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NEW PROOFS OF RESULTS CONCERNING

BASES OF A LATTICE

KONRAD PIÓRO

Abstract. Applying basic facts of linear algebra, we present new simpler and much
shorter proofs of results presented by Cherednik in the paper [The non-negative ba-

sis of a lattice, Diskret. Mat. 26(3) 2014, 127–135]. Recall, Cherednik proved that

each lattice of dimension n in the linear space Rn has a basis consisting non-negative
vectors, (i.e., vectors which contain only non-negative coordinates). Applying this

theorem, he also showed that an arbitrary (not necessarily of the maximal dimen-

sion) lattice has such a basis if and only if it is generated by all its non-negative
vectors. Next, these results are generalized for arbitrary convex cones (note that

the set of all non-negative vectors is a convex cone). Finally, he showed that each

lattice of dimension n ≥ 2 in Rn has a basis in any translation of every convex cone
of dimension n.

Take the linear space Rn, where R is the field of real numbers. A lattice L of
dimension k (where 0 ≤ k ≤ n) in Rn is a subgroup of the abelian group (Rn,+),
which is generated by k linearly independent (over R) vectors v1, v2, . . . , vk ∈ Rn

which are called a basis of L. In other words, L consists of all linear combinations
of v1, v2, . . . , vn with integer coefficients. If v1, v2, . . . , vn ∈ Zn (equivalently, L ⊆
Zn), then L is called an integer lattice, where Z is the set of integers. A lattice
L ⊆ Rn is called full if its dimension equals n (see [1]). For example, Zn is a full
integer lattice in Rn generated by the standard basis ε1 = (1, 0, 0, . . . , 0, 0), ε2 =
(0, 1, 0, . . . , 0, 0), . . . , εn = (0, 0, 0, . . . , 0, 1) of Rn. Next, a lattice of dimension 0
contains only the zero vector 0 = (0, 0, . . . , 0) (i.e., it is a trivial lattice).

Of course, lattices in Rn are isomorphic with finitely generated free abelian
groups, i.e., if L is a lattice of dimension k, then L ' Zk. Recall that each
free abelian group has a group basis (i.e., a set of generators which are linearly
independent over Z) and all its group bases have the same cardinality that is called
the rank of a group (see [4, Theorem 10.14, Chapter 10]). Every subgroup H of a
free abelian group G is free and its rank is not greater that the rank of G (see [4,
Theorem 10.17, Chapter 10]). If G is a finitely generated free abelian group and
H is its subgroup of finite index, then there is a group basis g1, g2, . . . , gn of G and
positive integers l1, l2, . . . ln ∈ N r {0} such that l1g1, l2g2, . . . , lngn form a group
basis of H (see [4, Theorem 10.21, Chapter 10]). Next, a subgroup H of G has
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a finite index if and only if H is a free abelian of rank n (see [4, Exercise 10.15,
Chapter 10]). All these facts are particular cases of analogous results holding
for modules over principal ideal domains (see [2, Chapter 3, Section 7]) because
abelian groups can be considered as modules over the ring Z of integers. By these
module results, we have that the finiteness of index of H is not necessary, i.e.,
if H is a subgroup of a finitely generated free abelian group G, then there is a
group basis g1, g2, . . . , gn of G and l1, l2, . . . lk ∈ N r {0} (where k ≤ n) such that
l1g1, l2g2, . . . , lkgk form a group basis of H.

Take a lattice L ⊆ Rn with basis v1, v2, . . . , vk ∈ L. Each basis of L is
also a group basis. Thus the rank of L equals k. Conversely, each group basis
α1, α2, . . . , αk is linearly independent over R because v1, v2, . . . , vk are contained
in the least subspace of Rn generated by α1, α2, . . . , αk. Hence concepts of basis
of a lattice and of group basis of a free abelian group are equivalent for lattices.
Next, take a subgroup K of L. It is a free group and there is a group basis
γ1, γ2, . . . , γk of L such that b1γ1, b2γ2, . . . , bmγm form a group basis of K for some
b1, b2, . . . , bm ∈ N r {0} (where m is the rank of K). Then b1γ1, b2γ2, . . . , bmγm
are linearly independent over R because γ1, γ2, . . . , γk are independent. Hence K
is a lattice of dimension m. Finally, take β1, β2, . . . , βm ∈ L linearly independent
over Z. Then the subgroup J of L generated by these elements is free of rank m,
so J is a lattice of dimension m. Hence β1, β2, . . . , βm are linearly independent
over R.

A subset M of Rn is convex (see [3]) if (1− a)v+ aw ∈M for all v, w ∈M and
0 ≤ a ≤ 1. Next, N ⊆ Rn is a cone (see [1]) if av ∈ N for all v ∈ N and each
a ∈ R+, where R+ is the set of all non-negative real numbers. For example, the
set Rn

+ = {(a1, a2, . . . , an) ∈ Rn : a1, a2, . . . , an ∈ R+} is a convex cone. Vectors
of the convex cone Rn

+ are called non-negative, a basis consisting of non-negative
vectors is also called non-negative (see [1]).

A set S ⊆ Rn is said to have the dimension k if the least affine subspace of Rn

containing S has the dimension k. The least affine subspace containing a given
cone C is linear (because 0 ∈ C). Thus it is a standard observation that a cone
C is of dimension k if and only if all (equivalently, at least one) maximal (up to
inclusion) subsets of C of linearly independent vectors have k elements.

Some interesting properties of bases of lattices in Rn are investigated by Chered-
nik in the paper [1]. The first main result (see [1, Theorem 1]) shows that each
full lattice in Rn has a non-negative basis. Applying this theorem, Cherednik also
proved (see [1, Proposition 2 and Corollary 2]) that an arbitrary lattice L ⊆ Rn

has a non-negative basis if and only if L is generated by all its non-negative vectors
(of course, “ =⇒ ” is trivial). Next, these two results are generalized for arbitrary
convex cones (see [1, Theorem 3 and Proposition 3]). The last main result shows
that each full lattice in Rn has a basis in any translation of every convex cone of
dimension n (see [1, Theorem 4]).

In this paper, we apply basic facts of linear algebra to present new proofs of
Cherednik’s results which are simpler and much shorter than the original.

We need the fact proved in [1] (see Proposition 1) that each full integer lattice
has a non-negative basis. Its proof is not long, so we recall it now. More precisely,
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applying methods from this proof, we can show the following slightly more general
fact.

Lemma 1. Let L ⊆ Zn be an integer lattice. Then there is a basis v1, v2, . . . , vk

of L (where k ≤ n) such that


v1
v2
...
vk

 is an upper triangular k × n-matrix and

the first non-zero entry in each row is positive.

Proof. The trivial lattice {0} has the empty basis, so we can assume that L has
a non-zero vector. For i = 1, 2, . . . , n, let πi : Zn −→ Z be the projection on the
i-th coordinate. Take the least positive integer i1 ≤ n such that πi1(L) ⊆ Z has
non-zero element. Then πi1(L) is a non-trivial subgroup of Z, so there is a positive
integer a1 which generates πi1(L). Take any v1 ∈ L such that πi1(v1) = a1 and the
set K1 = {w ∈ L : πi1(w) = 0}. Then K1 is a subgroup (equivalently, a sublattice)
of L and L = 〈v1〉L ⊕K1. If K1 = {0}, then the proof is complete. If not, then,
we can repeat this procedure to K1, and so on. �

Corollary 2 ([1, Proposition 1]). Each full integer lattice L ⊆ Zn has a non-
negative basis.

Proof. Take a basis v1 = (a11, a
1
2, . . . , a

1
n−1, a

1
n), v2 = (0, a22, . . . , a

2
n−1, a

2
n), . . . ,

vn = (0, 0, . . . , 0, ann) of L from Lemma 1 (here k = n because L is a full lat-
tice). Since v1, v2, . . . , vn are linearly independent vectors (over R), the matrix

v1
v2
...
vn

 =


a1
1 a1

2 . . . a1
n−1 a1

n

0 a2
2 . . . a2

n−1 a2
n

...
... . . .

...
...

0 0 . . . 0 an
n

 is non-singular. Thus det


v1
v2
...
vn

 =

a11·a22·· · ··ann 6= 0. This fact and Lemma 1 imply that integers a11, a
2
2, . . . , a

n
n are posi-

tive. Then, for each i = 1, 2, . . . , n−1, there are positive integers bii+1, b
i
i+2, . . . , b

i
n

such that wi = vi + bii+1vi+1 + · · · + binvn ∈ Rn
+ ∩ L. Of course, wn = vn is

also non-negative. It is easy to see that v1, v2, . . . , vn are linear combinations of
w1, w2, . . . , wn with integer coefficients. Hence w1, w2, . . . , wn generate L (over Z).
Moreover, they span Rn (over R) because v1, v2, . . . , vn span Rn. So w1, w2, . . . , wn

are linearly independent. �

Intersection of a family of convex cones is a convex cone. Thus for each S ⊆ Rn,
there is the least (up to inclusion) convex cone denoted by coneRnS, containing
S. For example, coneRn{ε1, ε2, . . . , εn} = Rn

+, where ε1, ε2, . . . , εn is the standard
basis of Rn.

The interior of a set S ⊆ Rn (i.e., the largest open set contained in S) is denoted
by intS.

Lemma 3. (a) Each convex cone C is closed under non-negative linear com-
binations, i.e., a1v1 + a2v2 + · · · + akvk ∈ C for all v1, v2, . . . , vk ∈ C and
a1, a2, . . . , ak ∈ R+.
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(b) For v1, v2, . . . , vk ∈ Rn, coneRn{v1, v2, . . . , vk} = {a1v1 + a2v2 + · · · +
akvk : a1, a2, . . . , ak ∈ R+}.

(c) For a basis v1, v2, . . . vn of Rn, intconeRn{v1, v2, . . . vn}={a1v1+a2v2+· · ·+
anvn : a1, a2, . . . , an ∈ R+ r {0}}. In particular, intconeRn{v1, v2, . . . vn}
is a non-empty set.

Proof. (a) is implied by the equality v + w = 2( 1
2v + 1

2w) for v, w ∈ Rn. The
point (b) is obtained by (a) because {a1v1 + · · · + anvn : a1, . . . , an ∈ R+} is a
convex cone. Finally, (c) follows from (b). �

Now, we prove two main lemmas of this paper.

Lemma 4. For each convex cone C ⊆ Rn of dimension n, there is a basis of
Rn which belongs to C ∩ Zn.

Proof. It is sufficient to show that there is a basis β1, β2, . . . , βn of Rn which
belongs to C ∩Qn (where Q is the field of rational numbers) because C is closed
under multiplication by positive numbers. Since C has the dimension n, there is a
basis v1, v2, . . . , vn of Rn which belongs to C. Take C1 = coneRn{v1, v2, . . . , vn} ⊆
C. Then intC1 6= ∅ (Lemma 3(c)), so there is 0 6= β1 ∈ intC1 ∩ Qn because the
set Qn is dense in Rn. Since β1 ∈ intC1, we have that β1 and any n − 1-element
subset of {v1, v2, . . . , vn} form basis of Rn. In particular, β1 and v2, . . . , vn are
linearly independent.

Now let C2 = coneRn{β1, v2, . . . , vn} ⊆ C1. As above, we can choose 0 6= β2 ∈
intC2 ∩Qn and obtain that β1, β2, v3, . . . , vn are linearly independent. Repeating
this procedure n times, we obtain linearly independent vectors β1, β2, . . . , βn which
belong to C ∩Qn. �

Recall that if an n × n-matrix A is non-singular (i.e., its determinant detA is
not equal to 0), then the linear system of equations A(x1, x2, . . . , xn)T = βT has
an exactly one solution given by Cramer’s formulas xi = detAi

detA for i = 1, 2, . . . , n,

where the matrix Ai is obtained from A by replacing the i-th column by βT . Here
T denotes the matrix transposition, in particular, (x1, x2, . . . , xn)T is a matrix

with one column and n rows.

Lemma 5. Let vectors v1, v2, . . . , vn ∈ Zn be linearly independent (over R).
Then Zn has a basis which belongs to coneRn{v1, v2, . . . vn}.

Proof. Take the matrix A =
(
vT1 , v

T
2 , . . . , v

T
n

)
and d =

∣∣detA
∣∣. Then d 	 0 and

A is invertible because v1, v2, . . . , vn form a basis. Let θ, ψ : Rn −→ Rn be maps
such that θ(v) = d · v for v ∈ Rn and ψ(εi) = vi for i = 1, 2, . . . , n. They are linear
automorphisms and M(ψ)StSt = A, i.e., ψ(v) = A ·vT for v ∈ Rn, where M(ψ)StSt de-
notes the matrix of ψ in the standard basis St : ε1, ε2, . . . , εn . Hence M(ψ−1)StSt =
A−1. Let ϕ = θ ◦ ψ−1, i.e., ϕ(v) = d · (A−1 · vT ) for v ∈ Rn. Then ϕ(vi) = d · εi
for i = 1, 2, . . . , n, so ϕ(coneRn{v1, v2, . . . vn}) = coneRn{ε1, ε2, . . . εn} = Rn

+.
Observe that A is the change of basis matrix from the basis A : v1, v2, . . . , vn to

the standard basis St, so the inverse A−1 is the change of basis matrix from St toA.
Hence A−1 ·vT gives coordinates of v in the basis A for each v ∈ Rn. On the other
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hand, Cramer’s formulas implies that if v ∈ Zn, then these coordinates are equal
to b1

d ,
b2
d , . . . ,

bn
d for some b1, b2, . . . , bn ∈ Z. Thus ϕ(Zn) ⊆ Zn. Next, ϕ(Zn) is of

dimension n because ϕ is an automorphism. Hence and by Corollary 2, ϕ(Zn) has
a basis w1, w2, . . . , wn ∈ Rn

+. Then ϕ−1(w1), ϕ−1(w2), . . . , ϕ−1(wn) form a basis
of Zn and belong to coneRn{v1, v2, . . . vn}. �

Now, we can give new simpler and shorter proofs of main results from [1].

Theorem 6 ([1, Theorem 3]). A full lattice L ⊆ Rn has a basis in a convex
cone C ⊆ Rn iff C is of dimension n.

Proof. The implication “ =⇒ ” is obvious.
“ ⇐= ” : Take a basis of L and the linear automorphism ϕ of Rn which

transforms this basis on the standard basis. Then ϕ(L) = Zn and ϕ(C) is
also a convex cone of dimension n. By Lemma 4, there are linearly independent
w1, w2, . . . , wn ∈ ϕ(C) ∩ Zn. Next, by Lemma 5, Zn has a basis v1, v2, . . . , vn ∈
coneRn{w1, w2, . . . , wn} ⊆ ϕ(C). Now ϕ−1(v1), ϕ−1(v2), . . . , ϕ−1(vn) ∈ C form a
basis of L. �

Rn
+ is a convex cone, so the following consequence of Theorem 6 holds.

Corollary 7 ([1, Theorem 1]). Each full lattice L ⊆ Rn has a non-negative
basis.

Corollary 8 ([1, Proposition 3 and Corollary 4]). A lattice L ⊆ Rn has a basis
in a convex cone C ⊆ Rn iff L ∩ C generates L.

Proof. The implication “ =⇒ ” is trivial.
“⇐= ” : Assume that L has the dimension k, and take the least linear subspace

V of Rn which contains L (equivalently, L∩C). Then V has the dimension k and
is also the least linear subspace of Rn which contains V ∩ C. Hence V ∩ C is a
convex cone of dimension k. Now, we can apply Theorem 6 to obtain a basis of
L which is contained in V ∩ C ⊆ C. Formally, we take (similarly as in the proof
of Theorem 6) a linear isomorphism ϕ : V −→ Rk such that ϕ(L) = Zk. Then
ϕ(V ∩C) is a convex cone of dimension k in Rk, so by Theorem 6, there is a basis
of Zk which belongs to ϕ(V ∩ C). The inverse image of this basis under ϕ is the
required basis of L. �

A particular case of the Corollary 8 is the following fact.

Corollary 9 ([1, Proposition 2]). A lattice L ⊆ Rn has a non-negative basis
iff L ∩ Rn

+ generates L.

For each S ⊆ Rn and v ∈ Rn, the set v + S = {v + w : w ∈ S} is a translation
of S (by the vector v).

At the end of [1], Cherednik showed that every full lattice L ⊆ Rn has a basis
in each translation of every convex cone of dimension n. However, his proof has
a gap because he applied the false conjecture that a translation of a convex cone
is closed under addition. In particular, this result does not hold for n = 1 (see
the example below the next fact). Moreover, his proof is unnecessary complicated.
Now, we present an elementary and very short proof of this result.
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Lemma 10. For all n ≥ 2, Zn has a basis in each translation of Rn
+.

Proof. Take a vector v = (a1, a2, . . . , an) ∈ Rn and a ∈ Z such that a ≥
max{a1, a2, . . . , an}. Of course, (x1, x2, . . . , xn) ∈ v + Rn

+ iff xi ≥ ai for i =
1, 2, . . . , n. Let α1 = (a+1, a, a, . . . , a, a), α2 = (a, a+1, a, . . . , a, a), α3 = (a, a, a+
1, . . . , a, a), . . . , αn−1 = (a, a, a, . . . , a + 1, a) and αn = ((n − 1)a + 2, (n − 1)a +
2, (n − 1)a + 2, . . . , (n − 1)a + 1). Of course, α1, α2, . . . , αn−1 ∈ (v + Rn

+) ∩ Zn.
Since n ≥ 2, we have (n − 1)a + 1 ≥ a, so αn belongs to (v + Rn

+) ∩ Zn too.
Next, (1, 1, . . . , 1) = αn − (α1 + α2 + · · · + αn−1), εi = αi − a(1, 1, . . . , 1), for
i = 1, 2, . . . , n− 1, εn = (1, 1, . . . , 1)− (ε1 + ε2 + · · ·+ εn−1). Thus α1, α2, . . . , αn

generate Zn and span Rn, so α1, α2, . . . , αn form a basis of Zn which belongs to
v + Rn

+. �

Lemma 10 is not true for n = 1, because Z has no generator in y + R+ = {x ∈
R : x ≥ y} for all y > 1. Thus the next result is also not true for n = 1.

Theorem 11 ([1, Theorem 4]). For all n ≥ 2, each full lattice L ⊆ Rn has a
basis in each translation of every convex cone C of dimension n.

Proof. L has a basis α1, α2, . . . , αn ∈ L ∩ C by Theorem 6. Take the linear
automorphism ϕ of Rn which transforms α1, α2, . . . , αn on the standard basis of
Rn. Then ϕ(L) = Zn and ϕ(D) = Rn

+, where D = coneRn{α1, α2, . . . , αn}. Hence
and by Lemma 10, for each w ∈ Rn, there are v1, v2, . . . , vn ∈ ϕ(w) + Rn

+ =
ϕ(w) + ϕ(D) = ϕ(w + D) which form a basis of Zn. The inverse images of these
vectors form a basis of L which is contained in w+D ⊆ w+C, because D ⊆ C. �

At the end of the paper, observe that Corollary 8 does not hold for translations
of convex cones. Take the lattice L = Z × Z × {0} ⊆ R3, the convex cone C =
coneR3{(−1, 0,−1), (0,−1,−1), (0, 0,−1)} and v = (2, 2, 1). Then (v + C) ∩ L =
{(1, 2, 0), (2, 1, 0), (2, 2, 0)}. This set generates L, but of course, is not linearly
independent. On the other hand, (1, 0, 0) does not belong to the sublattice of L
generated by {(2, 1, 0), (2, 2, 0)}, (0, 1, 0) does not belong to the sublattice of L
generated by {(1, 2, 0), (2, 2, 0)}, and it is easy to see that both these vectors do
not belong to the sublattice of L generated by {(1, 2, 0), (2, 1, 0)}. Thus L has no
basis in v + C.
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