# ON MEIR-KEELER TYPE CONTRACTION VIA RATIONAL EXPRESSION 

R. K. BISHT


#### Abstract

In this paper, we show that the continuity requirement assumed in the main result of Vara Prasad and Singh [Meir-Keeler type contraction via rational expression, Acta Math. Univ. Comenianae LXXXIX(1) (2020), 19-25] can be relaxed further. As a by-product we explore some new answers to the open question posed by Rhoades [Contemporary Mathematics 72 (1988), 233-245] regarding the existence of contractive mappings that admit discontinuity at the fixed point.


## 1. Introduction

In $[\mathbf{1 1}]$, the authors proved the following theorem.
Theorem 1.1. Let $S$ be a continuous self-mapping on a complete metric space $(X, d)$, we assume that the following condition satisfies
(1)

$$
\begin{aligned}
\varepsilon & \leq \phi\left(\max \left\{\frac{(1+d(x, S x)) d(y, S y)}{1+d(x, y)}, \frac{d(x, S x) d(y, S y)}{d(x, y)}, d(x, y)\right\}\right)<\varepsilon+\lambda(\varepsilon) \\
& \Longrightarrow d(S x, S y)<\varepsilon
\end{aligned}
$$

for all $x, y \in X, x \neq y$ or $y \neq S y$, where $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a continuous monotonic increasing mapping, $\phi(t)<t$ for all $t>0$, and $\phi(0)=0$. Then $S$ has a unique fixed point $\xi \in X$. Moreover, for all $x \in X$, the sequence $\left\{S^{n} x\right\}$ converges to $\xi$.

We now recall definitions of some weaker forms of continuity.
Definition $1.2([3])$. A self-mapping $S$ of a metric space $X$ is called $k$-continuous, $k=1,2,3, \ldots$, if $S^{k} x_{n} \rightarrow S u$ whenever $\left\{x_{n}\right\}$ is a sequence in $X$ such that $S^{k-1} x_{n} \rightarrow u$.

Definition 1.3 ([2]). If $S$ is a self-mapping of a metric space $(X, d)$, then the set $O(x, S)=\left\{S^{n} x: n=1,2, \ldots\right\}$ is called the orbit of $S$ at $x$ and $S$ is called orbitally continuous if $u=\lim _{i} S^{m_{i}} x$ implies $S u=\lim _{i} S S^{m_{i}} x$.

Received April 2, 2020; revised May 1, 2020.
2010 Mathematics Subject Classification. Primary 47H09, 54E50; Secondary 47H10, 54 E 40.
Key words and phrases. Fixed point; $(\varepsilon-\delta)$ rational contraction; discontinuous mappings; $k$-continuity.

Definition 1.4 ([4]). A self-mapping $S$ of a metric space ( $X, d$ ) is called weakly orbitally continuous if the set $\left\{y \in X: \lim _{i} S^{m_{i}} y=u \Longrightarrow \lim _{i} S S^{m_{i}} y=S u\right\}$ is nonempty whenever the set $\left\{x \in X: \lim _{i} S^{m_{i}} x=u\right\}$ is nonempty.

Remark. The following observations are evident from Examples 1.5-1.8 [4, 5]
(i) 1- continuity is equivalent to continuity and

$$
\text { continuity } \Longrightarrow 2 \text {-continuity } \Longrightarrow 3 \text {-continuity } \Longrightarrow \ldots \text {, }
$$

but not conversely.
(ii) Continuity implies orbital continuity, but not conversely.
(iii) Orbital continuity implies weak orbital continuity, but the converse need not be true.
(iv) $k$-continuous mappings are orbitally continuous but the converse need not be true.

Example 1.5. Let $X=[0,2]$ equipped with the usual metric and $S: X \rightarrow X$ be defined by

$$
S x= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } 1<x \leq 2\end{cases}
$$

Then $S x_{n} \rightarrow u \Longrightarrow S^{2} x_{n} \rightarrow u$ since $S x_{n} \rightarrow u$ implies $u=0$ or $u=1$ and $S^{2} x_{n}=1$ for all $n$, that is, $S^{2} x_{n} \rightarrow 1=S u$. Hence $S$ is 2-continuous and orbitally continuous. However, $S$ is discontinuous at $x=1$.

Example 1.6. Let $X=[0,4]$ equipped with the usual metric. Define $S: X \rightarrow$ $X$ by

$$
S x= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if } 1<x \leq 3 \\ \frac{x}{3} & \text { if } 3<x \leq 4\end{cases}
$$

Then $S^{2} x_{n} \rightarrow u \Longrightarrow S^{3} x_{n} \rightarrow S u$ since $S^{2} x_{n} \rightarrow u$ implies $u=0$ or $u=1$ and $S^{3} x_{n}=1=S u$ for each $n$. Hence $S$ is 3 -continuous. However, $S x_{n} \rightarrow u$ does not imply $S^{2} x_{n} \rightarrow S u$, that is, $S$ is not 2-continuous.

Example 1.7. Let $X=[0,2]$ equipped with the usual metric. Define $S: X \rightarrow X$ by

$$
S x= \begin{cases}\frac{(1+3 x)}{4} & \text { if } 0 \leq x<1 \\ 0 & \text { if } 1 \leq x<2 \\ 2 & \text { if } x=2\end{cases}
$$

Then $S^{n} 0 \rightarrow 1$ and $S\left(S^{n} 0\right) \rightarrow 1 \neq S 1$. Therefore, $S$ is not orbitally continuous. However, $S$ is weakly orbitally continuous. If we consider $x=2$, then $S^{n} 2 \rightarrow 2$ and $S\left(S^{n} 2\right) \rightarrow 2=S 2$ and hence, $S$ is weakly orbitally continuous. If we take the sequence $\left\{S^{n} 0\right\}$, then for any integer $k \geq 1$, we have $S^{k-1}\left(S^{n} 0\right) \rightarrow 1$ and $S^{k}\left(S^{n} 0\right) \rightarrow 1 \neq S 1$. This shows that $S$ is not $k$-continuous.

Example 1.8. Let $X=[0, \infty)$ equipped with the usual metric. Define $S: X \rightarrow X$ by

$$
S x= \begin{cases}1 & \text { if } 0 \leq x \leq 1 \\ \frac{x}{5} & \text { if } x>1\end{cases}
$$

Then $S$ is orbitally continuous. Let $k \geq 1$ be any integer. Consider the sequence $\left\{x_{n}\right\}$ given by $x_{n}=5^{k-1}+\frac{1}{n}$. Then $S^{k-1} x_{n}=1+\frac{1}{n 5^{k-1}}, S^{k} x_{n}=\frac{1}{5}+\frac{1}{n 5^{k}}$. This implies that $S^{k-1} x_{n} \rightarrow 1$ and $S^{k} x_{n} \rightarrow \frac{1}{5} \neq S 1$ as $n \rightarrow \infty$. Hence $S$ is not $k$-continuous.

## 2. Main Results

Theorem 2.1. Let $S$ be a self-mapping on a complete metric space ( $X, d$ ) satisfying (1) for all $x, y \in X, x \neq y$, or $y \neq S y$. Suppose $S$ is $k$-continuous for some $k \geq 1$ or $S$ is orbitally continuous. Then $S$ has a unique fixed point, say $\xi \in X$, and for each $x \in X$, the sequence of iterates $S^{n} x$ converges to the fixed point.

Proof. It is obvious that $S$ satisfies the following condition:

$$
\begin{equation*}
d(S x, S y)<\phi\left(\max \left\{\frac{(1+d(x, S x)) d(y, S y)}{1+d(x, y)}, \frac{d(x, S x) d(y, S y)}{d(x, y)}, d(x, y)\right\}\right) \tag{2}
\end{equation*}
$$

Let $x_{0}$ be any point in $X$ such that $x_{0} \neq S x_{0}$. Define the sequence $\left\{x_{n}\right\}$ in $X$ recursively by $x_{n+1}=S x_{n}$, i.e., $x_{n+1}=S^{n} x_{0}$ for some $n \in \mathbb{N} \cup\{0\}$. Following the proof of [11, Theorem 2.1], we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there exists a point $\xi \in X$ such that $x_{n} \rightarrow \xi$ as $n \rightarrow \infty$. Also for each $k \geq 1$, we have $S^{k} x_{n} \rightarrow \xi$.

Now suppose that $S$ is $k$-continuous. Since $S^{k-1} x_{n} \rightarrow \xi, k$-continuity of $S$ implies that $\lim _{n \rightarrow \infty} S^{k} x_{n}=S \xi$. This yields $\xi=S \xi$, that is, $\xi$ is a fixed point of $S$.

Finally, suppose that $S$ is orbitally continuous. Since $\lim _{n \rightarrow \infty} x_{n}=\xi$, orbital continuity implies that $\lim _{n \rightarrow \infty} S x_{n}=S \xi$. This gives $S \xi=\xi$, that is, $\xi$ is a fixed point of $S$. Uniqueness of the fixed point follows from (2).

The following theorem improves the result of Radjel et al. [8]
Theorem 2.2. Let $S$ be a self-mapping on a complete metric space $(X, d)$. We assume that the following condition satisfies

$$
\begin{align*}
& 3 \varepsilon \leq\left\{\frac{(1+d(x, S x)) d(y, S y)}{1+d(x, y)}+\frac{d(x, S x) d(y, S y)}{d(x, y)}+d(x, y)\right\}<3 \varepsilon+\lambda(\varepsilon)  \tag{3}\\
& \Longrightarrow d(S x, S y)<\varepsilon
\end{align*}
$$

for all $x, y \in X, x \neq y$ or $y \neq S y$. Suppose $S$ is $k$-continuous for some $k \geq 1$, or $S$ is orbitally continuous. Then $S$ has a unique fixed point, say $\xi \in X$, and for each $x \in X$, the sequence of iterates $S^{n} x$ converges to the fixed point.

Proof. Let $x_{0}$ be any point in $X$ such that $x_{0} \neq S x_{0}$. Define the sequence $\left\{x_{n}\right\}$ in $X$ recursively by $x_{n+1}=S x_{n}$, i.e., $x_{n+1}=S^{n} x_{0}$ for some $n \in \mathbb{N} \cup\{0\}$. Following the proof given in [8], we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there exists a point $\xi \in X$ such that $x_{n} \rightarrow \xi$ as $n \rightarrow \infty$. Also for each $k \geq 1$, we have $S^{k} x_{n} \rightarrow \xi$. Rest of the proof follows from the proof of Theorem 2.1.

In the next theorem, we show that if a self-mapping $S$ of a complete metric space $(X, d)$ satisfies condition (1), then there exists a point, say $z$, in $X$ such that for each $x \in X$, the sequence of iterates, i.e., $S^{n} x \rightarrow z$. However, $z$ is a fixed point if and only if $S$ is weakly orbitally continuous.

Theorem 2.3. Let $S$ be a self-mapping on a complete metric space $(X, d)$ satisfying (1) for all $x, y \in X, x \neq y$ or $y \neq S y$. Then $S$ possesses a fixed point if and only if $S$ is weakly orbitally continuous.

Proof. Let $x_{0}$ be any point in $X$. Define a sequence $\left\{x_{n}\right\}$ in $X$ recursively by $x_{n+1}=S x_{n}$, i.e., $x_{n+1}=S^{n} x_{0}$ for some $n \in \mathbb{N} \cup\{0\}$. Following the proof of [11, Theorem 2.1], we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since $X$ is complete, there exists a point $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$. Also, for each integer $k \geq 1$, we have $S^{k} x_{n} \rightarrow z$ and using (2), $S^{n} y \rightarrow z$ for any $y \in X$.

Suppose that $S$ is weakly orbitally continuous. Since $S^{n} x_{0} \rightarrow z$ for each $x_{0}$, by virtue of weak orbital continuity of $S$, we get $S^{n} y_{0} \rightarrow z$ and $S^{n+1} y_{0} \rightarrow S z$ for some $y_{0} \in X$. This implies that $z=S z$ since $S^{n+1} y_{0} \rightarrow z$. Therefore, $z$ is a fixed point of $S$.

Conversely, suppose that the mapping $S$ possesses a fixed point, say $z$. Then $\left\{S^{n} z=z\right\}$ is a constant sequence such that $\lim _{n} S^{n} z=z$ and $\lim _{n} S^{n+1} z=z=$ $S z$. Hence, $S$ is weakly orbitally continuous. Uniqueness of the fixed point follows easily.

Remark. Theorems 2.1-2.3 give new solutions to the Rhoades problem [9] on the existence of contractive mappings that admit discontinuity at the fixed point. Some distinct answers of this problem are given in $[\mathbf{1}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{1 0}]$.

Acknowledgment. The author would like to thank the managing editor and the anonymous referee for their critical comments which helped to improve the manuscript.

## References

1. Bisht R. K. and Pant R. P., A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445 (2017), 1239-1241.
2. Ćirić Lj., On contraction type mapping, Math. Balkanica 1 (1971), 52-57.
3. Pant A. and Pant R. P., Fixed points and continuity of contractive maps, Filomat 31(11) (2017), 3501-3506.
4. Pant A., Pant R. P. and Joshi M. C., Caristi type and Meir-Keeler type fixed point theorems, Filomat 33(12) (2019), 3711-3721.
5. Pant A., Pant R. P., Rakoćević V. and Bisht R. K., Generalized Meir-Keeler type contractions and discontinuity at fixed point II, Math. Slovaca 69(6) (2019), 1501-1507.
6. Pant R. P., Discontinuity and fixed points, J. Math. Anal. Appl. 240 (1999), 284-289.
7. Pant R. P., Özgür N. Y. and Taş N., On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43(1) (2020), 499-517.
8. Redjel N., Dehici A. and Erhan I. M., A fixed point theorem for Meir-Keeler type contraction via Gupta-Saxena expression, Fixed Point Theory Appl. 2015 (2015), \#115.
9. Rhoades B. E., Contractive definitions and continuity, Contemp. Math. 72 (1988), 233-245.
10. Taş N. and Özgür N. Y., A new contribution to discontinuity at fixed point, Fixed Point Theory 20(2) (2019), 715-728.
11. Vara Prasad Koti N. V. V. and Singh A. K., Meir-Keeler type contraction via rational expression, Acta Math. Univ. Comenianae LXXXIX(1) (2020), 19-25.
R. K. Bisht, Department of Mathematics, National Defence Academy, Khadakwasla, Pune, India, e-mail: ravindra.bisht@yahoo.com
