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ON MEIR-KEELER TYPE CONTRACTION

VIA RATIONAL EXPRESSION

R. K. BISHT

Abstract. In this paper, we show that the continuity requirement assumed in the
main result of Vara Prasad and Singh [Meir-Keeler type contraction via rational

expression, Acta Math. Univ. Comenianae LXXXIX(1) (2020), 19–25] can be re-

laxed further. As a by-product we explore some new answers to the open question
posed by Rhoades [Contemporary Mathematics 72 (1988), 233–245] regarding the

existence of contractive mappings that admit discontinuity at the fixed point.

1. Introduction

In [11], the authors proved the following theorem.

Theorem 1.1. Let S be a continuous self-mapping on a complete metric space
(X, d), we assume that the following condition satisfies
(1)

ε ≤ φ
(

max

{
(1 + d(x, Sx))d(y, Sy)

1 + d(x, y)
,
d(x, Sx)d(y, Sy)

d(x, y)
, d(x, y)

})
< ε+ λ(ε)

=⇒ d(Sx, Sy) < ε

for all x, y ∈ X, x 6= y or y 6= Sy, where φ : R+ → R+ is a continuous monotonic
increasing mapping, φ(t) < t for all t > 0, and φ(0) = 0. Then S has a unique
fixed point ξ ∈ X. Moreover, for all x ∈ X, the sequence {Snx} converges to ξ.

We now recall definitions of some weaker forms of continuity.

Definition 1.2 ([3]). A self-mapping S of a metric space X is called k-contin-
uous, k = 1, 2, 3, . . . , if Skxn → Su whenever {xn} is a sequence in X such that
Sk−1xn → u.

Definition 1.3 ([2]). If S is a self-mapping of a metric space (X, d), then the
set O(x, S) = {Snx : n = 1, 2, . . . } is called the orbit of S at x and S is called
orbitally continuous if u = limiS

mix implies Su = limiSS
mix.
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Definition 1.4 ([4]). A self-mapping S of a metric space (X, d) is called weakly
orbitally continuous if the set {y ∈ X : limiS

miy = u =⇒ limiSS
miy = Su} is

nonempty whenever the set {x ∈ X : limiS
mix = u} is nonempty.

Remark. The following observations are evident from Examples 1.5–1.8 [4, 5]

(i) 1- continuity is equivalent to continuity and

continuity =⇒ 2-continuity =⇒ 3-continuity =⇒ . . . ,

but not conversely.
(ii) Continuity implies orbital continuity, but not conversely.
(iii) Orbital continuity implies weak orbital continuity, but the converse need

not be true.
(iv) k-continuous mappings are orbitally continuous but the converse need not

be true.

Example 1.5. Let X = [0, 2] equipped with the usual metric and S : X → X
be defined by

Sx =

{
1 if 0 ≤ x ≤ 1,

0 if 1 < x ≤ 2.

Then Sxn → u =⇒ S2xn → u since Sxn → u implies u = 0 or u = 1 and
S2xn = 1 for all n, that is, S2xn → 1 = Su. Hence S is 2-continuous and orbitally
continuous. However, S is discontinuous at x = 1 .

Example 1.6. Let X = [0, 4] equipped with the usual metric. Define S : X →
X by

Sx =


1 if 0 ≤ x ≤ 1,

0 if 1 < x ≤ 3,
x
3 if 3 < x ≤ 4.

Then S2xn → u =⇒ S3xn → Su since S2xn → u implies u = 0 or u = 1 and
S3xn = 1 = Su for each n. Hence S is 3-continuous. However, Sxn → u does not
imply S2xn → Su, that is, S is not 2-continuous.

Example 1.7. Let X=[0, 2] equipped with the usual metric. Define S : X→X
by

Sx =


(1+3x)

4 if 0 ≤ x < 1,

0 if 1 ≤ x < 2,

2 if x = 2.

Then Sn0 → 1 and S(Sn0) → 1 6= S1. Therefore, S is not orbitally continuous.
However, S is weakly orbitally continuous. If we consider x = 2, then Sn2 → 2
and S(Sn2) → 2 = S2 and hence, S is weakly orbitally continuous. If we take
the sequence {Sn0}, then for any integer k ≥ 1, we have Sk−1(Sn0) → 1 and
Sk(Sn0)→ 1 6= S1. This shows that S is not k-continuous.
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Example 1.8. LetX=[0,∞) equipped with the usual metric. Define S :X→X
by

Sx =

{
1 if 0 ≤ x ≤ 1,
x
5 if x > 1.

Then S is orbitally continuous. Let k ≥ 1 be any integer. Consider the sequence
{xn} given by xn = 5k−1 + 1

n . Then Sk−1xn = 1 + 1
n5k−1 , S

kxn = 1
5 + 1

n5k
.

This implies that Sk−1xn → 1 and Skxn → 1
5 6= S1 as n → ∞. Hence S is not

k−continuous.

2. Main results

Theorem 2.1. Let S be a self-mapping on a complete metric space (X, d)
satisfying (1) for all x, y ∈ X, x 6= y, or y 6= Sy. Suppose S is k-continuous for
some k ≥ 1 or S is orbitally continuous. Then S has a unique fixed point, say
ξ ∈ X, and for each x ∈ X, the sequence of iterates Snx converges to the fixed
point.

Proof. It is obvious that S satisfies the following condition:

(2) d(Sx, Sy) < φ

(
max

{
(1 + d(x, Sx))d(y, Sy)

1 + d(x, y)
,
d(x, Sx)d(y, Sy)

d(x, y)
, d(x, y)

})
.

Let x0 be any point in X such that x0 6= Sx0. Define the sequence {xn} in X
recursively by xn+1 = Sxn, i.e., xn+1 = Snx0 for some n ∈ N∪{0}. Following the
proof of [11, Theorem 2.1], we conclude that {xn} is a Cauchy sequence. Since X
is complete, there exists a point ξ ∈ X such that xn → ξ as n→∞. Also for each
k ≥ 1, we have Skxn → ξ.

Now suppose that S is k−continuous. Since Sk−1xn → ξ, k-continuity of S
implies that limn→∞ Skxn = Sξ. This yields ξ = Sξ, that is, ξ is a fixed point
of S.

Finally, suppose that S is orbitally continuous. Since limn→∞ xn = ξ, orbital
continuity implies that limn→∞ Sxn = Sξ. This gives Sξ = ξ, that is, ξ is a fixed
point of S. Uniqueness of the fixed point follows from (2). �

The following theorem improves the result of Radjel et al. [8]

Theorem 2.2. Let S be a self-mapping on a complete metric space (X, d). We
assume that the following condition satisfies

(3)
3ε ≤

{
(1 + d(x, Sx))d(y, Sy)

1 + d(x, y)
+
d(x, Sx)d(y, Sy)

d(x, y)
+ d(x, y)

}
< 3ε+ λ(ε)

=⇒ d(Sx, Sy) < ε

for all x, y ∈ X, x 6= y or y 6= Sy. Suppose S is k-continuous for some k ≥ 1,
or S is orbitally continuous. Then S has a unique fixed point, say ξ ∈ X, and for
each x ∈ X, the sequence of iterates Snx converges to the fixed point.
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Proof. Let x0 be any point in X such that x0 6= Sx0. Define the sequence
{xn} in X recursively by xn+1 = Sxn, i.e., xn+1 = Snx0 for some n ∈ N ∪ {0}.
Following the proof given in [8], we conclude that {xn} is a Cauchy sequence.
Since X is complete, there exists a point ξ ∈ X such that xn → ξ as n→∞. Also
for each k ≥ 1, we have Skxn → ξ. Rest of the proof follows from the proof of
Theorem 2.1. �

In the next theorem, we show that if a self-mapping S of a complete metric
space (X, d) satisfies condition (1), then there exists a point, say z, in X such that
for each x ∈ X, the sequence of iterates, i.e., Snx→ z. However, z is a fixed point
if and only if S is weakly orbitally continuous.

Theorem 2.3. Let S be a self-mapping on a complete metric space (X, d)
satisfying (1) for all x, y ∈ X, x 6= y or y 6= Sy. Then S possesses a fixed point if
and only if S is weakly orbitally continuous.

Proof. Let x0 be any point in X. Define a sequence {xn} in X recursively by
xn+1 = Sxn, i.e., xn+1 = Snx0 for some n ∈ N ∪ {0}. Following the proof of [11,
Theorem 2.1], we conclude that {xn} is a Cauchy sequence. Since X is complete,
there exists a point z ∈ X such that xn → z as n → ∞. Also, for each integer
k ≥ 1, we have Skxn → z and using (2), Sny → z for any y ∈ X.

Suppose that S is weakly orbitally continuous. Since Snx0 → z for each x0,
by virtue of weak orbital continuity of S, we get Sny0 → z and Sn+1y0 → Sz for
some y0 ∈ X. This implies that z = Sz since Sn+1y0 → z. Therefore, z is a fixed
point of S.

Conversely, suppose that the mapping S possesses a fixed point, say z. Then
{Snz = z} is a constant sequence such that limn S

nz = z and limn S
n+1z = z =

Sz. Hence, S is weakly orbitally continuous. Uniqueness of the fixed point follows
easily. �

Remark. Theorems 2.1–2.3 give new solutions to the Rhoades problem [9] on
the existence of contractive mappings that admit discontinuity at the fixed point.
Some distinct answers of this problem are given in [1, 3, 4, 5, 6, 7, 10].
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5. Pant A., Pant R. P., Rakoćević V. and Bisht R. K., Generalized Meir-Keeler type contrac-

tions and discontinuity at fixed point II, Math. Slovaca 69(6) (2019), 1501–1507.
6. Pant R. P., Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284–289.
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