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ON A GENERALIZATION OF SOME THEOREMS ON THE

SMOOTHNESS OF THE SUM OF TRIGONOMETRIC SERIES

XH. Z. KRASNIQI

Abstract. In this paper, consider the trigonometric series∑
m∈Z

cm eimx,

where (cm)∈Z is a sequence of complex numbers such that∑
m∈Z
|m|r−1|cm| < +∞, (r = 1, 2, . . . ).

Then the (r − 1)-th derivative of the trigonometric series converges absolutely and

uniformly. If we denote the sum function of such trigonometric series by f(x), then

its (r − 1)-th derivative f (r−1)(x) is obviously a continuous one. We give sufficient
conditions in terms of some means of (cm)∈Z to ensure that f(x) belongs to one

of the classes W r(α) or wr(α) for 0 < α ≤ 2. The results of Krizsán and Móricz
obtained in [1] and those of Zygmund obtained in [2] are particular results of ours.

1. Introduction and Known Results

Let f : T := [−π, π)→ C be a periodic function. The following classes of functions
can be found in [1] and [2]:

1. For some α > 0, f belongs to the Lipschitz class Lip(α) if

| 4 f(x;h)| := |f(x+ h)− f(x)| ≤ Chα for all x and h > 0,(1)

where the positive constant C depends only on f .

2. For some α > 0, f belongs to the little Lipschitz class lip(α) if

lim
h→0

|f(x+ h)− f(x)|
hα

= 0 uniformly in x.

3. For some α > 0, a continuous function f belongs to the Zygmund class Zyg(α)
if

| 42 f(x;h)| := |f(x+ h)− 2f(x) + f(x− h)| ≤ Chα(2)

for all x and h > 0, where the positive constant C depends only on f .

Received October 16, 2014.
2010 Mathematics Subject Classification. Primary 26A16, 42A16.
Key words and phrases. Trigonometric series; absolute convergence; Lipschitz classes; Zygmund

classes; smooth functions.



98 XH. Z. KRASNIQI

4. For some α > 0, a continuous function f belongs to the little Zygmund class
zyg(α) if

lim
h→0

|f(x+ h)− 2f(x) + f(x− h)|
hα

= 0 uniformly in x.

One can find that (see, for example, [7, pages 43 and 44]) a function f may be
non measurable in Lebesgue’s sense and still satisfies the condition

f(x+ h)− 2f(x) + f(x− h) = 0 for all x and h > 0,

which reveals the reason why in the definitions of the classes Zyg(α) and zyg(α)
the continuity of the function f is required.

As pointed out in [1], every continuous periodic function is bounded, and thus
it is enough to require the fulfillment of conditions (1) and (2) for all 0 < h < 1
and obviously for all x ∈ T (this fact is considered throughout this paper). In the
same paper, the interested reader can find the relations between classes Lip(α),
lip(α) and Zyg(α), zyg(α), respectively (those are not recalled here).

Let (cm)m∈Z ∈ C be such that∑
m∈Z
|cm| < +∞.(3)

Then the trigonometric series∑
m∈Z

cm eimx, x ∈ T,(4)

converges absolutely and uniformly, and we denote its sum-function by f(x).
Krizsán and Móricz [1] gave sufficient conditions in terms of certain means of

(cm)m∈Z to ensure that the sum-function f(x) of the trigonometric series of the
complex form

∑
m∈Z cm eimx belongs to one of Zygmund classes Zyg(α) or zyg(α)

for some α ∈ (0, 2] proving the following theorems:

Theorem 1.1 ([1]). Let (cm)m∈Z ∈ C. If for some α ∈ (0, 2] we have,

1

M2−α

∑
|m|≤M

m2|cm| ≤ Cα for all M = 1, 2, . . . ,(5)

where Cα is a positive constant, then the series (4) converges absolutely and uni-
formly, and its sum-function f(x) ∈ Zyg(α).

Theorem 1.2 ([1]). Let (cm)m∈Z ∈ C. If for some α ∈ (0, 2) we have,

lim
M→∞

1

M2−α

∑
|m|≤M

m2|cm| = 0,(6)

then f(x) ∈ zyg(α).

Theorem 1.3 ([1]). Let (cm)m∈Z ∈ C be such that∑
m∈Z
|mcm| < +∞,(7)

then f(x) ∈ Lip(1).
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Let the function f has derivatives of order r, (r = 1, 2, . . . ). We say that for
some α > 0, f belongs to the class Wr(α) if

| 42 f (r−1)(x;h)| := |f (r−1)(x+ h)− 2f (r−1)(x) + f (r−1)(x− h)| ≤ Chα(8)

for all x and h > 0, where the positive constant C depends only on f .
We say that for some α > 0, f belongs to the class wr(α) if

lim
h→0

|f (r−1)(x+ h)− 2f (r−1)(x) + f (r−1)(x− h)|
hα

= 0

for all x, h > 0 and r.
It is clear that for r = 1 and for some α ∈ (0, 2], we have W1 (α) ≡ Zyg(α)

and w1 (α) ≡ zyg(α) while for r = 1 and α ∈ (0, 1], we obtain W1 (α) ≡ Lip(α)
and w1 (α) ≡ lip(α). The main aim of this paper is to give sufficient conditions
in terms of certain means of (cm)m∈Z to ensure that the sum-function f(x) of the
trigonometric series of the complex form

∑
m∈Z cm eimx belongs to one of classes

Wr (α) or wr (α) for some α ∈ (0, 2]. For the proof of our results, we have adopted
the reasoning used by authors of the paper [1].

2. Helpful Lemmas

In this section, we prove some helpful statements needed for the proofs of main
results and which indeed are of some interest in themselves.

Let (cm)m∈Z ∈ C be such that∑
m∈Z
|m|r−1|cm| < +∞, r ∈ {1, 2, . . . }.(9)

Then obviously the formal derivative of order (r−1) of the trigonometric series (4)∑
m∈Z

(im)r−1cm eimx, x ∈ T,(10)

converges absolutely and uniformly, and we denote its sum-function by f (r−1)(x).

Lemma 2.1. Let (cm)m∈Z ∈ C.
(i) If for some α ∈ (0, 2] and r ∈ {1, 2, . . . }, we have

1

M2−α

∑
|m|≤M

|m|r+1|cm| ≤ Cα for all M = 1, 2, . . . ,(11)

then there exists another positive constant C̃α such that

Mα
∑
|m|≥M

|m|r−1|cm| ≤ C̃α for all M = 1, 2, . . . ,(12)

and in particular, ∑
m∈Z
|m|r−1|cm| < +∞.
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(ii) Conversely, if condition (12) is satisfied for some α ∈ [0, 2) and r ∈ {1, 2, . . . },
then the condition (11) is satisfied as well. In particular, for α ∈ (0, 2) and
r ∈ {1, 2, . . . }, conditions (11) and (12) are equivalent.

Proof. Part (i) Denote the set {2p, 2p + 1, . . . , 2p+1 − 1}, (p = 0, 1, 2, . . . ) by

Dp. Based on condition (11) for a given nonnegative integer p, we get

22p
∑
|m|∈Dp

|m|r−1|cm| ≤
∑
|m|∈Dp

|m|r+1|cm| ≤ Cα2(p+1)(2−α),

and thus∑
|m|∈Dp

|m|r−1|cm| ≤ 22−αCα2−pα, (p = 0, 1, 2, . . . ; r = 1, 2, . . . ).(13)

Let q be any nonnegative integer. Since α > 0, we have∑
|m|≥2q

|m|r−1|cm| =
∞∑
p=q

∑
|m|∈Dp

|m|r−1|cm|

≤ 22−αCα

∞∑
p=q

2−pα = 22−αCα
2−qα

1− 2−α
.

(14)

This implies

2qα
∑
|m|≥2q

|m|r−1|cm| ≤
4Cα

2α − 1
=: C̃α for all q = 0, 1, 2, . . . ,

which means that (12) holds true for the subsequence {M = 2q : q = 0, 1, 2, . . . }.
Consequently, the truth of (12) for full sequence {M : M = 1, 2, . . . } follows easily.

Part (ii) Let p be any nonnegative integer. Then based on (12), we have

1

22(p+1)

∑
|m|∈Dp

|m|r+1|cm| ≤
∑
|m|∈Dp

|m|r−1|cm| ≤ C̃α2−pα,

that implies∑
|m|∈Dp

|m|r+1|cm| ≤ 4C̃α2(2−α)p for all p = 0, 1, 2, . . . .(15)

Let q ≥ 1 be any integer. Then taking into account that α < 2, we have

∑
|m|<2q

|m|r+1|cm| =
q−1∑
p=0

∑
|m|∈Dp

|m|r+1|cm|

≤ 4C̃α

q−1∑
p=0

2(2−α)p = 4C̃α
2(2−α)q − 1

22−α − 1
.

(16)
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Whence form (16), we clearly obtain

1

2(2−α)q − 1

∑
|m|≤2q−1

|m|r+1|cm| ≤
4C̃α

22−α − 1
, (q = 1, 2, . . . ).(17)

It is not difficult to calculate that for 0 ≤ α < 2 and r = 1, 2, . . . , the limit

lim
q→∞

2(2−α)q − 1

(2q − 1)(2−α)
= 1

holds true. It means that there exists a constant γα depending only on α such
that

1

(2q − 1)(2−α)
≤ γα

2(2−α)q − 1
for all q = 1, 2, . . . .

Consequently, based on (17), we obtain

1

(2q − 1)(2−α)

∑
|m|≤2q−1

|m|r+1|cm| ≤
4C̃αγα

22−α − 1
=: Cα.(18)

By that the proof of this Lemma is completed in the special case M = 2q − 1,
while for the general case when M = 1, 2, . . . , it follows easily. �

Remark. Lemma 2.1 fails to be true at the end points. Indeed, for α = 0 and
(cm)m∈Zr{0} = (1/(mr))m∈Zr{0}, r ∈ {1, 2, . . . }, we have

1

M2−α

∑
|m|≤M

|m|r+1|cm| ≤ 2,

while

Mα
∑
|m|≥M

|m|r−1|cm| =∞.

On the other hand for, α = 2 and (cm)m∈Zr{0} = (1/(mr+2))m∈Zr{0}, r ∈
{1, 2, . . . }, the condition (11) is not satisfied, but the condition (12) is.

Lemma 2.2. Let (cm)m∈Z ∈ C.
(i) If for some α ∈ (0, 2] and r ∈ {1, 2, . . . } we have,

lim
M→∞

1

M2−α

∑
|m|≤M

|m|r+1|cm| = 0,(19)

then we have

lim
M→∞

Mα
∑
|m|≥M

|m|r−1|cm| = 0(20)

as well.

(ii) Conversely, if condition (20) is satisfied for some α ∈ [0, 2) and r ∈ {1, 2, . . . },
then the condition (19) is satisfied as well. In particular, for α ∈ (0, 2) and
r ∈ {1, 2, . . . }, conditions (19) and (20) are equivalent.
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Proof. Part (i) Based on (19), for every ε > 0, there exists an integer p0 =

p0(ε) ≥ 0 such that

1

M2−α

∑
|m|≤M

|m|r+1|cm| < ε for all M ≥ 2p0 .

Let q ≥ p0 be an integer. Reasoning in the same way as for (13) and (14), we have
obtained ∑

|m|≥2q
|m|r−1|cm| ≤ 22−αε

2−qα

1− 2−α
,

and thus we have

2qα
∑
|m|≥2q

|m|r−1|cm| ≤
4ε

2α − 1
for all q ≥ p0.

Taking into account that ε > 0 is arbitrary, the condition (20) holds true for the
subsequence {M = 2q : q = 1, 2, . . . }. The truth of (20) for the full sequence
{M : M = 1, 2, . . . } follows easily.

Part (ii) Let the condition (20) be satisfied. Then for every ε > 0, there exists

an integer p̃0 = p̃0(ε) ≥ 0 such that

Mα
∑
|m|≥M

|m|r−1|cm| < ε for all M ≥ 2p̃0 .

Let q > p̃0 be any integer. Reasoning in the same way as for (15) and (16), we
have obtained ∑

|m|<2q

|m|r+1|cm| ≤ 4ε
2(2−α)q − 1

22−α − 1

as well as for (17) and (18), it follows that

1

(2q − 1)(2−α)

∑
|m|≤2q−1

|m|r+1|cm| ≤
4εγα

22−α − 1
for all q > p̃0.

Taking into account that ε > 0 is arbitrary, the condition (19) holds true for the
subsequence {M = 2q − 1 : q = 1, 2, . . . }. The truth of (19) for the full sequence
{M : M = 1, 2, . . . } follows easily. �

3. Main Results

First we prove the following main result.

Theorem 3.1. Let (cm)m∈Z ∈ C. If for some α ∈ (0, 2] and r = 1, 2, . . . , we
have

1

M2−α

∑
|m|≤M

mr+1|cm| ≤ Cα for all M = 1, 2, . . . ,(21)
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where Cα,r is a positive constant, then the series∑
m∈Z

(im)r−1cm eimx, x ∈ T,(22)

converges absolutely and uniformly, and for the sum-function of the series (4),
f(x) ∈Wr (α) holds.

Proof. Let x ∈ T, 0 < h < 1 be arbitrary and r ∈ {1, 2, . . . }. By (10), we have

42f (r−1)(x; 2h) =
∑
m∈Z

(im)r−1cm eimx
(
eim2h−2 + e− im2h

)
= −4

∑
m∈Z

(im)r−1cm eimx sin2mh,

and thus

| 42 f (r−1)(x; 2h)|
(2h)α

≤ 22−α

hα

 ∑
|m|≤M

+
∑
|m|>M

 |m|r−1|cm| sin2mh

=: S1 + S2,

(23)

where

M :=

[
1

h

]
, 0 < h < 1,(24)

and [ · ] denotes the integer part of a real number.
Based on (11) and (24), we obtain

S1 ≤
22−α

hα

∑
|m|≤M

|m|r−1|cm|(mh)2

≤
(

2

M

)2−α ∑
|m|≤M

|m|r+1|cm| ≤ 22−αCα.

(25)

In the sequel using part (i) of the Lemma 2.1 and (24), we have

S2 ≤
22−α

hα

∑
|m|>M

|m|r−1|cm|

≤ 22−α (M + 1)
α

∑
|m|≥M+1

|m|r−1|cm| ≤ 22−αC̃α.
(26)

Finally, (23) along with (25) and (26) implies

| 42 f (r−1)(x; 2h)| ≤ 4hα
(
Cα + C̃α

)
for all x ∈ T and 0 < h < 1.

Last estimate verifies that f(x) ∈Wr (α). �
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Theorem 3.2. Let (cm)m∈Z ∈ C. If for some α ∈ (0, 2) and r = 1, 2, . . . , we
have

lim
M→∞

1

M2−α

∑
|m|≤M

mr+1|cm| = 0,(27)

then f(x) ∈ wr (α).

Proof. This time we use Lemma 2.2 for the proof of this theorem that runs
along the same lines as in the proof of the Theorem 3.1. We omit it and leave
details to the interested reader. �

Theorem 3.3. Let r = 1, 2, . . . and (cm)m∈Z ∈ C be such that∑
m∈Z
|mrcm| < +∞,(28)

then f (r−1)(x) ∈ Lip(1).

Proof. Let x ∈ T, 0 < h < 1 be arbitrary and r ∈ {1, 2, . . . }. By (10), we have

4f (r−1)(x; 2h) =
∑
m∈Z

(im)r−1cm eimx
(
eim2h−1

)
=
∑
m∈Z

(im)r−1cm eim(x+h)
(
eimh− e− imh

)
= 2

∑
m∈Z

irmr−1cm eim(x+h) sinmh.

(29)

Again let M be defined by

M :=

[
1

h

]
, 0 < h < 1.

Then based on definition of M and (29), we obtain

| 42 f (r−1)(x; 2h)|
h

≤ 2

h

 ∑
|m|≤M

+
∑
|m|>M

 |m|r−1|cm|| sinmh|
≤ 2

∑
|m|≤M

|m|r|cm|+ 2(M + 1)
∑

|m|≥M+1

|m|r−1|cm|

≤ 2
∑
m∈Z
|m|r|cm| < +∞,

(30)

due to the assumption of the theorem. The latest estimate verifies that f (r−1)(x) ∈
Lip(1). The proof is completed. �

Remark. Let α = 1, then the condition (12) follows from the condition (28), but
conversely, in general it fails to be true. For instance, taking into consideration
the sequence (cm)m∈Zr{0} = (1/(mr+1))m∈Zr{0}, r ∈ {1, 2, . . . } and α = 1, we
verify easily that the condition (12) holds true, but the condition (28) does not.
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Remark. Note that putting r = 1 in Theorems 3.1–3.3, we immediately obtain
Theorems 1.1–1.3 proved in [1].

Remark. Putting r = 1 and α = 1 in Theorems 3.1–3.3, we obtain some results
proved in [2].
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