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ON PROJECTIVE RICCI CURVATURE

OF MATSUMOTO METRICS

M. GABRANI, B. REZAEI and A.TAYEBI

Abstract. In this paper, we study Finsler metrics with weak, isotropic and flat
projective Ricci curvature (briefly, PRic-curvature). First, we prove a rigidity result

that shows that for a complete Finsler manifold, inequality PRic ≥ Ric holds if
and only if S = 0. Then, we show that the Mstsumoto metric is of weak PRic-

curvature if and only if it is a PRic-flat metric. We characterize projective Ricci

flat Matsumoto metrics with constant length one-forms. In this case, we show that
the Matsumoto metric reduces to a Ricci flat metric. Finally, we prove that a

Matsumoto metric is PRic-reversible if and only if it is PRic-quadratic.

1. Introduction

One of the important problems in Finsler geometry is to understand the geo-
metric meanings of various Riemannian and non-Riemannian quantities and their
impacts on the global geometric structures (see [7, 8, 15]). The flag curvature
K = K(x, y, P ) is a natural extension of the sectional curvature K = K(x, P ) in
Riemannian geometry which tells us how curved the Finsler manifold is at a point
[18]. The Ricci curvature is defined as the trace of Riemannian curvature. The
well-known Ricci tensor was introduced by G. Ricci. The Ricci curvature tensor
represents the amount by which the volume of a small wedge of a geodesic ball in a
curved Riemannian manifold deviates from that of the standard ball in Euclidean
space.

The Ricci curvature has deep relation with the S-curvature. The S-curvature
S = S(x, y) is an important non-Riemannian quantity which was constructed by
Z. Shen for given comparison theorems on Finsler manifolds. It is interesting to
consider the geometric quantities derived from Ricci curvature and S-curvature.

In [11], Shen considered the projective spray G̃ associated with a given spray G
on an n-dimensional manifold M which is defined by G and its S-curvature S as
follows:

G̃ = G +
2S

n+ 1
Y,
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where Y := yi ∂
∂yi is the vertical radial field on TM . Then G̃ is a projectively

invariant. It is easy to see that the Ricci curvature R̃ic of G̃ is given by

R̃ic = Ric +
n− 1

n+ 1
S‖iy

i +
n− 1

(n+ 1)2
S2,

where “‖ ” denotes the horizontal covariant derivative with respect to the Berwarld
connection of G.

Let (M,F ) be an n-dimensional Finsler manifold. Recently, Cheng-Shen-Ma
[5] defined the concept of projective Ricci curvature for a Finsler metric F by

PRic = Ric +
n− 1

n+ 1
S|iy

i +
n− 1

(n+ 1)2
S2,(1)

where “| ” denotes the horizontal covariant derivative with respect to the Berwarld
connection of F . It is easy to show that if two Finsler metrics are pointwise
projectively related Finsler metrics on a manifold with a fixed volume form, then
their projective Ricci curvature are equal. In other words, the projective Ricci
curvatures is projective invariant with respect to a fixed volume form. Also, the
projective Ricci curvature is actually a kind of weighted Ricci curvatures [9, 14].
However, the projective Ricci curvature can be defined for a Finsler metric F and
an independent volume form dV . Recently, Shen-Sun [13] consider the projective
Ricci curvature for a pair (F,dV ) not F only with dV = dVF . In this paper, we
prove the following rigidity result for the complete Finsler manifolds.

Theorem 1.1. Let (M,F ) be a complete Finsler manifold. Then PRic ≥ Ric
if and only if S = 0.

A Finsler metric F on an n-dimensional manifold M is called weak projective
Ricci curvature, weak PRic-curvature for short, if PRic = (n − 1)[3θ + κF ]F ,
where θ = θi(x)yi is a 1-form and κ = κ(x) is a scalar function on M . If θ = 0, then
F is called isotropic projective Ricci curvature or briefly isotropic PRic-curvature.
F is called constant projective Ricci curvature if PRic = (n − 1)cF 2, where c is
a real constant. If c = 0, then F is called a projective Ricci flat metric or PRic-
flat metric. In [5], Cheng-Shen-Ma characterized projective Ricci flat Randers
metrics. Later, Cheng and the second author wrote the modification to this paper
and corrected the results [3]. In [28], Zhu and Zhang studied the projective Ricci
curvature and characterized projective Ricci flat spherically symmetric Finsler
metrics.

In order to find the Finsler metrics with weak (and isotropic) Ricci curvature,
we consider the Matsumoto metric. The Matsumoto metric was first introduced
by Matsumoto in order to study the time it takes to negotiate any given path on
a hill side. It is the Matsumoto’s slope-of-a-mountain metric. A slope, the graph
of a function z = f(x, y), of the earth surface is regarded as a two-dimensional
Finsler space with the fundamental function F (z, y, ẋ, ẏ) = α2/(c1α− c2β), where
c1 and c2 are non-zero real constants, α2 := ẋ2 + ẏ2 + (ẋfx + ẏfy)2 and β :=
ẋfx + ẏfy. Here, α is the usual induced Riemannian metric and β is a derived
form, β(x, dx) = df(x, y). The two constants c1 and c2 are such that one can walk
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c1 meters per minute on the horizontal plane and 2c2 is equal to the acceleration of
falling. Aikou-Hashiguchi-Yamauchi generalized and normalized the above metric
as follows:

F =
α2

α− β
.

Many authors have studied this metric from different perspectives (see [1, 10, 17,
22, 23, 26, 27]).

In this paper, we study Matsumoto metrics with weak (and isotropic) Ricci
curvature and prove the equivalency of these notions. In this case, the metrics are
actually projective Ricci flat Finsler metrics.

Theorem 1.2. The Matsumoto metric is of weak PRic-curvature if and only
if it is a PRic-flat metric.

As a natural application, we characterize projective Ricci flat Matsumoto met-
rics with constant length one-forms. We show that these metrics are Ricci-flat
metrics.

Theorem 1.3. Let F = α2/(α − β) be a non-Riemannian Matsumoto metric
on a manifold M of dimension n ≥ 3. Suppose that β has constant length with
respect to α. Then F is of isotropic projective Ricci curvature PRic = (n−1)κF 2

for a scalar function κ = κ(x) on M if and only if α is Ricci-flat and β is parallel
with respect α. In this case, F is a Ricci-flat metric.

A Finsler metric (F, dV ) on a manifoldM is called PRic-reversible if PRic(y) =
PRic(−y). (F,dV ) is called PRic-quadratic if its PRic-curvature is quadratic in
y ∈ TxM . Finally, we consider PRic-reversible and PRic-quadratic Matsumoto
metric. Then, we prove the following.

Theorem 1.4. The Matsumoto metric is PRic-reversible if and only if it is
PRic-quadratic.

2. Preliminaries

Let (M,F ) be an n-dimensional Finsler manifold. A global vector field G is
induced by F on TM0, which in a standard coordinate system (xi, yi), for TM0,
is given by G = yi ∂

∂xi − 2Gi(x, y) ∂
∂yi , where

Gi :=
1

4
gil
[∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂xl

]
, y ∈ TxM.(2)

The vector field G is called the associated spray to (M,F ) and Gi are called the
spray coefficients.

For a Finsler metric F = F (x, y) on an n-dimensional manifold M , the Buse-
mann-Hausdorff volume form dVF = σF (x)dx1 . . . dxn is defined by

σF (x) :=
Vol(Bn(1))

Vol
{

(yi) ∈ Rn
∣∣∣ F(yi ∂

∂xi |x
)
< 1
} .
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Let Gi denote the geodesic coefficients of F in the same local coordinate system.
The S-curvature can be defined by

S(y) :=
∂Gi

∂yi
(x, y)− yi ∂

∂xi

[
lnσF (x)

]
,(3)

where y = yi ∂
∂xi |x ∈ TxM . The Finsler metric is said to be of isotropic S-curvature

if

S = (n+ 1)cF,

where c = c(x) is a scalar function on M (see [6, 18]).
For y ∈ TxM0, the Riemann curvature is a family of linear transformation

Ry : TxM → TxM which is defined by Ry(u) := Rik(y)uk ∂
∂xi , where

Rik(y) = 2
∂Gi

∂xk
− ∂2Gi

∂xj∂yk
yj + 2Gj

∂2Gi

∂yj∂yk
− ∂Gi

∂yj
∂Gj

∂yk
.(4)

The family R := {Ry}y∈TM0
is called the Riemann curvature.

The Ricci curvature Ric(x, y) is the trace of the Riemann curvature defined by
Ric(x, y) := Rmm(x, y). A metric F on an n-dimensional manifold M is called a
weakly Einstein metric if

Ric = (n− 1)
(
κ+

3θ

F

)
F 2,(5)

where κ = κ(x) is a scalar function and θ = θi(x)yi is a 1-form on M . If θ = 0,
then F is called an Einstein metric.

Let (M,F ) be an n-dimensional Finsler manifold. The projective Ricci curva-
ture of F is defined by

(6) PRic = Ric +
n− 1

n+ 1
S|iy

i +
n− 1

(n+ 1)2
S2,

where “| ” denotes the horizontal covariant derivative with respect to the Berwarld
connection of F (see [5]). F is called weak projective Ricci curvature if

PRic = (n− 1)
[3θ

F
+ κ
]
F 2,

where θ = θi(x)yi is a 1-form and κ = κ(x) is a scalar function on M . If θ = 0,
then F is called isotropic projective Ricci curvature PRic = (n − 1)κF 2. If
κ = constant, then F is called constant projective Ricci curvature.

3. Examples

In this section, we give some examples of projective Ricci flat, constant, isotropic,
or weak projective Ricci curvature Finsler metrics.

Example 3.1. Every Ricci-flat Kropina metric is a Berwald metric (see [25]).
Berwald metrics have vanishing S-curvature. Thus a Ricci-flat Kropina metric
satisfies PRic = 0.
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Example 3.2. Let α1 =
√
aij(x)yiyj and α2 =

√
āij(x)yiyj be two Ricci-

flat Riemannian metrics on the manifolds M1 and M2, respectively. Consider the
following 4-th root metric

F := 4

√
α4
1 + 2cα2

1α
2
2 + α4

2.

This is a Ricci-flat (Ric = 0) and Berwald metric on M := M1 ×M2. Thus F is
a non-Riemannian Finsler metric with projective Ricci flat curvature PRic = 0.

Below, we give two well-known Finsler metrics which have constant projective
Ricci curvature.

Example 3.3. Given a Finsler metric Φ and a vector field v on a manifold M ,
define a function F : TM → [0,∞) by

Φ
( y

F (y)
− εvp

)
= 1, y ∈ TpM,(7)

where ε is a constant. F is a Finsler metric when ε is small. Now, express the

spherical metric in a radial form Φ(y) =
√
u2 + sin2(r)v2, where y = u ∂

∂r +v ∂
∂θ ∈

T(r,θ)
(
(0,∞) × S1

)
. Take v = ∂

∂θ ∈ T(r,θ)
(
(0,∞) × S1

)
and define F by (7). We

obtain

F =

√(
1− ε2 sin2(r)

)
u2 + sin2(r)v2 − ε sin2(r)v

1− ε2 sin2(r)
.(8)

F satisfies that K = 1 and S = 0. Thus F has constant projective Ricci curvature
with κ = 1.

Example 3.4. Denote generic tangent vectors on S3 as

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

The Finsler function for Bao-Shen’s Randers space is given by

F (x, y, z;u, v, w) = α(x, y, z;u, v, w) + β(x, y, z;u, v, w),

with

α =

√
K(cu− zv + yw)2 + (zu+ cv − xw)2 + (−yu+ xv + cw)2

1 + x2 + y2 + z2
,

β =
±
√
K − 1 (cu− zv + yw)

1 + x2 + y2 + z2
,

where K > 1 is a real constant. The family of Randers metrics on S3 constructed
by Bao-Shen satisfies S = 0. Since these metrics are of constant flag curvature
K, then Ric = 2KF 2. Thus Bao-Shen’s metrics have constant projective Ricci
curvature with κ = K = constant.

Now, we give an example of isotropic projective Ricci curvature.
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Example 3.5. Every Einstein Finsler metric Ric = (n−1)λF 2, λ = λ(x), with
vanishing S-curvature is of isotropic projective Ricci curvature. It is remarkable
that every Einstein Kropina metric has vanishing S-curvature (see [25]). Thus an
Einstein Kropina metric has isotropic projective Ricci curvature κ = λ.

Here, we present some Finsler metrics of weak projective Ricci curvature.

Example 3.6. For an constant number a ∈ Rn, let us define the Randers
metric F := α+ β by

α :=

√
(1− |a|2|x|4)|y|2 + (|x|2〈a, y〉 − 2〈a, x〉〈x, y〉)2

1− |a|2|x|4
,

β :=
|x|2〈a, y〉 − 2〈a, x〉〈x, y〉

1− |a|2|x|4
.

This Randers metric satisfies

S = (n+ 1)cF and Ric = (n− 1)(3c0F + ρF 2),

where

c := 〈a, x〉, c0 := cxmym, ρ := 3〈a, x〉2 − 2|a|2|x|2.

(See [4]). Then

PRic = (n− 1)
[4c0
F

+ c2 + ρ
]
F 2.

Thus F is of weak projective Ricci curvature with θ = 4c0/3 and κ = c2 + ρ.

Example 3.7. Every two-dimensional Finsler manifold (M,F ) is of scalar flag
curvature. It is proved that Finsler surface of isotropic S-curvature S = 3c(x)F
has the following flag curvature

K =
3cxmym

F
+ ρ,

where ρ = ρ(x) is a scalar function on M [2]. In this case, F satisfies Ric = 2cF ,
and then it is of weak projective Ricci curvature θ = 4c0/3 and κ = ρ+ c2.

Example 3.8. Let F = α+β be a Randers metric on an n-dimensional manifold
M of weak isotropic flag curvature

K =
3cxmym

F
+ ρ,

where c = c(x) and σ = σ(x) are scalar function on M . In [12], Shen-Yildrim
proved that F is of isotropic S-curvature S = (n + 1)c(x)F if and only if it has
weak isotropic flag curvature. Thus F is of weak projective Ricci curvature with
θ = 4c0/3 and κ = ρ+ c2.
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4. Proof of Theorem 1.1

Suppose that F is of isotropic S-curvature S = (n + 1)cF , where c = c(x) is a
scalar function on M . In this case, we get

S|iy
i = (n+ 1)c0F,

where c0 := c|iy
i = cxiyi. Thus, we have

PRic = Ric + (n− 1)[c0 + c2F ]F.

In this case, one can show that F is of isotropic projective Ricci curvature

PRic = (n− 1)λ(x)F

if and only if it is a weakly Einstein metric

(9) Ric = (n− 1)
(
µ+

3θ

F

)
F 2,

with θ = −c0/3 and µ = F−1λ− c2.
A Finsler manifold (M,F ) is called complete if any unit speed geodesic

c : [a, b] → M can be extended to a geodesic defined on R. Now, we are going
to prove the Theorem 1.1.

Proof of Theorem 1.1. Let M be an n-dimensional manifold. Fix an arbitrary
vector y ∈ TxM0 and let c = c(t) denote the geodesic of F with ċ(0) = y. Since
the manifold is complete, then c is defined for −∞ < t < +∞. Let

S(t) :=
1

n+ 1
S
(
ċ(t)
)
.

Then

S′ =
1

n+ 1
S|i
(
ċ(t)
)
ċi(t).

By assumption, we have

S|iy
i − 1

n+ 1
S2 =

n+ 1

n− 1

(
PRic−Ric

)
≥ 0.

Then

S′(t)− S2(t) ≥ 0.(10)

Let us put

S0(t) :=
S(y)

1− t S(y)
.

It is easy to see that S0 satisfies

S′0(t)− S2
0(t) = 0.

Let us define

h(t) := exp
{
−
∫ t

0

[S(s) + S0(s)]ds
}{

S(t)− S0(t)
}
.
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We get

h′(t) := exp
{
−
∫ t

0

[S(s) + S0(s)]ds
}{

S′(t)− S′0(t) + S2
0(t)− S2(t)

}
≥ 0.

Also, we have h(0) = 0. It results that

h(t) ≥ 0, t > 0,

h(t) < 0, t < 0.

Then, we conclude that

S(t) ≥ S0(t), t > 0,

S(t) ≤ S0(t), t < 0.

Suppose that S(y) 6= 0. Now, let us put

t0 :=
1

S(y)
.

If S(y) > 0, then t0 > 0 and we get

S(ċ(t0)) ≥ lim
t→t−0

S0(t) =∞

which is impossible. If S(y) < 0, then t0 < 0 and

S(ċ(t0)) ≤ lim
t→t−0

S0(t) = −∞.

This case is impossible, also. Then S(y) = 0 for any y ∈ TxM . By (6), it follows
that PRic = Ric. The converse is trivial. �

The completeness condition in Theorem 1.1 cannot be replaced by positively
complete or negatively complete. See the following.

Example 4.1. A Finsler metric F satisfying Fxk = FFyk is called a Funk
metric. The standard Funk metric on the Euclidean unit ball Bn(1) is denoted by
Θ and defined by

(11) Θ(x, y) :=

√
|y|2 − (|x|2|y|2 − 〈x, y〉2)

1− |x|2
+
〈x, y〉

1− |x|2
, y ∈ TxBn(1) ' Rn,

where 〈, 〉 and |·| denote the Euclidean inner product and norm on Rn, respectively.
Funk metric is a non-Riemannian positively complete Finsler metric. The spray
coefficients of F are given by Gi = 1

2Fy
i. Funk metric satisfy

S =
(n+ 1)

2
F, and Ric = − (n− 1)

4
F 2 < 0.

Since F|i = 0, then

S|i = 0

which implies that PRic = 0. Therefore, PRic ≥ Ric while S 6= 0.
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5. Proof of Theorem 1.2

In this section, we are going to prove Theorem 1.2. First, we compute the projec-
tive Ricci curvature of a Matsumoto metric.

For an (α, β)-metric F := αφ(s), s = β/α, let us define bi;j by

bi;jθ
j := dbi − bjθji ,

where θi := dxi and θji := Γjikdxk denote the Levi-Civita connection form of α.
Let

rij :=
1

2

[
bi;j + bj;i

]
, sij :=

1

2

[
bi;j − bj;i

]
,

rij := aimrmj , sij := aimsmj , rj := bmrmj , sj := bmsmj ,

qij := rims
m
j , tij := sims

m
j , qj := biqij = rms

m
j , tj := bitij = sms

m
j ,

ri0 := rijy
j , si0 := sijy

j , r00 := rijy
iyj , r := biri,

r0 := rjy
j , s0 := sjy

j .

For an (α, β)-metrics, the form β is said to be Killing (resp., closed) form if
rij = 0 (resp., sij = 0). β is said to be a constant Killing form if it is a Killing
form and has constant length with respect to α, equivalently rij = 0 and si = 0
(see [16, 20, 21, 24]).

Let F = α2/(α− β) be a Matsumoto metric on an n-dimensional manifold M .
Suppose that Gi and Ḡi denote the geodesic coefficients of F and α, respectively.
Then Gi and Ḡi are related by

(12) Gi = Ḡi − α

A1
si0 +

1

2αA1A2
(2αs0 +A1r00)

[
(2A1 + 1)yi − 2αbi

]
,

where

A1 = A1(s) := 2s− 1, A2 = A2(s, b) := 3s− 2b2 − 1.

For a Matsumoto metric F = α2

α−β , the S-curvature is given by

(13)

S = 2
s0

A1
2 + 6

(
b2 − s2

)
s0

A1A2
2 − 2

ss0
A1A2

+ 4

(
b2 − s2

)
s0

A1
2A2

+
(n+ 1) (4 s− 1) s0

A1A2

+ 3

(
b2 − s2

)
r00

αA2
2 + 1/2

(n+ 1) (4 s− 1) r00
αA2

− 2
r0

A2
2 + Λ (r0 + s0) ,

where

Λ :=
f ′(b)

bf(b)
.(14)

Lemma 5.1. The Ricci curvature of a Matsumoto metric F = α2

α−β is given by

Ric =
1

4α2(α− 2β)3(α− 3β + 2b2α)4

11∑
k=0

dkα
k,(15)
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where Ric := Rmm and dk, (k = 0, 1, . . . , 11), are as follows:
d0 := −288(8n− 11)r200β

7,
...

d11 := −4(1 + 2b2)3
[
(1 + 2b2)tmm + 4sms

m
]
.

All the coefficients of di are listed in [23].

Lemma 5.2. Let F = α2

α−β be a Matsumoto metric on an n-dimensional man-

ifold M . Then the projective Ricci curvature of F is given by

PRic =
1

α2 (n+ 1)
2

(α− 2β)
3

(α− 3β + 2 b2α)
4

11∑
k=0

tkα
k,(16)

where 
t0 := 72(n2 + 5n+ 6)β7r200,

...
t11 := −(n+ 1)2(1 + 2b2)3

[
(1 + 2b2)tmm + 4sms

m
]
.

All the coefficients of tk, (k = 0, 1, . . . , 11), are polynomials and other coefficients
of tk can be calculated by maple program if necessary.

Proof. According to the definition, the projective Ricci curvature is given by

PRic = Ric +
n− 1

n+ 1
S|my

m +
n− 1

(n+ 1)2
S2.(17)

By (12), we have

(18)

Gimy
m = Ḡimy

m − 2α

A1
si0 +

1

αA1A2
(2αs0 +A1r00)(2A1 + 1)yi

− 2

A1A2
(2αs0 +A1r00)bi.

Thus

S|my
m = ym

∂S

∂xm
−Glmym

∂S

∂yl

= S;my
m +

[2α

A1
sm0 −

1

αA1A2
(2αs0 +A1r00)(2A1 + 1)ym

+
2

A1A2
(2αs0 +A1r00)bm

] ∂S
∂ym

= S;my
m +

2α

A1
sm0Sym

− 1

A1A2
(2αs0 +A1r00)

[
α−1(2A1 + 1)S− 2bmSym

]
.(19)

The following holds

b2;m = 2(rm + sm), s;m =
r0m + s0m

α
, sym =

αbm − sym
α2

.
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Consequently,

b2;0 = 2(r0 + s0), s;0 =
r00
α
, α;0 = 0, Λ;0 = Λ0,

sm0sym =
s0
α
, sm0(r00)ym = 2sm0 r0m = 2q00, Λym = 0,

bmsym =
b2 − s2

α
, bm(r00)ym = 2r0, bmαym = s, bm(r0)ym = r.

By (13), we get

S;my
m=

1

2α(α− 3β + 2b2α)3(α− 2β)2

×
(

16 b6 α6 Λ r0;0 + · · · − 72 (1 + 2n)β5 r00;0

)
,(20)

sm0Sym =
1

2α (α− 3β + 2b2α)3(α− 2β)2

×
(

8 (1 + 2 b2) b4 α6Λq0 + · · · − 144 (1 + 2n) q00β
5
)
,(21)

bmSym =
1

2α3(α− 3β + 2b2α)3(α− 2β)2

×
(

8 r (1 + 2 b2) b4 α8Λ + · · ·+ 72 (1 + 2n)β6r00

)
.(22)

Substituting (20), (21), and (22) into (19) yields

S|my
m = − 1

2α2(α− 3β + 2b2α)4(α− 2β)2

×
(

32 (1 + 2 b2) b6 α9Λ q0 + · · ·+ 432 (1 + 2n)β6r200

)
.(23)

By using (13), (15), (23), and Maple program, we obtain (16). �

Now, we remark the following.

Lemma 5.3 ([26]). Let B1 := β−α
α and B2 := β2−b2α2

α2 . Then

(1) B1 and
α− 3β + 2b2α

α
are relatively prime polynomials in y if and only if

b 6= 1.

(2) B2 and
α− 3β + 2b2α

α
are relatively prime polynomials in y if and only if

b 6= 1.

(3) B2 or
α− 3β + 2b2α

α
and α−2β

α are relatively prime polynomials in y if and

only if b 6= 1/2.

Proof of Theorem 1.2. Let M be an n-dimensional manifold and F be a Finsler
metric on M with weak PRic-curvature

PRic = (n− 1)
(3θ

F
+ κ
)
F 2,
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where θ = θi(x)yi is a 1-form and κ = κ(x) is a scalar function on M . Then by
(16), we have

(n− 1)
[ 3θα2

α− β
+

κα4

(α− β)2

]
=

1

α2 (n+ 1)
2

(α− 3β + 2 b2α)
4

(α− 2β)
3

11∑
k=0

tkα
k.(24)

Multiplying (α− β)2 on both side (24) yields

(n− 1)
[
3θ(α− β) + κα2

]
α2

=
(β − α)2

α2 (n+ 1)
2

(α− 3β + 2 b2α)
4

(α− 2β)
3

11∑
k=0

tkα
k.(25)

For the Matsumoto metric, we have b < 1
2 , which implies that α−3β+2b2α cannot

be divided by β−α from Lemma 5.3. Obviously, α− 2β and α cannot be divided
by β − α either. Thus κα4 must be divided by β − α. This is impossible unless
κ = 0. From this and (25), θα2 is divided by β − α, which is equivalent to θ is
divided by β−α. This is impossible unless θ = 0. Then F reduces to a PRic-flat
metric. The converse is obvious. This completes the proof. �

6. Proof of Theorem 1.3

To prove Theorem 1.3, we need the following lemma

Lemma 6.1. Let F = α2

α−β be a PRic-flat non-Riemannian Matsumoto metric

on a manifold M of dimension n ≥ 3. Then β is a conformal 1-form with respect
to α, i.e., there is a function σ = σ(x) on M such that r00 = σα2.

Proof. Let us assume that PRic = 0, or equivalently,

α2 (n+ 1)
2 (
α− 3β + 2 b2α

)4
(α− 2β)

3
PRic = 0.

By (16), we obtain

11∑
k=0

tkα
k = 0.(26)

By (26), we obtain the following fundamental equations:{
0 = t0 + t2α

2 + t4α
4 + t6α

6 + t8α
8 + t10α

10,

0 = t1 + t3α
2 + t5α

4 + t7α
6 + t9α

8 + t11α
10.

(27)

From the first equation of (27), we know that α2 divides t0. Since α2 is an
irreducible polynomial in y and β7 factors into linear terms, then α2 divides r200.
Thus r00 = σα2 for some scalar function σ = σ(x) on M . �
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Lemma 6.2 ([27]). Let F = α2

α−β be a non-Riemannian Matsumoto metric on

a manifold M of dimension n ≥ 3. Then S-curvature vanishes if and only if β is
a constant Killing form.

Proof of Theorem 1.3. Let F be a Matsumoto metric on an n-dimensional man-
ifold M . In [27], the authors proved that for a non-Riemannian Matsumoto metric
F of constant killing 1-form β, F is Einstein with scalar function λ = λ(x) on M if
and only if α is Ricci-flat and β is parallel with respect α. In this case, F is Ricci-
flat. By Lemma 6.2, we conclude that PRic = Ric in the case of constant killing
1-form. Thus, in this case, one can get the same results as in [27] for isotropic
projective Ricci curvature. So, to complete the proof, we just have to prove that
β is of a constant killing 1-form.

Assume that F is of an isotropic projective Ricci curvature. By Theorem 1.2
and Lemma 6.1, r00 = σα2. Thus ri = σbi. Since the length of β is constant with
respect to α, then we have 0 = (b2)|i = 2(ri + si), i.e., ri + si = 0. Hence we get

σbi + si = 0.

Contracting both sides of it with bi yields that σ = 0. Therefore, r00 = 0 and
si = 0, i.e., β is a constant Killing 1-form.

Conversely, if α is Ricci-flat and β is parallel with respect to α, then the length
of β with respect to α is constant. It follows that F is Einstein as well as isotropic
projective Ricci curvature. This completes the proof. �

7. Proof of Theorem 1.4

Let F be a Matsumoto metric on an n-dimensional manifold M . The sufficiency
is obvious. We only need to prove the necessity. Assume that the projective Ricci
curvature of F is reversible, i.e.,

PRic(y) = PRic(−y).(28)

Then by contracting both sides of (28) with α2(n+ 1)2(α+ 2β)3(α+ 3β+ 2 b2α)4

and by a quite long computational procedure using Maple program, we obtain

11∑
k=0

hkα
k = 0,(29)

where hk, k = 0, 1, . . . , 11 are as follows:
h0 := 72(n2 + 5n+ 6)β7r200,

...
h11 := (n+ 1)2(1 + 2b2)3[(1 + 2b2)tmm + 4sms

m].

From (29), we obtain the following fundamental equations:{
0 = h0 + h2α

2 + h4α
4 + h6α

6 + h8α
8 + h10α

10,

0 = h1 + h3α
2 + h5α

4 + h7α
6 + h9α

8 + h11α
10.

(30)



124 M. GABRANI, B. REZAEI and A.TAYEBI

All of coefficients hk are polynomials and other coefficients of hk can be calculated
by maple program if necessary. From the first equation of (30), we know that α2

divides h0. Since α2 is an irreducible polynomial in y and β7 factors into linear
terms, it must be the case that α2 divides r200. Thus r00 = σα2 for some function
σ = σ(x), i.e., β is a conformal form with respect to α. In this case, the following
holds

r00 = σα2, rij = σaij , r0i = σyi, ri = σbi,

r = σb2, rij = σδij , r0is
i
0 = q00 = 0, r0is

i = σs0,

r0 = σβ, si0ri = q0 = σs0, r00;i = σiα
2, r00;0 = σ0α

2,

rii = nσ, r0;0 = σ0β + σ2α2,

where yi := aijy
j .

Substituting all of these into the first equation of (30) and dividing both sides
by common factor α2, we obtain

(31) h
′

0 + h
′

2α
2 + h

′

4α
4 + h

′

6α
6 + h

′

8α
8 = 0,

where

h′0 := − 648
{

(n− 1)Λ2(βσ + s0)2

+ (n2 − 1)
[
Λ(βσ0 + s0;0) + Λ0(βσ + s0)

]
+ (n+ 1)2(αRic−PRic)

}
β7

and other coefficients of h
′

i can be calculated by maple program if necessary. From

(31), we know that α2 divides h
′

0. Thus

(32)
kα2 = (n− 1)Λ2(βσ + s0)2(βσ0 + s0;0)

+ (n2 − 1)
[
Λ + Λ0(βσ + s0)

]
+ (n+ 1)2(αRic−PRic),

where k = k(x) is a scalar function on M . By (32), we get

PRic =
1

(n+ 1)2

{
(n− 1)Λ2(βσ + s0)2 + (n2 − 1)

[
Λ(βσ0 + s0;0)

+ Λ0(βσ + s0)
]
− kα2

}
+ αRic

which shows that F is PRic-quadratic. �
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