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η-RICCI SOLITON AND ALMOST η-RICCI SOLITON

ON ALMOST coKÄHLER MANIFOLDS

VENKATESHA and S. CHIDANANDA

Abstract. The aim of this paper is to study η-Ricci soliton and almost η-Ricci
soliton in the context of smooth almost coKähler manifold for which Reeb vector

field ξ is Killing and for ξ belongs to (κ, µ)-nullity distribution. For a (κ, µ)-almost

coKähler metric manifold M , we prove that if M is non-coKähler and g is gradient
η-Ricci soliton, then M is η-Einstein with λ = 0. Next we prove that if g is an η-

Ricci soliton on M with λ+µ′ ≤ 0, then M is coKähler. Further we show that, M is
η-Einstein if and only if V is a strict infinitesimal contact transformation. Finally,

we prove that if the non-coKähler (κ, µ)-almost coKähler manifold M admits an

almost η-Ricci soliton with V = ρξ or V = Df , then M is η-Einstein. We construct
the suitable example which justifies our results.

1. Introduction

Let M be a Riemannian manifold. A Ricci soliton on M is the case of choosing a
smooth vector field V (if any) satisfying the soliton equation

(1) S(Y, Z) +
1

2
(£V g)(Y,Z) + λg(Y, Z) = 0

for any Y, Z ∈ X (M) and for some soliton constant λ ∈ R, where £V denotes
the Lie derivative along the vector field V and S is the Ricci tensor. Moreover,
Ricci soliton was first introduced by R. S. Hamilton [10], in 1982. The Ricci
soliton (g, V, λ) is said to be shrinking, steady or expanding according to the soliton
constant λ appearing in (1), satisfying λ < 0, λ = 0, or λ > 0, respectively. During
the last two decades, the Ricci soliton has been studied by many mathematicians
([19], [7], [20], [21], [22], [14], [13]). In equation (1), by allowing the soliton
constant λ to become a smooth variable function on M, Pigola et al. [16] studied
gradient Ricci almost soliton on M . In [15], Perelman proved that potential vector
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field of a Ricci soliton on a compact manifold is the gradient of a potential function
−f . But this result need not be true for an almost Ricci soliton case.

In general, Ricci soliton represents a generalization of Einstein metric on M .
By adding the term µ′η ⊗ η for µ′ a real constant and η a 1-form in equation (1),
we obtain the η-Ricci soliton introduced by Cho and Kimura [8]. Moreover, in
[5], C. Calin and M. Crasmareanu treated this on Hopf hypersurfaces in complex
hypersurfaces. So the η-Ricci soliton on M is defined as follows:

A Riemannian metric g is said to be an η-Ricci soliton on M , if there exits a
smooth vector field V called the potential vector field such that

(2) S +
1

2
£V g + λg + µ′η ⊗ η = 0,

where λ and µ′ are the soliton constants, η is the 1-form and £V g denotes the Lie
derivative of g along the vector field V . Next from the Poincare lemma, we know
the relation

(3) g(Y,∇ZDf) = g(Z,∇YDf).

Therefore, if V is gradient of f , then condition (2) turns into

QY +∇YDf + λY + µ′η(Y )ξ = 0(4)

for all Y ∈ TM , this is called a gradient η-Ricci soliton. If λ and µ′ appearing in
equations (2) and (4), are in C∞(M), then g is said to be an almost η-Ricci soliton.
The notion of an almost η-Ricci soliton has been studied in many contexts: on
paracontact manifolds ([12], [4]), on Lorentzian manifolds ([3], [2]).

The paper is structured as as follows. After introduction part for soliton condi-
tion in section 1, in the section 2, we recall the notion and properties of an almost
coKähler manifolds with having Killing ξ vector for (κ, µ)-nullity distribution. We
prove some basic properties on it. Section 3 is devoted to the study of an η-Ricci
soliton on (κ, µ)-almost coKähler manifolds. First we consider the gradient η-Ricci
soliton in a non-coKähler case and prove the constancy of a function f with show-
ing λ = 0. Next for λ + µ′ ≤ 0 case, we prove the non-existence of an η-Ricci
soliton in a non-coKähler (κ, µ)-almost coKähler manifold M . Further, we show
that M is η-Einstein if and only if V is strict infinitesimal contact transformation.
In section 4, we consider an almost η-Ricci soliton for V = ξ and V ⊥ ξ cases in
an almost coKähler manifold with parallel ξ vector. So we arrive at the condition
λ+µ′ = 0. In the last section, we prove that if M is a non-coKähler (κ, µ)-almost
coKähler manifold and admits either gradient almost η-Ricci soliton or almost
η-Ricci soliton (g, ρξ), then M is η-Einstein.

2. Almost coKähler manifolds

An odd dimensional smooth manifold M having 1-form η, vector field ξ, and
endomorphism ϕ such that

(5) ϕ2 = −I + η ⊗ ξ, η(ξ) = 1



η-RICCI SOLITON AND ALMOST η-RICCI SOLITON 219

is called as an almost contact manifold. It is well known that in an almost contact
manifold, equation (5) implies η ◦ ϕ = 0, ϕξ = 0, and there always exists a
Riemannian metric g such that

(6) g(ϕX,ϕY ) = (g − η ⊗ η)(X,Y ),

for all X, Y ∈ TM . Then the manifold M together with g is said to be an almost
contact metric manifold. In the study of an almost contact metric manifold, an-
other class of an almost contact metric manifold and an odd analogy of Kähler
manifold whose 1-form η and 2-form Φ defined as Φ(X,Y ) = g(X,ϕY ) satisfying
dη = 0 and dΦ = 0 are said to be an almost coKähler manifolds. (In recent few
years, it has been studied by many authors, e.g., [9], [11]). If an almost coKähler
manifold M is normal, then M is said to be coKähler. An almost coKähler man-
ifold with parallel Reeb vector field ξ was considered and studied in [1]. As like
contact, a three dimensional almost coKähler manifold with parallel ξ vector is
always a coKähler. If M has a parallel vector ξ, then R(X,Y )ξ = 0 which gives:

Qξ = 0.(7)

On an almost coKähler manifold M , for a symmetric operator h and asymmetric
operator ϕ, we have the following conditions from [18]

hϕ = −ϕh, hξ = 0,

trace(h) = div ξ = 0, ∇Xξ = h′ = hϕX,(8)

∇ξϕ = 0.(9)

In an almost coKähler manifold M , if the vector field ξ belongs to (κ, µ)-nullity
distribution, i.e.,

R(X,Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY }(10)

for all X and Y ∈ TM , where (κ, µ) ∈ R2, then such type of manifold is defined
as (κ, µ)-almost coKähler manifold.

Thus from [6], we have the following conditions on (κ, µ)-almost coKähler man-
ifolds:

Qξ = 2nκξ,(11)

∇ξh = µh′,(12)

h2 = κϕ2.(13)

Clearly, from the above equation, we can conclude that κ ≤ 0 and M is coKähler
if and only if κ = 0. For non-coKähler (κ, µ)-almost coKähler manifold (κ < 0),
we have

QY = µhY + 2nκη(Y )ξ,(14)

(∇Y h)Z = −κg(ϕY,Z)ξ + µη(Y )h′Z + κη(Z)ϕY,(15)

(∇Y ϕ)Z = g(hY,Z)ξ − η(Z)hY.(16)
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And moreover, if M is three dimensional, then its Ricci operator is given by

(17) QY =
{r

2
− κ
}
Y +

{
3κ− r

2

}
η(Y )ξ + µhY.

From Yano [23], for a Riemannian manifold M , we have
(18)

2g((£V∇)(X,Y ), Z) = (∇X£V g)(Y, Z) + (∇Y £V g)(X,Z)− (∇Z£V g)(X,Y ),

and

(19) (£VR)(X,Y )Z = (∇X£V∇)(Y,Z)− (∇Y £V∇)(X,Z).

If M holds equation(2), then the condition (18) turns into

(20)

g((£V∇)(X,Y ), Z) = − g((∇XQ)Y, Z)− g((∇YQ)X,Z)

+ g((∇ZQ)X,Y )− µ′(∇Xη ⊗ η)(Y,Z)

− µ′(∇Y η ⊗ η)(X,Z) + µ′(∇Zη ⊗ η)(X,Y ).

A Riemannian manifold M is said to be η-Einstein if it satisfies the condition

(21) QZ = aZ + bη(Z)ξ

for all Z ∈ TM , where a and b are smooth functions on M .
Next from K. Yano [17], we have the following definition.

Definition 2.1. In an almost contact manifold, a vector field V is said to be
an infinitesimal contact transformation if it satisfies the relation

(22) £V η = ση,

where σ is the smooth function on M . Further, V is said to be strict infinitesimal
contact transformation if and only if σ = 0.

Now we recall one important result of B. C. Montano, et. al., [6].

Theorem 2.2. Any compact Ricci-flat almost coKähler manifold is coKähler.

Next, in the following propositions, we prove certain basic properties of an
almost coKähler manifold.

Proposition 2.3. Let M be an almost coKähler manifold. If ξ is Killing, then
the derivative of a scalar curvature in the direction of ξ is zero.

Proof. From relation (7), since ξ is parallel, we get

(23) (∇XQ)ξ = 0.

Contracting the expression (23) over X, we get ξr = 0. �

Proposition 2.4. If M is an η-Einstein almost coKähler manifold with Killing
Reeb vector field ξ, then for dimM > 3, the scalar curvature r is constant on M .
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Proof. If M is an almost coKähler for which equations (21) and (7) hold, then
we have a + b = 0 and r = 2na. Further, taking covariant differentiation of (21)
along an arbitrary vector field Y yields

(24) (∇YQ)Z = (Y a)Z − (Y a)η(Z)ξ − ag(Y, hϕZ)ξ − aη(Z)hϕY.

Contracting the above relation over Y with respect to an orthonormal basis and
making use of (8) results

Zr

2
= (Za)− (ξa)η(Z).(25)

As we know, Zr = 2nZa and from the above Propostion 2.3, we have ξr = 0,
which together yield these in procceding relation provides

�(26) (n− 1)Zr = 0.

Hence for dimM > 3, r is constant on M .

Proposition 2.5. If M is a three dimensional (κ, µ)-almost coKähler manifold,
then the scalar curvature r is constant in the direction of ξ.

Proof. Let M be a three dimensional almost coKähler. If the Reeb vector ξ
belongs to the (κ, µ)-nullity distribution, then from equation (17) and by the fact
Qξ = 2ξ, we obtain

(27) (∇YQ)ξ = ∇YQξ −Q∇Y ξ =
{

3κ− r

2

}
∇Y ξ − h∇Y ξ.

Use of equations (8) and (13) in (27), and then contraction over Y results ξr=0. �

3. η-Ricci soliton on (κ, µ)-almost coKähler manifolds

Theorem 3.1. If a non-coKähler (κ, µ)-almost coKähler metric g is a gradient
η-Ricci soliton, then the soliton function f is a constant and soliton is steady with
µ′ 6= 0.

Proof. We assume that non-coKähler (κ, µ)-almost coKähler metric g is a gra-
dient η-Ricci soliton. Then by condition (4), the well known expression R(X,Y ) =
∇X∇Y −∇Y∇X −∇[X,Y ] is calculated as

(28) R(X,Y )Df + (∇XQ)Y − (∇YQ)X + µ′η(Y )∇Xξ − µ′η(X)∇Y ξ = 0.

Contracting foregoing relation over X with respect to orthonormal basis, we get

(29) 2S(Y,Df) = g(Y,Dr).

Since M is non-coKähler, the scalar curvature r = 2nκ is a constant, which shows
Df is the eigen vector of Q with eigen value 0. Therefore, equation (14) for
Y = Df gives

(30) µhDf + 2nκη(Df)ξ = 0.

Next, by taking inner product of the above relation with respect to ξ, we get
ξf = 0.
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In (28), for Y = ξ, scalar product with ξ results

(31) g(R(X, ξ)Df, ξ) = 0.

Make use of (10) and the fact ξf = 0 in the above relation, leads to

(32) κg(X,Df) = 0,

which implies f is constant. Further, from equations (2) and (14), we can easily
obtain the following conditions

r = −2nλ− λ− µ′,(33)

2nκ+ λ+ µ′ = 0,(34)

r = 2nκ.(35)

By combining the above three equations, we find λ = 0 and µ′ never be zero,
i.e., there is no existence of gradient Ricci soliton on a non-coKähler (κ, µ)-almost
coKähler manifold. �

Theorem 3.2. If g is a non-coKähler (κ, µ)-almost coKähler metric, then g can
never be an η-Ricci soliton with soliton constants satisfying the condition λ+µ′≤0.

Proof. For a non-coKähler (κ, µ)- almost coKähler manifold M , the equation
(14) yields

(36) (∇XQ)ξ = µ(∇Xh)ξ + 2nκ∇Xξ = µκϕX + 2nκhϕX

and

(∇ξQ)Y = µ(∇ξh)Y = µ2hϕX.

By applying these two relations in (20), we get

(37)
g((£V∇)(Y, ξ), Z) = −g((∇YQ)ξ, Z)− g((∇ξQ)Y,Z) + g((∇ZQ)ξ, Y )

= g(−2µκϕY − µ2hϕY,Z),

which gives

(38) (£V∇)(Y, ξ) = −2µκϕY − µ2hϕY.

Taking the covariant derivative of £V∇ in the foregoing condition along an arbi-
trary vector field X provides

(39) (∇X£V∇)(ξ, ξ) = −2(£V∇)(∇Xξ, ξ) = 4κµhX + 2µ2κϕ2X.

Again, in equation (38) by putting Y = ξ, taking covariant derivative along the
vector filed ξ, and using (15), (16), we get

(40) (∇ξ£V∇)(X, ξ) = −2κµ(∇ξϕ)X − µ2(∇ξhϕ)X = µ3hX.

Using the above two conditions in the computation formula (19) for Y = Z = ξ,
results

(41) (£VR)(X, ξ)ξ = 4κµhX + 2µ2κϕ2X − µ3hX.

Contracting this over X yields

(42) (£V S)(ξ, ξ) = −4nµ2κ.
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Finally, a straightforword caluculation gives

−κη(∇ξV ) = µ2κ.(43)

Now, by virtue of soliton equation, we obtain η(∇ξV ) = −λ − µ′ − 2nκ. Using
this in the above relation leads to

κ{λ+ µ′ + 2nκ− µ2} = 0.(44)

As M is non-coKähler, i.e., κ < 0 in (44), reduces λ + µ′ = −2nκ + µ2, showing
that λ + µ′ > 0. Hence we can conclude that if λ + µ′ ≤ 0, then there exists no
η-Ricci soliton on M . �

Contrapositive to the above theorem, directly, we can also state the following
result.

Theorem 3.3. Let M be a (κ, µ)-almost coKähler manifold. If g is an η-Ricci
soliton with λ+ µ′ ≤ 0, then M is a coKähler manifold.

As consequence to Theorem 3.2, if a non-coKähler (κ, µ)-almost coKähler man-
ifold M has Ricci soliton, then the soliton constant µ′ = 0 and λ > 0. Hence we
can state the following corollary.

Corollary 3.4. Let g be a non-coKähler (κ, µ)-almost coKähler metric. If g is
a Ricci soliton, then the soliton is expanding.

Theorem 3.5. If M is a three dimensional (κ, µ)-almost coKähler manifold
and it admits an η-Ricci soliton for V = ξ, then M is coKähler.

Proof. If M is three dimensional and M holds soliton equation (2) for V = ξ,
then the soliton condition in the virtue of (8) assumes the form

(45) g(QY,Z) + λg(Y,Z) + µ′η(Y )η(Z) + g(hϕY,Z) = 0.

Replacing Y by hY , and using (17) lead to

(46) {r
2
− κ+ λ}g(hY,Z) + g(hϕY, hZ) + µg(hY, hZ) = 0.

On A-asymmetrizing this gives

(47) g(h2ϕY,Z) = 0,

which implies h = 0. Therefore, M is coKähler and as well as λ+ µ′ = 0. �

Theorem 3.6. If a non-coKähler (κ, µ)-almost coKähler metric g is an η-Ricci
soliton for V orthogonal to ξ, then the manifold is η-Einstein.

Proof. Suppose M is a (κ, µ)-almost coKähler for κ < 0, and g is an η-Ricci
soliton for V , orthogonal to ξ. Then from equation (2) for Y = Z = ξ, we obtain

(48) η(∇ξV ) = −(λ+ µ′ + 2nk).

Since V is orthogonal to ξ, the above relation gives λ + µ′ + 2nk = 0, so this in
equation (44), provides µ = 0. This completes the proof. �
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Lemma 3.7. Let M be a non-coKähler (κ, µ)-almost coKähler manifold. If
it admits η-Ricci soliton for µ2 6= −4n2κ, then the potential vector field V is an
infinitesimal contact transformation.

Proof. Suppose a (κ, µ)-almost coKähler manifold M is non-coKähler, then by
relation (14), we can deduce

(49) (∇XQ)Y = µ(∇Xh)Y + 2nκ{g(X,hϕY )ξ + η(Y )hϕX}.

By deducing the right hand side of equation (20) with the help of foregoing con-
dition and from (13), and (15), we get

(50)

(£V∇)(Y,Z) = − µ2{η(Y )h′Z + η(Z)h′Y

− g(h′Y,Z)ξ} − 2µκ{η(Y )ϕZ + η(Z)ϕY }
− 4nκg(Y, h′Z)ξ − 2µ′g(Y, h′Z)ξ.

Therefore, using foregoing relation in finding the covarient derivative of £V∇ along
an arbitrary vector X, we obtain

(∇X£V∇)(Y,Z) = − µ2
{
g(X,h′Y )h′Z + g(X,h′Z)h′Y + η(Y )(∇Xh′)Z

+ η(Z)(∇Xh′)Y − g((∇Xh′)Y, Z)ξ − g(h′Y,Z)h′X
}

− 2nκ{g(X,h′Z)ϕY + η(Z)(∇Xϕ)Y + g(X,h′Y )ϕZ(51)

+ η(Y )(∇Xϕ)Z} − 4nκ{g(Y, (∇Xh′)Z)ξ + g(Y, h′Z)h′X}
− 2µ′{g(Y, (∇Xh′)Z)ξ + g(Y, h′Z)h′X}.

Contracting the above relation over X with respect to an orthonormal basis gives

(52)

2n+1∑
i=1

g((∇ei£V∇)(Y,Z), ei) = − 2µ2g(ϕY, ϕZ)− 4nκµ2η(Y )η(Z)

+ 4µκg(hY, Z) + 4nκg(hY, Z)

− µ3g(hY, Z) + 2µµ′g(hY, Z).

Again contracting (51) over Y yields

(53)

2n+1∑
i=1

g((∇X£V∇)(ei, Z), ei) = 0.

Contracting computational formula (19) over X with respect to an orthonormal
basis, using (52) and (53), we find

(54)
(£V S)(Y,Z) = 2µ2κg(ϕY, ϕZ)− 4nκµ2η(Y )η(Z)

+ 8µκg(hY, Z)− µ3g(hY,Z).

As M is non-coKähler manifold, then by equation(14), we have

(55) (£V S)(Y,Z) = µ{(£V g)(hY, Z) + g((£V h)Y, Z)}+ 2nκ(£V η ⊗ η)(Y,Z).
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In the foregoing relation using equation (2) on Y = hY , gives the following ex-
pression

(56)
(£V S)(Y,Z) = − 2µ2g(h2Y,Z)− 2µλg(hY,Z) + µg((£V h)Y,Z)

+ 2nκ{η(Z)(£V η)Y + η(Y )(£V η)Z}.

Next by equating (54) and (56), we obtain

(57)

8κµg(hY, Z) = 4nκµ2η(Y )η(Z) + µ3g(hY,Z)

− 2µλg(hY, Z) + µg((£V h)Y, Z)

+ 2nκ{η(Z)(£V η)Y + η(Y )(£V η)Z}.

By applying Y = ξ and Z = ϕZ in the last equation, we get

(58) µh′£V ξ = −2nκϕ£V ξ.

By operating h on both sides of the above relation and simplifying it, we get

(59) µϕ£V ξ = 2nh′£V ξ.

Finally by substituting equation(58) in equation(59), we obtain

(60) (µ2 + 4n2κ)h′£V ξ = 0.

Thus, in the above equation, µ2 6= −4n2κ implies h′£V ξ=0 which gives h£V ξ=0.
Hence using this in equation(57) for Z = ξ, we obtain

(61) (£V η)Y = −{λ+ µ′ + 2nκ}η(Y ).

This completes the proof. �

Theorem 3.8. If a non-coKähler (κ, µ)-almost coKähler manifold M admits
an η-Ricci soliton for vector field V then M is η-Einstein if and only if V is strictly
infinitesimal contact transformation.

Proof. Let M be a non-coKähler (κ, µ)-almost coKähler manifold. If M admits
η-Ricci soliton for vector field V . If M is an η-Einstein manifold, then from
equation (14), we have that µ = 0. So µ2 is never equal to −4n2κ. Hence from
the above lemma and from equation (44), we obtain

(62) (£V η) = −{λ+ µ′ + 2nκ}η = µ2η.

Since µ = 0, which in the above condition, implies that V is strictly infinitesimal
contact transformation.

Conversly, if V is strictly infinitesimal contact transformation, then from Defi-
nition 2.1 and from equation (2) for X = Y = ξ, we have that, λ+ µ′ + 2nκ = 0.
Therefore, using it in (44), leads to µ = 0. Hence the manifold M is η-Einstein.
This finishes the proof. �



226 VENKATESHA and S. CHIDANANDA

4. Almost η-Ricci soliton on an almost
coKähler manifold M with ∇Xξ = 0

In this section, by considering the vector ξ parallel (i.e., ξ is Killing) on M , we
obtain following results.

Theorem 4.1. Let M be an almost coKähler manifold with ∇Xξ = 0, and M
admits an almost η-Ricci soliton for V = ξ, then M is an η-Einstein manifold.

Proof. Suppose M is an almost η-Ricci soliton for V = ξ and M has a vector
field ξ which is parallel. Then the proof of the theorem follows from equation(2)
and the fact ∇Xξ = 0. Thus the Ricci curvature takes the form

(63) S(X,Y ) = µ′g(X,Y )− µ′η(X)η(Y )

for any X,Y ∈ X (M) and µ′ is a smooth function on M . �

Corollary 4.2. Let M be a compact almost coKähler manifold with Killing ξ.
If M admits an almost Ricci soliton for V = ξ, then M is a coKähler manifold.

Proof. If M has an almost Ricci soliton, then µ′ = 0. Thus, from equation (63),
we have

(64) S(X,Y ) = 0

for all X, Y ∈ X (M). Hence the proof of corollary follows from the Theorem 2.2.
�

Next, we study an almost η-Ricci soliton on M with the potential vector field
V orthogonal to ξ, i.e., η(V ) = 0. Since the manifold M has parallel ξ vector,
then from the relation (2), we have

S(Y, Z) = −1

2
{g(∇Y V,Z) + g(Y,∇ZV )} − λg(Y,Z)− µ′η(Y )η(Z).

Putting Y = Z = ξ in the above equation, yields

− λ− µ′ = η(∇ξV ) = 0,

which implies λ = −µ′. Hence we can state the following theorem.

Theorem 4.3. Let M be an almost coKähler manifold with parallel vector ξ.
If M admits an almost η-Ricci soliton for the potential vector field V orthogonal
to ξ, then λ = −µ′.

Corollary 4.4. If M is an almost coKähler manifold with ∇Xξ = 0 and admits
an almost Ricci soliton (g, V, λ), where the V is orthogonal to ξ, then soliton is
steady.
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5. Almost η-Ricci soliton on a non-coKähler
(κ, µ)-almost coKähler manifold

Theorem 5.1. Let M be a non-coKähler almost coKähler (κ, µ) manifold. If
M admits gradient almost η-Ricci soliton or an almost η-Ricci soliton with V as
collinear with the Reeb vector field ξ, then M is η-Einstein. Moreover, for V = ρξ
case, soliton becomes steady.

Proof. For V = Df , from equation(4) we obtain

(65)

R(X,Y )Df + (∇XQ)Y − (∇YQ)X + (Xλ)Y

−(Y λ)X + (Xµ′)η(Y )ξ − (Y µ′)η(X)ξ

+µ′η(Y )hϕX − µ′η(X)hϕY = 0.

Taking scalar product of above relation with ξ for X = ϕX and Y = ϕY , and
using (14) and (8), we get

(66) g(R(ϕX,ϕY )ξ,Df) = 2µκg(ϕX, Y ),

by using the equation (10) on simplifying the above relation, we get

(67) µκg(X,ϕY ) = 0.

Next, if M has an almost η-Ricci soliton for V = ρξ, then the equation (2) reduces
to

(68)
S(X,Y ) +

1

2

{
(Xρ)η(Y ) + (Y ρ)η(X)

}
+g(hϕX, Y ) + λg(X,Y ) + µ′η(X)η(Y ) = 0.

And for X = ϕX, Y = ϕY in (68), using (8) and (14), we deduce

(69) − µg(hX, Y )− g(hX,ϕY ) + λg(ϕX,ϕY ) = 0.

Again, applying X = hX in (69), applying (8) and (13), and contracting over X
and Y , gives

(70) µκ = 0.

Therefore, the non-coKähler condition in both cases gives µ = 0. Moreover, con-
tracting (69) leads to obtain the value of λ, so we get λ = 0. Hence the proof
completes. �

Example 5.2. Before ending this paper, we construct a 3-dimensional (κ, µ)-
almost coKähler manifold admitting η-Ricci solitons. Let we consider M3 = R3

with Cartesian coordinates (x, y, z) endowed with an orthonormal basis {e1, e2, e3}
which satisfies

[e1, e2] = αe3, [e2, e3] = 0, [e3, e1] = −αe2.
Let η and g be the 1-form and Riemannian metric, respectively, defined by

η(e1) = 1, η(e2) = η(e3) = 0, η(X) = g(X, e1), for all X.

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0,
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and the (1, 1) tensor ϕ defined by

ϕe1 = 0, ϕe2 = e3, ϕe3 = −e2.
From the above relations, its clear that M3 holds ϕ2X = −X + η(X)ξ and
g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ) for all X, Y ∈ TM3. Hence M3 has an al-
most contact structure.

Next, using Koszul’s formula, we have

∇e1e1 = ∇e2e2 = ∇e3e3 = 0, ∇e1e2 = 0, ∇e1e3 = 0,

∇e2e1 = −αe3, ∇e2e3 = αe1, ∇e3e1 = −αe2, ∇e3e2 = αe1.

Comparing the above relations with ∇Xξ = hϕX, we caluculate

he1 = 0, he2 = αe2, he3 = −αe3.
From the formula R(Y,Z)W = ∇Y∇ZW −∇Z∇YW −∇[Y,Z]W , we obtain

R(e1, e2)e1 = α2e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = α2e3.

In view of the above relations we can easily conclude that, for α being constant on
M , the field e1 belongs to (−α2, 0)-nullity distribution. Therefore, (ϕ, e1, g, η) is
a (−α2, 0)-almost coKähler structure on M3. Moreover, the remaining curvature
tensor is given by

R(e3, e2)e2 = −α2e3,

R(e3, e2)e3 = −α2e1,

R(e1, e2)e2 = −α2e1,

R(e1, e2)e3 = 0.

We simply obtain Ricci tensor S for the above defined basis,

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2α2,

S(e1, e2) = S(e2, e3) = S(e3, e1) = 0.

Let V = a1e1 + a2e2 + a3e3, where a1, a2, a3 are the real numbers and V be the
general vector field. Now from equation (2), for the potential vector field V , we
have

S(e1, e1) = −λ− µ′,

S(e2, e2) = S(e2, e2) = −λ,

S(e1, e2) = −1

2
αa3,

S(e1, e3) = −1

2
αa2,

S(e2, e3) = αa1.

Therefore, it is clear that for λ = 2α2, µ′ = 0, and αa1 = αa2 = αa3 = 0, M
admits an η-Ricci soliton for soliton field V . Now we discuss the following cases:

1. If M3 is non-coKähler, then λ+ µ′ = 2α2 > 0.
2. If λ+ µ′ = 0, then α = 0 which shows the coKähler structure on M3.
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Therefore, the above cases justify the Theorem 3.2 and Theorem 3.3, respectively.
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