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STRESS TESTING FOR RISK-AVERSE

STOCHASTIC PROGRAMS

J. DUPAČOVÁ and V. KOZMÍK

Abstract. Possible use of the contamination technique in stress testing of risk
measures and risk-averse stochastic programs was initiated by Dupačová and Poĺıvka

[9] and detailed for the Value at Risk (VaR) and the Conditional Value at Risk

(CVaR). In this paper we discuss several extensions of the approach, namely to stress
testing for multistage risk-averse stochastic programs with CVaR related objectives,

and for spectral and polyhedral risk measures.

1. Introduction

Classical stochastic programming models aim at hedging against consequences of
possible realizations of random parameters so that the final expected outcome or
position is the best possible. However, such formulations do not capture the risk
which is an important issue in finance, natural resources management and other
fields. We shall deal with stochastic programs that can be put into the following
form:

Minimize F (x, P ) with respect to x ∈ X ⊂ Rn(1)

with P the probability distribution of the random parameters ω ∈ Ω that enter
the problem formulation, F concave in P and X a closed, nonempty set that does
not depend on P. After reformulation to the form (1), the main decision variable
x is typically the first-stage decision.

In the context of risk management, problems with F (x, •) linear in P correspond
to risk neutral objectives or to minimization of the negative expected utility of the
random outcome z of decision x ∈ X . The risk-averse objective function F in (1) is
based on a risk measure. It assigns a real number to each random outcome z from
a certain class Z, a linear space of allowable outcomes, defined on the probabil-
ity space (Ω,B, P ). It depends only on the probability distribution of the random
outcome of decision x – a property of law invariant (version-independent) risk
measures. In addition, several properties of risk measures, e.g. coherence (mono-
tonicity, translation equivariance, convexity, positive homogeneity, cf. Artzner et
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al. [2]), are mostly assumed. The popular examples of risk measures involve vari-
ance, Value at Risk (VaR) and Conditional Value at Risk (CVaR). The first two
are not coherent, while the latter is.

In program (1), P plays a role of an abstract parameter. Accordingly, the
optimal value of (1) will be denoted ϕ(P ) and the set of optimal solutions X ∗(P ).
In applications, complete knowledge of P is rare and it is usually estimated based
on past information and/or an expert opinion. Therefore it is necessary to apply
a suitable output analysis to draw conclusions about stability or robustness of the
obtained results with respect to changes of P . There are various statements about
persistence, stability and sensitivity for parametric programs of the above type,
see e.g. Römisch [21] and references therein. In this paper we embed the problem
(1) into a family of optimization problems parametrized by a scalar parameter
t. This family results from contamination of the original probability distribution
P by another fixed probability distribution Q, i.e., from using distributions Pt of
the form

Pt = (1− t)P + tQ with t ∈ [0, 1](2)

in the objective function of (1) at the place of P . This parametrization does not
require any specific properties of P and leads to applicable results related to stress
testing of the portfolio performance.

We begin with a brief summary of the contamination technique (cf. Dupačová
[4, 5]) for the general form of stochastic programs (1), with the expectation-type
of the objective function as a special instance. Results for the CVaR objective
function are given in Section 3 and are extended to a multiperiod problem. Sec-
tion 4 is devoted to an extension to spectral risk measures with a discussion related
to a possible exploitation for polyhedral risk measures and general coherent risk
measures.

2. Contamination technique

For fixed probability distributions P,Q, let

FQ(x, t) = F (x, (1− t)P + tQ)

denote the contaminated objective function. For fixed x, it is evidently a concave
function on [0, 1]. We denote further

ϕQ(t) = inf
x∈X

FQ(x, t) and X ∗Q(t) = arg min
x∈X

FQ(x, t)(3)

the optimal value function and the set of optimal solutions of the perturbed sto-
chastic program

minimize FQ(x, t) with respect to x ∈ X .(4)

There are various statements concerning properties of parametric program (4) with
a scalar parameter t; see e.g. Gol’shtein, [13, Chapter 7] or Bonnans and Shapiro,
[3, Section 4.3]:
Under the additional assumption that the set X ∗(P ) = X ∗Q(0) of optimal solutions

of the original problem (1) is nonempty and bounded and that X ∗Q(1) 6= ∅, the
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function ϕQ is continuous at t = 0 (cf. Gol’shtein [13, Theorem 15]) and its value
at t = 0 equals the optimal value of (1): ϕQ(0) = ϕ(P ).

Under modest additional assumptions, the directional derivative of the optimal
value ϕQ(t) of the perturbed program (4) at t = 0 equals

ϕ′Q(0+) =
d

dt
ϕQ(0+) = min

x∈X∗(P )

d

dt
FQ(x, 0+).(5)

The form of contamination bounds for ϕQ(t) is then a consequence of its concavity

(1− t)ϕ(P ) + tϕ(Q) ≤ ϕQ(t) ≤ ϕ(P ) + tϕ′Q(0+) for all t ∈ [0, 1] .(6)

In the risk-neutral case with F (x, P ) linear in P , FQ(x, t) is a linear function of t
and for an arbitrary fixed x, (5) reduces to

ϕ′Q(0+) = min
x∈X∗(P )

[F (x,Q)− F (x, P )] = min
x∈X∗(P )

F (x,Q)− ϕ(P ).(7)

Contamination bounds (6) can be then relaxed to

(1− t)ϕ(P ) + tϕ(Q) ≤ ϕ(Pt) ≤ (1− t)ϕ(P ) + tF (x(P ), Q)(8)

valid for an arbitrary x(P ) ∈ X ∗(P ) and t ∈ [0, 1].

Concavity of the optimal value function ϕQ(t) cannot be obtained, in general,
when the set X depends on the probability distribution P or when F is not concave
in P. In such cases and under additional assumptions, only local contamination
bounds can be constructed; see e.g. Dupačová and Kopa [10]. On the other hand,
neither coherence, nor convexity of F (x, P ) in x are required.

The choice of a degenerated distribution Q concentrated at ω∗ with probability
1 corresponds to an additional scenario ω∗ and (6) or (8) provide information about
the influence of including the additional scenario ω∗ on the optimal outcome. This
helps e.g. to quantify the stress test designed for the optimal performance ϕ(P ) of
the problem (1) with the underlying probability distribution P obtained by sam-
pling from a theoretical probability distribution or based on observed realizations
of ω.

3. Contamination and stress testing for CVaR-related risk measures

In this section we shall consider first the two most popular risk measures, Value
at Risk and Conditional Value at Risk.

3.1. Basic formulas for VaR and CVaR

Value at Risk (VaR) was introduced and recommended as a generally applicable
risk measure to quantify, monitor and limit financial risks and to identify losses
which occur with an acceptably small probability. Unfortunately, the formal defi-
nition is inconsistent in the literature. Denote
• g(x, ω) the loss if x ∈ X is selected and realization ω occurs,

• G(x, P ; k) := P{ω : g(x, ω) ≤ k} the distribution function of the loss associ-
ated with a fixed decision x ∈ X .
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Similarly as in Pflug [17] or Rockafellar and Uryasev [20], in this paper the Value
at Risk at the confidence level α ∈ (0, 1), VaRα, is defined as the α-quantile of the
loss distribution

VaRα(x, P ) = min{k ∈ R : G(x, P ; k) ≥ α}(9)

or

VaR+
α (x, P ) = inf{k ∈ R : G(x, P ; k) > α}.

Hence, a random loss greater than VaR occurs with probability 1−α. This inter-
pretation is well understood in the financial practice. VaR is not subadditive in
general but it can be obtained for an arbitrary probability distribution, existence
of moments is not needed. Asymptotic properties of empirical VaR follow from the
known results for empirical quantiles, see e.g. Serfling [22]. VaR(x, P ) is not con-
cave in P which means that only local contamination bounds can be constructed,
cf. Dupačová and Poĺıvka [9].

The Conditional Value at Risk (CVaRα) is the mean of the tail distribution Gα
of g(x, ω) defined as

Gα(x, P ; k) =


0 for k < VaRα(x, P )

G(x, P ; k)− α
1− α

for k ≥ VaRα(x, P ).
(10)

Assume that EP |g(x, ω)| <∞ for all x ∈ X and define

Φα(x, ψ, P ) = ψ +
1

1− α
EP (g(x, ω)− ψ)+,(11)

where (a)+ = max{a, 0}. The fundamental minimization formula of Rockafellar
and Uryasev [20] helps to evaluate CVaR and to analyze its stability including
stress testing.

Theorem 1. As a function of ψ, Φα(x, ψ, P ) is finite and convex,

min
ψ

Φα(x, ψ, P ) = CVaRα(x, P )(12)

and the set of optimal solutions is the interval

I(x, P ) = arg min
ψ

Φα(x, ψ, P ) = [VaRα(x, P ),VaR+
α (x, P )].(13)

For fixed x, the auxiliary function Φα(x, ψ, P ) is linear in P and convex in ψ,
hence, CVaRα(x, P ) is concave in P . Its derivative equals

d

dt
CVaRα(x, Pt)|t=0+ = min

ψ∈I(x,P )
Φα(x, ψ,Q)− CVaRα(x, P ),(14)

compare with (7). These properties open the possibility of stress testing via con-
tamination for CVaR and for optimization problems with the CVaR(x, P ) objective
function as done in Dupačová and Poĺıvka [9]. For asymptotic properties of the
empirical CVaR see section 6.5 of Shapiro et al. [24].
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3.2. Example: Stress testing for CVaR

Let P be a discrete probability distribution concentrated on ω1, . . . , ωS with prob-
abilities ps > 0, s = 1, . . . , S,

∑
s ps = 1 and x a fixed element of X . Then the

program (12) has the form

min
ψ
ψ +

1

1− α
∑
s

ps(g(x, ωs)− ψ)+(15)

and can be further rewritten as

min
ψ,y1,...,yS

{ψ +
1

1− α
∑
s

psys : ys ≥ 0, ys + ψ ≥ g(x, ωs) for all s}.

Consider now a stress test of CVaRα(x, P ), i.e., of the optimal value of (15) whose
objective function is linear in P . Let ψ∗ = ψ∗(x, P ) be an optimal solution of (15),
ω∗ the stress scenario and Q the corresponding degenerated probability distribu-
tion. To apply the contamination technique we proceed as explained in Section 2
for the objective function linear in P. As a result, we obtain contamination bounds

(1− t) CVaRα(x, P ) + tCVaRα(x,Q) ≤ CVaRα(x, Pt)

≤ (1− t) CVaRα(x, P ) + tΦα(x, ψ∗, Q)

= Φα(x, ψ∗, Pt)

(16)

that are valid for all t ∈ [0, 1]; compare with (8).

As the next step, let us discuss briefly optimization problems with the CVaRα(x,P )
objective function

min
x

CVaRα(x, P ) on a fixed compact nonempty set X ∈ Rn.

Substituting (12) for CVaRα(x, P ), the problem becomes again one with the
expectation-type objective function:

min
x,ψ
{Φα(x, ψ, P ) : x ∈ X}.(17)

For convex X and convex loss functions g(•, ω) for all ω, Φα(x, ψ, P ) is convex in
(x, ψ) and standard stability results apply. Moreover, if P is a discrete probability
distribution, g(•, ω) a linear function of x and X convex polyhedral, we obtain a
linear program

min
ψ,y1,...,yS ,x

{
ψ+

1

1−α
∑
s

psys : ys ≥ 0, x>ωs−ψ−ys≤ 0 for all s, x∈X
}
.(18)

Let ψ∗(P ), x∗(P ) be an optimal solution of (17) and denote ϕCα(P ) the optimal
value of (17). The contamination bounds follow the usual pattern, compare with
(8), (16)

(1− t)ϕCα(P ) + tϕCα(Q)

≤ ϕCα(Pt) ≤ (1− t)ϕCα(P ) + tΦα(x∗(P ), ψ∗(P ), Q)

for all t ∈ [0, 1]. To apply them one has to evaluate Φα(x∗(P ), ψ∗(P ), Q) and to
solve (17) for the stress distribution Q. We refer to Dupačová and Poĺıvka [9] for
a numerical example with discrete probability distributions P,Q .
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Applicability of contamination bounds depends on tractability of numerical
evaluation of the derivative ϕ′Q(0+), i.e., of Φα(x∗(P ), ψ∗(P ), Q), at the already

known optimal solution of (17). This is a relatively simple task for static models
with a discrete probability distribution P involving CVaR or optimal CVaR, but
might become quite hard when constructing contamination bounds for large scale
multistage stochastic programs with multiperiod versions of CVaR objective; see
Dupačová and Kozmı́k [11].

3.3. Example: Multiperiod CVaR

Consider z = (z1, . . . , zT ) stream of random outputs, with zτ based on a sequence
of past observations and decisions up to time τ . Think of a weighted average of
risk measures constructed for each time step separately, calculated for each zτ
using the marginal probability distributions Pτ . However, such procedure would
not take the information structure of the problem into account. A multiperiod
risk measure ρ should consider whole random process z along with its structure
and produce a real number based on its distribution.

Using conditional distributions P cτ given by random information preceding the
time step τ , we employ a mean-CVaR risk operator. For time step τ and 0≤λτ ≤1
we have:

ρτ,ατ (z, P cτ ) = (1− λτ )EP cτ [zτ ] + λτ CVaRατ (zτ , P
c
τ ).(19)

The risk value ρτ,ατ (z, P cτ ) is a random variable, conditional on the state in the
step τ , and the final risk measure is obtained by applying expectation to risk values
of each time step (cf. Pflug and Römisch [18]):

ρ(z, P ) =
∑T

τ=1
µτE[ρτ,ατ (z, P cτ )],(20)

with
∑T
τ=1 µτ = 1, µτ ≥ 0 for all τ. This form of ρ(z, P ) is particularly friendly

as its optimization can be decomposed to dynamic programming equations, which
allow to compute the cost function of each stage independently. Moreover, when
using this risk measure to form the objective function F (x, P ) in (1), the set of
feasible first-stage decisions remains independent of P . We refer to Dupačová and
Kozmı́k [11] for other CVaR related multiperiod risk measures.

In general, multistage stochastic programs are very hard to solve and a discrete
approximation of the true distribution P has to be built. This approximating
distribution is represented by a scenario tree and we are able to form a single de-
terministic optimization problem, which considers all nodes of this tree. However,
such problems are usually too large to be solved by the standard software and we
need to exploit the special structure to obtain efficient algorithms. In particular,
our risk-averse multistage programs have convex cost functions which can be ap-
proximated by polyhedral functions from below. We solve our models using the
stochastic dual dynamic programming algorithm (SDDP) which originated in the
work of Pereira and Pinto [16]. SDDP-style algorithms rely on the assumption of
stage-wise independence to provide good performance for problems with multiple
stages. The algorithm performs series of forward and backward iterations until
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a satisfactory solution is found, meaning that some stopping rule, given lower
and upper bound, is fulfilled; see Kozmı́k and Morton [14] and references therein.
Computation of the upper bound is straightforward in the risk-neutral case, but
it has to be enhanced to handle the case of CVaR. We applied the importance
sampling procedure derived in Kozmı́k and Morton [14].

During a typical iteration of the SDDP algorithm, cuts have been accumulated
at each stage. These cuts represent a piece-wise linear approximation of the future
cost functions. On a forward pass we sample a number of linear paths through
the tree. As we solve a sequence of problems along these forward paths, the cuts
that have been accumulated so far are used to form decisions at each stage. The
costs incurred along all the sampled forward paths through the tree can be used to
estimate the expected cost of the current policy, thus providing the upper bound.

In the backward pass of the algorithm, we add cuts to the collection defining
the current approximation of the future cost functions. We do this by solving
programs corresponding to the descendant nodes of each node in the linear paths
from the forward pass, except in the final stage T . To form a cut, we use the
objective values and subgradients of the descendant nodes to calculate the sub-
gradient of the future cost function. The cuts collected at any node in stage τ
apply to all the nodes in that stage, therefore only one set of cuts is maintained
for each stage. This complexity reduction is possible because of the stage-wise
independence assumption. The optimal value of the first-stage problem provides
the lower bound. We refer to articles by Philpott and Matos [19] and Shapiro [23]
for a thorough description and details about the SDDP algorithm.

3.3.1. Numerical illustration. Our procedures will be demonstrated on a sim-
ple asset allocation model. At stage τ, the decisions xτ denote the allocations (in
units of a multiple of a base currency, say CZK), and pτ denotes gross return per
stage; i.e., the ratio of the price at stage τ to that in stage τ − 1. These represent
the only random parameters in the model. Our model gives user the possibility
to choose risk aversion coefficient λτ ∈ [0, 1] and confidence level ατ ∈ (0, 1) sep-
arately for each stage of the model. The assets can be rebalanced at every time
step of the model, which invests a total portfolio value of p>τ xτ−1. We consider the
case in which transaction costs are proportional to the value of the assets sold or
bought; the fee is fτ . Our problem at stage τ is of the form familiar from dynamic
programming. Linearizing the CVaR term in (19) we obtain its final formulation:

Qτ (xτ−1, ψτ−1, pτ )

= min
xτ ,ψτ ,qτ ,cτ

−(1− λτ )1>xτ + λτ+1ψτ +
λτ

1− ατ
qτ + E [Qτ+1(xτ , ψτ , pτ+1)]

s.t. 1>xτ + fτ1
>cτ = p>τ xτ−1, cτ − xτ ≥ −xτ−1, cτ + xτ ≥ xτ−1,

qτ ≥ −1>xτ − ψτ−1, qτ ≥ 0, xτ ≥ 0,

with QT+1(·) ≡ 0 and λT+1 ≡ 0.
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In the first stage the initial capital is assumed to be equal to 1 and because
−−−1>x1 is then identically −1, we drop the constant from the objective function.
The first stage optimal solution is then given by the following program:

min
x1,ψ1

λ2ψ1 + E [Q2(x1, ψ1, p2)]

s.t. 1>x1 = 1, x1 ≥ 0.
(21)

We have used monthly price data of the 12 most important assets traded on Prague
Stock Exchange, January 2009 to February 2012. We have fitted a multidimen-
sional correlated log-normal distribution to the price ratios to obtain the initial
distribution P . The contaminating distribution Q was then constructed from P by
increasing the variance by 20% to provide a stress test with respect to perturbed
volatilities. Balanced scenario trees were constructed by sampling from these dis-
tributions, using the polar method for normal distribution sampling. The CVaR
levels ατ were set to 95%. The model was evaluated with risk coefficients λτ = 0.1
in the case with transaction costs of 0.3%. We have computed the contamination
bounds for problems with 3 and 5 stages. In Table 1 we show the setup for the
scenario trees used in our algorithm.

stages descendants per node total scenarios
3 1 000 1 000 000
5 1 000 1012

Table 1. Testing problems setup.

The three-stage problems can be solved to optimality using our SDDP al-
gorithm, meaning that there is no gap between the lower bound and the upper
bound. For these optimal solutions, standard contamination bounds presented in
Section 3.2 can be applied; see Figure 1. Due to the complexity of five-stage prob-
lems, we are unable to compute exact solutions and we can only provide contam-
ination bounds based on the lower and upper bounds from the SDDP algorithm.
With growing number of stages, the number of nodes to be visited to calculate a
precise upper bound quickly exceeds a manageable threshold. The upper bounds
and derivatives are estimated by simulation. We have used approximately 10 000
nodes for every estimator of the upper bound and contamination derivative. The
bounds are presented in Figure 2.

The results show that we are able to obtain tight contamination bounds in all
of our testing setups. With 3 stages we have the spread of 0.06%, considering
t = 50% contamination. For large-scale problems, we obtained the spread of
1.06% for statistically valid bound and 0.41% for the mean of the upper bounds,
respectively. The straightforward interpretation of our results would state that the
model can be considered stable with respect to growing variance of the underlying
random distribution which drives the asset price evolution.
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Figure 1. Contamination bounds for a three-stage problem.
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Figure 2. Contamination bounds for a five-stage problem.

4. Spectral risk measures and other extensions

It turns out that CVaR serves as an important building block for other law in-
variant coherent risk measures: CVaRα(x, P ) is concave in P and continuous
in α on (0, 1), cf. Rockafellar and Uryasev [20], and

∑
i pi CVaRαi(x, P ) with

pi ≥ 0 ∀i,
∑
i pi = 1 is also a law invariant coherent risk measure. Its empirical es-

timate
∑
i pi CVaRαi(x, Pν) evidently inherits the asymptotic properties valid for

the empirical CVaR’s with fixed individual levels αi. This type of risk measures
was introduced in papers of Acerbi, e.g. [1], under the name spectral risk measures
and was generalized as

Rm(x, P ) :=

∫ 1

0

CVaRα(x, P )dm(α)(22)
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with general probability distributions m(α) of α on interval [0, 1]. Spectral risk
measures are concave in P and probability distribution m(α) may reflect the sub-
jective risk aversion of the investor, who is interested in results for alternative
confidence levels α.

Consider now a fixed discrete probability distribution m(α) and assume for sim-
plicity that VaRαi(x, P ) = VaR+

αi(x, P ) for all its atoms αi, i = 1, . . . , I. De-
note ψ∗αi(x, P ) := VaRαi(x, P ). By averaging contamination bounds (16) for
CVaRαi(x, P ) with respect to distribution m(α), bounds for contaminated spectral
measures Rm(x, Pt) =

∑
i pi CVaRαi(x, Pt) follow:

(1− t)Rm(x, P ) + tRm(x,Q)

≤ Rm(x, Pt) ≤ (1− t)Rm(x, P ) + t
∑

i
piΦαi(x, ψ

∗
αi(x, P ), Q).

(23)

For a discrete probability distribution m(α), minimization of Rm(x, P ) on the set
X is evidently a problem of multiobjective optimization which provides a solution
x∗m(P ) efficient with respect to all involved CVaRαi(x, P ), i = 1, . . . , I, objectives.
To get it one may use an optimization shortcut similar to (17), i.e. to solve

min
x,ψ1,...,ψI

{∑
i

piΦαi(x, ψi, P ) : x ∈ X
}
.(24)

This is again a problem with an expectation-type of objective. Hence, contam-
ination bounds for minxRm(x, Pt) can be constructed similarly as for optimiza-
tion problems with the CVaRα(x, Pt) objective function using the general pattern
(8). The upper contamination bound exploits optimal solutions x∗m(P ), ψ∗i (P ),
i = 1, . . . , I of (24).

Example. In our numerical illustrations presented in Section 3.3.1, replace the
risk measure (19) with a risk measure that is based on two CVaR values. For the
time step τ and 0 ≤ λτ ≤ 1 we have:

ρτ,ατ (z, P cτ )

= (1− λτ − θτ )EP cτ [zτ ] + λτ CVaRατ (zτ , P
c
τ ) + θτ CVaRβτ (zτ , P

c
τ ).

(25)

We have applied the SDDP algorithm with a slight modification to cover the second
CVaR term in the objective function. The results for the three-stage problem with
CVaR levels ατ = 95% and βτ = 99% and risk constants of λτ = 0.05 and θτ = 0.05
show similar shape of the contamination bounds as in the case with a single CVaR
level. The spread is again very small, 0.05% for the t = 50% contamination.

Spectral risk measures with a continuous probability distribution m(α) offer
various interesting theoretical problems. A proof of consistency of empirical spec-
tral risk measures for a general probability distribution m(α) can be found in
Acerbi [1]. With a fixed probability distribution P one can study the influence of
investor’s choice of m in (22) via contamination of m by another fixed probability
distribution m̂ on [0, 1].
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A further generalization concerns the law invariant coherent risk measures
R(x, P ) written in the form of the Kusuoka representation: Using dual repre-
sentation of coherent risk measures it is possible to write these risk measures as

R(x, P ) = sup
{∫ 1

0

CVaRα(x, P )dm(α) : m ∈M
}

(26)

where M is a family of probability distributions on [0, 1). See Kusuoka [15] or
Shapiro et al. [24, Theorems 6.24] and Pflug and Römisch [18, 2.45] for details
and proof.

Let us discuss contamination bounds for the special case of M consisting of a
finite number of probability measures mj(α), j = 1, . . . , J. In general the contam-
inated risk measure

R(x, t) := R(x, Pt) = sup {Rm(x, Pt) : m ∈M}

is not concave in t. However there is m∗ ∈ M and t0 > 0 such that R(x, t) =
Rm∗(x, P ) for 0 ≤ t ≤ t0, hence R(x, t) is concave for 0 ≤ t ≤ t0. The derivative
d
dtRm∗(x, t)|t=0+ determines the slope of the local upper contamination bound for
R(x, t), 0 ≤ t ≤ t0. The lower bound can be based on an arbitrary spectral risk
measure Rmj (x, P ), mj ∈M

(1− t)Rmj (x, P ) + tRmj (x,Q) ≤ Rmj (x, Pt) ≤ R(x, Pt) for all t ∈ [0, 1].

Evidently, optimization of R(x, t) with respect to x ∈ X brings additional prob-
lems. For a finite set M, it is possible to evaluate the lower bound L(P ) :=
maxj minxRmj (x, P ) ≤ ϕ(P ) = minx maxj Rmj (x, P ) and for an arbitrary x̂ ∈ X ,
the upper bound ϕ(P ) ≤ U(P ) := maxj Rmj (x̂, P ) = Rm̂(x̂, P ). The local lower
contamination bound for L(Pt) = minxRm∗(x, Pt) for 0 ≤ t ≤ t0 and an upper
contamination bound for U(Pt) = Rm̂(x̂, Pt) can be constructed similarly as for
the spectral risk measures. However, the final bounds will be hardly tight enough
to provide a useful information about the magnitude of ϕ(Pt).

At this place advantages of polyhedral risk measures (cf. Eichhorn and Römisch
[12]) become apparent. Briefly, the polyhedral risk measure is defined as the op-
timal value of a certain stochastic linear program with fixed complete recourse
for which dual feasibility condition is fulfilled. The only random coefficient z(ω)
appears on the right-hand side. Polyhedral risk measures are concave in P. To
obtain a coherent polyhedral risk measure, parameters must be appropriately cho-
sen. General criteria on their choice are based on conjugate duality; cf. Eichhorn
and Römisch [12, Corollary 2.5], and Pflug and Römisch [18, Proposition 2.6, or
Proposition 2.68]. CVaR is a special example of coherent polyhedral risk measure.

The important property is that minimization of a stochastic program with a
polyhedral risk measure in the objective can be transformed to minimization of
a common stochastic linear program with a linear expectation-type objective ex-
tended for additional variables and constraints, see Proposition 4.1 of Eichhorn
and Römisch [12]. The contamination technique both for polyhedral risk measures
and for two-stage stochastic optimization problems based on them is detailed in
Dupačová [6] and applied to a scenario-based stochastic program. The definition
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and results concerning multiperiod polyhedral risk measures can be found e.g. in
Eichhorn and Römisch [12] and in Pflug and Römisch [18]; for contamination
bounds see Dupačová et al. [8].

5. Conclusions

Contamination technique provides numerically tractable bounds for static stochas-
tic programs with risk-averse objectives which aim at quantification of changes in
the optimal value due to perturbations of the assumed probability distribution. It
is convenient for scenario-based problems where it is applicable in stress testing
with respect to additional scenarios. Using additional variables and constraints,
the majority of the discussed risk measures can be transformed to an expectation
form which simplifies the construction of contamination bounds. Variance is an
example of a risk measure concave in the probability distribution P for which such
transformation does not hold; for the corresponding contamination bounds see e.g.
Dupačová [7].

The contamination technique can be extended to multistage problems with mul-
tiperiod risk measures. We provide numerical results for a simple asset allocation
model with the multiperiod CVaR. The contamination technique exhibits good
performance and provides sufficiently tight bounds that can be used in practical
applications to test stability. For large-scale problems, contamination bounds have
to be approximated, but even in this case our procedures can provide statistically
valid bounds, which are reasonably tight.
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