~log10) 4 nl
% (2\/§(d310m3—m2 + dz)) ma(—log 10) + nlog
39
< —— < 10" exp(—2.30 - (M2 — my)).

10m2—m
Thus, we get
Ao < 10M0 exp(—2.30 - (mg — my)),
with Y :=mgy — my < 2.1 - 10%0.
Therefore, in order to apply Lemma 2.3, we take

9
10g (2\/5(6[3107”377”2 +d2))

=106 §=23 Xo=2.1-10% =
c 9 ) 0 ) ¢ 10g 10 9
__loga % =loga, Y9 =logll B =1o ( 9 )
log 107 1 g 2 g ) g 2\/§(d310m3im2 -|—d2) .

We get ¢ = qioa > Xo. By Lemma 2.3 for do = 1,...,9, d3 = 1,...,9, and
mg —meo < 53, we get also me — my < 55.
We now take 0 < ms3 —mq; <108 and 0 < m3 — mo < 53. Let

As = mglogns — nlogns + logn;.

From equation (13), we have

a™ (1—eA3): Ik _ d1+d2+d3'

2v/2 2v/2 9
Furthermore,

ks dy + do + d3 1 1 1 1
—2\/5+ 9 >_2\/§a”+§>_m+§>o'
Thus,
et —1>0.
So
1

A _
O<A3<eg—1—|r3|<m,
by (25), which implies that

. <2ﬁ(d210m2*m3 +d110™ ™3 4 dg)
9

< a®%8exp(—0.88 - n).

0<lo

) + mglog 10 4+ n(—log «)
1

< =5

We keep the value for Xy = 2.1 -10*°, and only change 1 to

(2\/§(d210m2_m3 +d;10™m7™s 4 ()

=1
) = log 9

) /log 10,
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log o
3.58
= 6: . = —
c=a""%, 0.88, v log 10’
24/2(d210™27"3 4 @110 ™3 +
v1 = —loga, vy =loglO, 5:10g< V2(dy10 —g 110 + 5)>

We take ¢ = ¢q125 > X and by Lemma 2.3, we get n < 209. But this contradicts
the assumption that n > 500. Hence, the theorem is proved.

4. THE PROOF OF THEOREM 1.2

The proof is similar to that of Theorem 1.1. We may sometimes omit some details.

4.1. An elementary estimate

We assume that

10mr — 1 10m2 — 1 10™ms — 1
27 o= (T ) (T ) (T
(27) Q 1 9 + do 9 + dg 9
for some integers m; < mg < mgy and di,ds,d3 € {1,2,...,9}. A quick com-

putation with Maple reveals no solutions in the interval n € [10,500]. For this
computation, we first note that Q59 has 192 digits. Thus, we generate the list of
all numbers which are sums of at most 2 repdigits with at most 192 digits each, let
us call it A. Then, for every n € [10,500], we compute M := |log @, /log10] + 1
(the number of digits of @,,) and then check whether @,, — d (10”9#) is a member
of A for some digit d € {1,...,9} and some m € {M — 1, M'}. This computation
takes a few seconds. So, from now on, we assume that n > 500. We next comment
on the size of mq, mo, m3 versus n.

Lemma 4.1. All solutions of equation (27) satisfy
mslogl0 —4 < nloga < m3log 10 + 2.

Proof. The proof follows easily from the fact that "~ < Q,, < a™*!. One can

see that
a" <@, <3-10m.
Taking the logarithm on both sides, we get (n — 1) log @ < log 3+ m3 log 10, which
leads to
nloga < loga +log3 + mglog 10 < mslog 10 + 2.

Similarly, the lower bound follows. O

4.2. Bounds of n,my, mg, ms

We next return to equation (27) and use the Binet formula (4) to get

e () () e ()

Equation (27) can be expressed as

(28) 9(a” + B") — dy10™ — dy10™2 — ds10™ = —(dy 4 do + ds).
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Here also, we examine (28) in three different steps as follows.
Step 1. Equation (28) gives

(29) 9a™ — d310™?® = d;10™* + dp10™2 — 98™ — (dy + da + d3),
which we rewrite as

[9a™ — d310™3| = |d110™* 4 d310™2 — 98™ — (dy + da + d3)| < 54 - 10™2.
Thus, dividing both sides by d310™3, we get

9\ e 54
(30) (dg)a 10 1’ < Tom-
Let
9 n —m,
(31) I = (—)a 107™s 1.
ds
Suppose that I'; = 0. Then, we have
o d3l0ms
==

which implies that o?” € Q, a contradiction. Thus, I'; # 0. With the notations
of Theorem 2.1, we take

9
ds’
Since 10™37 1 < Q,, < a™t!, we have ms < n. Therefore, we can take D = n.

Observe that L := Q(m1,12,13) = Q(«), so di, = 2. We now need to take A; for
7 =1,2,3, such that

m = N2 = @&, N3 = ].07 bl = 1, b2 =n, b3 = —mgs.

A; > max{dph(n;),|logn;|,0.16}.
Note that
h(n) < h(9) + h(ds) < h(9) + h(9) < 2h(9).
This implies that

2h(m) < 8.8.
Thus, we can take
A :=8.8.
Clearly,
h(ne) = %log Q, h(ns) = log 10.
We have
(32) max{2h(nz),|lognz|,0.16} =loga < 0.9 := A,,
(33) max{2h(nz),|logns|,0.16} = 2log 10 < 4.7 := As.

Theorem 2.1 tells us that
log |Ty| > —1.4-30"31*5@2 (1 + log dL) (1 + log D) A; Ay As.
Comparing this last inequality with (30) leads to
(m3 —m2)log 10 < log 54 4 3.7 - 10*3(1 + log n),



PELL AND PELL-LUCAS NUMBERS AS SUMS OF THREE REPDIGITS 19
giving
(34) mz —mg < 1.7-10"3(1 + logn).
Step 2. Equation (28) becomes
(35) 9a™ — d310™2 — dp10™2 = d;10™ — 96" — (d1 + da2 + d3),
which we rewrite as
|90 — 10™2 (d310™3 "™ + dy)| = |d110™" — 9B™ — (dy + dg + d3)| < 45 - 10™".
Thus, dividing both sides by 10™2(d510™2~"2 + dy), we get

9 45
(36) ’(—dglomrmz +d2)an10 ma _ 1‘ < {gmazmr
Let
(37) I, = (#)a”m*mz ~1.
d310ms—m2 4 d,

Suppose that I's = 0. Then, we have
ds10™2  d310™3
Ty o

n

Conjugating in Q(«), we get
o da10m2 dg10ms
=T "%5—

Consequently, we obtain
10™ms < d910™2  d310™s
9 = 9 9
which is a contradiction. Thus, I'y # 0. To apply Theorem 2.1, we take
9
T dz10mamz 1 dy’
Again we take D = n. Furthermore, we have
9
h(m) = h(d31oms—m2 T d2>
< h(9) + h(d310™372 + dy)
< h(9) + h(ds) + h(dz2) + (m3 — m2)h(10) + log 2
< 7.3+ 2.4(m3 —mg).

=18" <1,

n m=a, n3=10, by=1, by=n, by=—my.

That is,
2h(7’]1) < 14.6 + 48(m3 — mz).
Thus, we take
A =146 + 4.8(?’77,3 — mg).
Since 72, m3 are the same as in 'y, we use the same values for Ay, As. From
Theorem 2.1, we obtain

log [Tg| > —1.4-30"31*5@2 (1 + log dy) (1 + log D) A; Ay As.
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Comparing this last inequality with (36) leads to
(mg —mq)log 10 < log45 + 4.11 - 102 (14.6 4 4.8(m3 — my))(1 + logn).

Hence, using inequality (34), we obtain
(mg —m1)log 10 < log45 +4.11-10"%(14.6 + 4.8(1.7 - 10**(1 4 logn)))(1 + log n).
The above inequality gives us
(38) mg —my < 1.5-10%°(1 4+ logn)?.
Step 8. Equation (28) becomes
(39) 9™ — d310™® — dy10™2 — d;110™ = —98™ — (dy + do + d3),
which we rewrite as

| —10™3 (d210™27™3 + dy 10" 7™ + dg) /9| = |—B" — (d1 + d2 + d3) /9| < 4.
Thus, dividing both sides by a”™, we get

m 1
(40) |1 —a™"10™ (da10™2 7" 4 dy10™ "3 4+ dg) /9] < —T
Put
(41) [3:=1—a "10"3(da10™>""™ + dy10™ ™™ + d3) /9.

The fact that I's # 0 can be justified by a similar argument as the fact that I'y # 0.
In order to apply Theorem 2.1, we take
d210™27™3 4 d10™1 ™3 4 dg
= 5 ,
m=a n3=10, by =1, by=-—n, bs=ms.
We have D = n, and Ay and A3 are as in (32) and (33). As for A, we have
hin) = h(clzlomrms + cgll()m“m3 + dg)
(d210m2_m’3 +di10mTme 4 d3)
9
9) + h(da10™278 4 @, 10™ ™2 4 dy)
9) + h(dy) + h(dz) + h(d3) + (m3 — m2)h(10)
(mg — m1)h(10) + 2log 2
<10.2 + 2.4(m3 — mg2) + 2.4(ma — mq).

m

<

h
h(
h(
_|_

That is,
2h(m) < 20.4 + 4.8(m3 — ma) + 4.8(mg — my).
Thus, in order to use inequalities (34) and (38), we take
Ay =204+ 4.8(mg — ma) + 4.8(ma — mq).
With Theorem 2.1, we get
log [Ty4] > —1.4-30"31*5@2 (1 + log dL) (1 + log D) A; Ay As.
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Comparing this last inequality with (40) leads to
nloga —log(a®) < 4.11 - 10'%(20.4 4 4.8(m3 — my) + 4.8(ma —my))(1 + logn).
Hence, using inequalities (34) and (38), we obtain
nloga —log(a’®) < 4.11-10'(20.4 + 4.8(1.7 - 10**(1 + log n))
+4.8(1.5 - 10*(1 + logn)?))(1 + log n).

The above inequality gives us
n<4-10%.
Lemma 4.1 implies
my < mg <ms < 1.74-10%.

We summarize what we have proved so far in the following lemma.
Lemma 4.2. All solutions of equation (27) satisfy
my < mo < msg < 1.74 - 104, n<4-10%.
4.3. Bound reduction

To lower the above bounds, we return to equation (27). We rewrite it into the
form

d310™3 10m™ —1 10m2 —1 ds
= d d - 7)_
Q o T ( 1 +d—g 9
Observe that the term in parentheses is always positive since
10m —1 10m™2 —1 dj 10 -1 1 1.7
d d —f)>27—7>2—7>7
( Y 29 9/ = 9 9=27 917"
Hence, we have
ds310™s 10m™ —1 10m2 —1 ds 7
n_ —(d d ——)—”>f——
9 ( T TR g) P =g o

Thus, the number I'y from (31) appearing inside the absolute value in inequality
(30) is positive. Hence, with the above notations, we have

d310™s . d310™s3
9 9

n

(eM —1) >0,

where
A1 = nlognz —m3logns + logn:.
Therefore, we obtain
54

0<A1<€Xp(A1)—1:F1<

which implies that
9
0 < log (d) + ms(—1log10) + nlog«
3
54
W < 101'74 eXp(—23 . (m3 — m2))
Thus,
Ay < 102 exp(—2.30 - (m3 — m2)),
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with YV := mg — mg < 1.74 - 10%.
Therefore, to apply Lemma 2.3, we take

1
¢ =107, § =23, Xo=1.74-10", ¢ = L(g/d@,
log 10
log o
= _loggl()’ 91 = log 95 = log 10, B =1log(9/ds).

The smallest value of ¢ > X is ¢ = ¢q100- We find that ¢1¢; satisfies the hypothesis
of Lemma 2.3. Applying Lemma 2.3, we get m3z —mo < 53 for all d3 =1,2,...,8.
When d3 = 9, we get that 8 = 0. The largest partial quotient a; for 0 < k < 201
is a1g; = 1556. Applying Lemma 2.2, mg —my = Y < m3z < Xg := 1.74-10*° that
1 (101'74(1556 +2)-1.74- 1045)
ms —m —lo .
3729308 Tog 10|
We obtain mz — mo < 50, so we get the same conclusion as before, namely,

ms — Moy S 53.
We now take 0 < msz — mg < 53. Let

Ay = nloginy —mglogns + logn.
From equation (28), we have that
d310™3 + da10™2

(eA2 _1) :_/Bn+d110ml 71 - (d3+d2)

9 9 9
(=™ 10m 1
> — - -
a” 9 3
Furthermore, we see
(=)™ 10m™ 1 1 7 1 7
- ——>—-—+4+->—-——=4+->0.
an 9 3 am + 9 P00 + 9
Thus,
efr—1>0.

So, from (35), we see that

ds10™s 1072 rdgl07s  dyl0may
_ _ - 1
9 9 ( 9 T ) (e ) >0,

n

then
45

10m2—ma

O<A2<€A2—1:F2<

)

which implies
9
0<tog( L
<08 d310m37m2 +d2
45 1.66
< ——— < 107" exp(—2.3 - (mg — my)).

10m2—ma

) + ma(—log 10) 4+ nlog «

Thus, we get
Ay < 105 exp(—2.3 - (mg — m1)),
with YV :=my —my < 1.74 - 10%.
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Therefore, in order to apply Lemma 2.3, we take

9
160 P ez
c=10'00,  §=23  X,=174-10%, ¢ = :
log 10
9= 108 s Wy =logl0 B=1o ( 9 )
= —_-— = o = — [E—
10g 107 1 g «, 2 3 ) g d3107rL3_m2 +d2

We get ¢ = qio6 > Xo. By Lemma 2.3, over all the possibilities for the digits
dy,ds € {1,...,9} and m3—mqy € {1,...,53} except for m3z = mg and da+d3 = 9,
we get mgy —mp < 56.

In the exceptional cases ms = mo and ds + do = 9, one actually gets that
B = 0. The largest partial quotient aj for 0 < k < 201 is a;g1 = 1556. Applying
Lemma 2.2 with my —m; =Y < mo < Xy := 1.74 - 10%°,

1 1 10155(1556 + 2) - 1.74 - 10%°
mg—m1<§og( | log 10| )’

we obtain ms — m; < 50. So we get the same conclusion as before, namely
™o — My S 56.

We now take 0 < mz —mq < 109 and 0 < m3 — mo < 53. Let

As = mglogns —nlogns + logn;.
From equation (28), we have
a"(1—eM) = —B" —(di +dy +d3)/9 = —(B" + (d1 + da + d2)/9).

Furthermore,

11 1 1
"+ (di+dy+ds)/9> ——+ > ——=+ = >0.
B" 4 (diy +do +ds)/ an+3 a500+3
Thus,
M —1>0.
So
4 1
0<Ag<e® —1=l5 < = < =55

which implies that
do10™27™3 + d110™17™3 4 d3
9

4
< < a'%exp(—0.88 - n).

O<log( >+m310g10+n(—loga)

We keep the value for Xy = 4 - 10%%, and only change v to

do10™27™3  d10™17™3
z/):log( 2 +91 + 3)/1og10,
1
c=al"’, 0 = 0.88, v = o8 , v9 = log 10, v = —loga,
log 10

dol0™2=™5 1 d,10™1 ™3 4 dy
p=log ( 9 )
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We get ¢ = q101 > Xp, and by Lemma 2.3, we get n < 203. This holds for all
choices of dq,ds,ds € {1,...,9}, mg —mq € [0,53] and m3 — mq € [0,109] except
when m; = mo = mg and dy + ds +d3 = 9, or when mz —m; = mg —mo = 1 and
d1 + d2 = 10, d3 = 8 cases in which 5 = 0.

For the cases when 3 = 0, the largest partial quotient a; for 0 < k < 203 is
a1s0 = 1556. Applying again Lemma 2.2 with n =Y < X :=4-10%°, we get

n <

1 16(1556 4+ 2) -4 - 10%°
— log (a ( + ) ),
0.88 | log 10|

which leads to n < 129. Thus, we get the same conclusion as before, namely
n < 203. But this contradicts the assumption that n > 500. Hence, the theorem
is proved.
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