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NEIGHBORHOOD-PRIME LABELING OF SNAKE GRAPHS

S. K. PATEL and A. N. KANSAGARA

Abstract. We study neighborhood-prime labeling in the context of snake graphs

of the types Cm
k and Cm

k,q . In particular, we prove that the snake graphs of the type

Cm
k are neighborhood-prime if and only if either k 6≡ 2 (mod 4) or m 6≡ 1 (mod 4).

Further, we also show that Cm
k,2 and Cm

k,3 are neighborhood-prime for all m ≥ 2.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. The vertex
and the edge set of a graph G are denoted by V (G) and E(G), respectively.
|V (G)| and |E(G)| denote the cardinality of these sets and in general |S| denotes
the cardinality of any given set S. We use the notation NG(v) to denote the set of
vertices in a graph G which are adjacent to the vertex v. This set is known as the
neighborhood of v and when the context of the graph is clear, it is simply denoted
by N(v).

Definition 1.1. A bijection f : V (G) → {1, 2, . . . , n} is said to be a prime
labeling of a graph G with n vertices if gcd(f(u), f(v)) = 1, whenever u and v are
adjacent vertices of G. A graph that admits a prime labeling is called a prime
graph.

The neighborhood-prime labeling of a graph G is a variant of prime labeling
introduced by Patel and Shrimali [6] where they require greatest common di-
visor (gcd) of the labels of all the vertices in the neighborhood N(v) to be 1.
More precisely, any bijective function f : V (G) → {1, 2, . . . , |V (G)|} is said to be
a neighborhood-prime labeling on G if gcd(f(N(v))) := gcd{f(u) : u ∈ N(v)} = 1
for every vertex v ∈ V (G) whose degree is at least 2. A graph that admits
neighborhood-prime labeling is called a neighborhood-prime graph.

Note that a prime graph may not be neighborhood-prime and a neighborhood-
prime graph may not be prime. For instance, the complete graph K4 is neighbor-
hood-prime and not prime whereas the cycle C6 is prime and not neighborhood-
prime. However, Lemma 2.1 and Theorem 3.2 in the following sections provide
interesting links between these two concepts. Prime labeling has been extensively
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studied since its introduction about forty years ago but neighborhood-prime la-
beling has been introduced very recently and so a lot remains to explore in this
direction. Patel and Shrimali in their initial research ([6, 7, 8]) on neighborhood-
prime labeling have shown that paths, complete graphs, wheels, helms, flowers,
cartesian and tensor products of two paths are neighborhood-prime. They have
shown that the cycle Ck is neighborhood-prime if and only if k 6≡ 2 (mod 4) and
have further characterized neighborhood-prime graphs amongst the class of union
of two cycle graphs. Cloys and Fox [3] have shown that certain classes of trees like
caterpillars, spiders, firecrackers, trees without degree 2 vertices are neighborhood-
prime and finally conjectured that all trees are neighborhood-prime. This is in line
with the famous conjecture that all trees are prime which has remain unsolved for
almost forty years. However, based on the partial result that all trees of sufficiently
large orders are prime [5]; Asplund et al. [1] have shown that all trees of sufficiently
large orders are neighborhood-prime. In the same paper based on Hamiltonicity
of the graph, they have also shown that the generalized Petersen graphs and grid
graphs are neighborhood-prime. A brief summary of results related to prime label-
ing, neighborhood-prime labeling and some of the variants of these two labelings
is available in the dynamic survey of graph labeling by J. Gallian [4]. Now, we
discuss the results of the present paper.

This paper deals with neighborhood-prime labeling of snake graphs of the type
Cm

k and Cm
k,q whose definitions and other terminology are explained in Section 2

and Section 3, respectively. The initial part of the present work is motivated
by some of the partial results by Cloys and Fox [3] about neighborhood-prime
labeling of snake graphs Sk,n (same as Cn−1

k in our notation). In Section 2, we
give a full answer on neighborhood-prime labeling of these snake graphs. The
remaining part of our paper is motivated by a paper by A. Bigham et al. [2]
where they introduce general snake graphs Cm

k,q and study prime labeling of these
newly introduced snake graphs. In the concluding section of the same paper, they
have posed a question about neighborhood-prime labeling in the context of general
snake graphs. In Section 3, we have come up with some positive results in response
to their query. In particular, we show that the general snake graphs Cm

k,2 and Cm
k,3

are neighborhood-prime for m ≥ 2.
All theorems are supported with appropriate examples and figures for a better

understanding of their proofs. The following elementary number theory result is
used while proving certain theorems and so it is stated over here in the form of a
Lemma.

Lemma 1.1. Let {mi}i≥0 be a sequence of integers defined by mi := a + id,
where a, d ∈ Z. If gcd(a, d) = 1 then mi and mi+1 are relatively prime for all i.

Proof. Let q be a positive integer such that q|mi (i.e., q divides mi) and q|mi+1.
Then q divides mi+1 −mi = d and consequently q|id. Now q|id, q|a + id and so
q|a. Thus q divides both a and d. But gcd(a, d) = 1, and hence q = 1. �
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2. Neighborhood-prime labeling of snake graphs Cm
k

We introduce the snake graph (also known as k-polygon snake) of [3] with a
different notation Cm

k over here. The reason for this is that it can also be visulalized
as Cm

k,1 which is a special case of the general snake graphs Cm
k,q that, we study in

Section 3.
A snake graph Cm

k is obtained by considering a path Pm+1 on the vertices
u1, u2, . . . , um+1 where each edge uiui+1 is replaced by a cycle of length k ≥ 3,
one of whose edge is uiui+1. Thus Cm

k is a graph with m(k − 1) + 1 vertices
and mk edges and it is the same as the snake graph Sk,m+1 of [3]. In order to
understand the neighborhood-prime labeling on Cm

k , we shall understand it as
a path on n = m(k − 1) + 1 vertices v1, v2, . . . , vn with additional m edges as
v(j−1)(k−1)+1vj(k−1)+1, where j = 1, 2, . . . ,m. See for instance graph of C4

7 in
Figure 2.

Now before, we establish our results on neighborhood-prime labeling of snake
graphs Cm

k , let us review a known result about it.

Theorem 2.1 ([3]). The k-polygonal snake Sk,n (i.e., Cn−1
k ) has a neighbor-

hood-prime labeling for the following cases where k ≥ 6 and n ≥ 3:

• k ≡ 1 (mod 4) and n = 2l + 1 for l ≥ 1
• k ≡ 0 (mod 4) and n = 2l for l ≥ 2
• k ≡ 0 (mod 4) and n = 2l + 1 for l ≥ 1
• k = 2l + 2 for l ≥ 2 and n ≡ 3 (mod 4)
• k even and n = 3
• k = 2l + 3 for l ≥ 2 and n even.

We see that the above theorem due to [3] discusses a very limited and special
cases only. In this paper, we prove that the snake graph Cm

k is neighborhood-prime
if and only if either k 6≡ 2 (mod 4) or m 6≡ 1 (mod 4).

Note that if m = 1, then Cm
k is just a cycle of length k which is known

to be neighborhood-prime iff k 6≡ 2 (mod 4). See for instance [6]. Further,
C2

k is just a one point union (or fusion) of two cycles of length k which can
be easily shown as neighborhood-prime. For instance, refer to Figure 1a and
1b, where, we have illustrated this case for even as well as odd cycles. There-
fore, while proving the results about neighborhood-prime labeling of the snake
graphs, we always consider m ≥ 3. A common approach of showing a graph is
neighborhood-prime is to define a bijection f : V (G)→ {1, 2, . . . , |V (G)|} and ver-
ify that gcd(f(N(v))) := gcd{f(u) : u ∈ N(v)} = 1 for every vertex v whose
degree is at least 2. This verification is trivial or obvious whenever f(N(v)) con-
tains two or more consecutive integers. So throughout the paper, we shall use the
terminology that gcd(f(N(v))) is trivially 1 to mean that f(N(v)) contains two
or more consecutive integers. Proving negative results about neighborhood-prime
labeling is usually much more difficult and same happens here also. So, we begin
with positive results.
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(a) One point union of cycles of length 10 (b) One point union of cycles of length 11

Figure 1. Neighborhood-prime labeling of one point union of two cycles

Theorem 2.2. For m ≥ 3, the snake graph Cm
k is neighborhood-prime if k is

odd.

Proof. Let G = Cm
k be a snake graph with V (G) = {vi : 1 ≤ i ≤ m(k − 1) + 1}

and E(G) = {vivi+1, v(j−1)(k−1)+1vj(k−1)+1 : 1 ≤ i ≤ m(k− 1), 1 ≤ j ≤ m}. Then
|V (G)| = m(k − 1) + 1 and |E(G)| = mk.

Define f : V (G)→ {1, 2, . . . , |V (G)|} by

f(v2i) = i, 1 ≤ i ≤ (m− 1)(k − 1)

2
,

f(v2i−1) =
(m− 1)(k − 1)

2
+ i, 1 ≤ i ≤ m(k − 1)

2
+ 1,

f(v2i) =
m(k − 1)

2
+ 1 + i;

(m− 1)(k − 1)

2
+ 1 ≤ i ≤ m(k − 1)

2
.

Observe that

gcd(f(N(vm(k−1)+1))) = gcd(f(vm(k−1)), f(v(m−1)(k−1)+1))

= gcd(m(k − 1) + 1, (m− 1)(k − 1) + 1) = 1

due to Lemma 1.1. Also f(v2) = 1, so that gcd(f(N(v1))) = gcd(f(v2), f(vk)) = 1.
Further, for any v 6= v1, vm(k−1)+1; N(v) contains either 2 or 4 vertices for which
gcd(f(N(v))) is trivially 1. Hence f is a neighborhood-prime labeling on G. �

Example 2.1. Neighborhood-prime labeling of snake graph C4
7 is as shown in

Figure 2.

Figure 2. Neighborhood-prime labeling of snake graph C4
7
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Theorem 2.3. For m ≥ 3, the snake graph Cm
k is neighborhood-prime if:

1. k ≡ 0 (mod 4).
2. k ≡ 2 (mod 4) and m is even.
3. k ≡ 2 (mod 4) and m ≡ 3 (mod 4).

Proof. Let G = Cm
k be a snake graph with V (G) and E(G) as in the previous

theorem.
1. k ≡ 0 (mod 4)
If m is even, define f : V (G)→ {1, 2, . . . , |V (G)|} by

f(v2i) = i + 1, 1 ≤ i ≤ (m− 1)(k − 1)− 1

2
,

= 1, i =
(m− 1)(k − 1)− 1

2
+ 1,

= i,
(m− 1)(k − 1)− 1

2
+ 2 ≤ i ≤ m(k − 1)

2
,

f(v2i−1) =
m(k − 1)

2
+ i, 1 ≤ i ≤ m(k − 1)

2
+ 1.

If m is odd, define f by

f(v2i) = i + 1, 1 ≤ i ≤ m(k − 1) + 1

2
,

f(v2i−1) =
m(k − 1) + 1

2
+ 1 + i, 1 ≤ i ≤ (m− 1)(k − 1)

2
,

= 1, i =
(m− 1)(k − 1)

2
+ 1,

=
m(k − 1) + 1

2
+ i,

(m− 1)(k − 1)

2
+ 2 ≤ i ≤ m(k − 1) + 1

2
.

The key points about verifying that f is a neighborhood-prime labeling are dis-
cussed below:
Since k ≡ 0 (mod 4); k

2 + 1 is odd and so

gcd(f(N(v1))) = gcd(f(v2), f(vk)) = gcd
(

2,
k

2
+ 1
)

= 1.

Also
gcd(f(N(vm(k−1)+1))) = gcd(f(N(v(m−1)(k−1))))

= gcd(f(N(v(m−1)(k−1)+2))) = 1

because all these vertices have v(m−1)(k−1)+1 as one of their neighbors and

f(v(m−1)(k−1)+1) = 1.

For v 6= v1, vm(k−1)+1, v(m−1)(k−1), v(m−1)(k−1)+2; gcd(f(N(v)) is trivially one

and so, we are through. Neighborhood-prime labeling of snake graphs C4
8 and C3

8

are illustrated in Figure 3 and Figure 4, respectively.
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Figure 3. Neighborhood-prime labeling of snake graph C4
8

Figure 4. Neighborhood-prime labeling of snake graph C3
8

2. k ≡ 2 (mod 4) and m is even.
Define f : V (G)→ {1, 2, . . . , |V (G)|} by

f(v2i) = 4, i = 1,

= 3, i = 2,

= i + 2, 3 ≤ i ≤ m(k − 1)− 2

2
,

= 1, i =
m(k − 1)

2
,

f(v2i−1) =
m(k − 1)− 2

2
+ 2 + i, 1 ≤ i ≤ m(k − 1)

2
,

= 2, i =
m(k − 1)

2
+ 1.

Since k ≡ 2 (mod 4), k
2 + 2 is odd and so gcd (f(N(v1))) = gcd(f(v2), f(vk)) =

gcd
(

4, k
2 +2

)
= 1. Moreover, gcd (f(N(v5))) = gcd(f(v4), f(v6)) = gcd (3, 5) = 1.

Also f(vm(k−1)) = 1, and so

gcd(f(N(vm(k−1)+1))) = gcd(f(N(vm(k−1)−1))) = 1.

Further as m is even,

gcd(f(N(vm(k−1)))) = gcd
(
f(vm(k−1)−1), (f(vm(k−1)+1)

)
= gcd (m(k − 1) + 1, 2) = 1.

Finally, for any v 6= v1, v5, vm(k−1)−1, vm(k−1), vm(k−1)+1; gcd(f(N(v)) is trivially
one.
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Neighborhood-prime labeling of snake graph C4
6 is shown in Figure 5.

Figure 5. Neighborhood-prime labeling of snake graph C4
6

Note that if m is odd, then the labeling f is no longer neighborhood-prime since
gcd(f(N(vm(k−1)))) is equal to 2 now. So, we have to think differently when m is
odd.

3. k ≡ 2 (mod 4) and m ≡ 3 (mod 4).
Here, we consider the following two cases on k.
Case 1. k

2 6≡ 1 (mod 3).
Define f : V (G)→ {1, 2, . . . , |V (G)|} as

f(v2i) = i + 2, 1 ≤ i ≤ m(k − 1) + 1

2
,

f(v2i−1) = m(k − 1) + 2− i, 1 ≤ i ≤ m(k − 1) + 1

2
− 2,

= 2, i =
m(k − 1) + 1

2
− 1,

= 1, i =
m(k − 1) + 1

2
.

We see that gcd (f(N(v1))) = gcd(f(v2), f(vk)) = gcd
(
3, k

2 + 2
)

= 1 as k
2 + 2 6≡ 0

(mod 3). Since f(vm(k−1)) = 1, we have

gcd(f(N(vm(k−1)+1))) = gcd(f(N(vm(k−1)−1))) = 1.

Also

gcd(f(N(vm(k−1)−3))) = gcd(f(vm(k−1)−2), f(vm(k−1)−4))

= gcd
(

2,
m(k − 1) + 1

2
+ 3
)

= 1,

because m(k−1)+1
2 +3 is odd due to the assumption that k ≡ 2 (mod 4) and m ≡ 3

(mod 4). For the remaining vertices v; gcd(f(N(v)) is trivially one. Neighborhood-
prime labeling of snake graph C3

10 is shown in Figure 6.

Figure 6. Neighborhood-prime labeling of snake graph C3
10
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Case 2. k
2 ≡ 1 (mod 3).

Define f : V (G)→ {1, 2, . . . , |V (G)|} as

f(v2i) = i + 2 1 ≤ i ≤ k

2
− 1,

= i + 4,
k

2
≤ i ≤ m(k − 1) + 1

2
,

f(v2i−1) = m(k − 1) + 2− i, 1 ≤ i ≤ m(k − 1) + 1

2
− 4,

= 2, i =
m(k − 1) + 1

2
− 3,

=
k

2
+ 2, i =

m(k − 1) + 1

2
− 2,

=
k

2
+ 3, i =

m(k − 1) + 1

2
− 1,

= 1, i =
m(k − 1) + 1

2
.

First, we note that k
2 + 2 ≡ 0 (mod 3) and so k

2 + 4 6≡ 0 (mod 3). Hence

gcd (f(N(v1))) = gcd(f(v2), f(vk)) = gcd
(
3, k

2 + 4
)

= 1 and further,

gcd (f(N(vk−1))) =gcd(f(vk−2), f(vk))=gcd
(k

2
+1,

k

2
+4
)

=gcd
(

3,
k

2
+ 4
)

= 1.

Now f(vm(k−1)) = 1 and vm(k−1) is a neighbor of both vm(k−1)+1 and vm(k−1)−1

and so

gcd(f(N(vm(k−1)+1))) = gcd(f(N(vm(k−1)−1))) = 1.

Also

gcd(f(N(vm(k−1)−5))) = gcd(f(vm(k−1)−4), f(vm(k−1)−6)) = gcd
(k

2
+ 2, 2

)
= 1

and

gcd(f(N(vm(k−1)−7))) = gcd(f(vm(k−1)−6), f(vm(k−1)−8))

= gcd
(

2,
m(k − 1) + 1

2
+ 5
)

= 1,

because both k
2 + 2 and m(k−1)+1

2 + 5 are odd due to the assumption that k≡ 2
(mod 4) and m≡3 (mod 4). Finally, if

v 6= v1, vk−1, vm(k−1)−7, vm(k−1)−5, vm(k−1)−1, vm(k−1)+1,

then gcd(f(N(v))) is trivially 1.
Neighborhood-prime labeling of snake graph C3

14 is shown in Figure 7. �
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Figure 7. Neighborhood-prime labeling of snake graph C3
14

We now proceed to proving that Cm
k is not neighborhood-prime if k≡2 (mod 4)

and m≡1 (mod 4). Note that if m = 1, then Cm
k is a cycle of length k ≡ 2 (mod 4)

which is not neighborhood-prime as shown in [6]. But the proof of C1
k extends

no further. Therefore, we first show that C5
k is not neighborhood-prime and then

explain, essentially how the same argument can be used while proving the result
for all higher values of m. For this, we introduce a concept of neighbor graph
H(G) of a given graph G, and prove a lemma regarding the connection between
the neighborhood-prime labeling of G and prime labeling of its neighbor graph
H(G).

Definition 2.1. The neighbor graph H(G) of a given graph G is a graph whose
vertex set is same as the vertex set of the graph G and in which two vertices u and
v are adjacent if and only if there exists a vertex w in G such that NG(w) = {u, v}.

Note that if k is even then the neighbor graph of the cycle Ck is given by the
union of two cycles of lengths k/2 and if k is odd then it is Ck itself. Also note
that if a graph G does not contain any vertex of degree 2, then its neighbor graph
does not have an edge. Consequently, the neighbor graph of the complete graph
K4 is K4 (i.e, complement graph of K4).

Lemma 2.1. Every neighborhood-prime labeling defined on a graph G is a
prime labeling on its neighbor graph H(G).

Proof. Let f be any neighborhood-prime labeling defined on the graph G. Con-
sider an arbitrary edge uv in graph H(G). Then there exists a vertex w in G such
that NG(w) = {u, v}. But f is a neighborhood-prime labeling on G and hence
gcd(f(NG(w))) = gcd{f(u), f(v)} = 1. Thus, we have shown that f(u) and f(v)
are relatively prime whenever uv is an edge in H(G) and hence f is a prime labeling
on H(G). �

Theorem 2.4. The snake graph C5
k is not neighborhood-prime if k≡2 (mod 4).

Proof. Let G = C5
k with V (G) = {vi : 1 ≤ i ≤ 5(k − 1) + 1} and

E(G) = {vivi+1, v1vk, vkv2k−1, v2k−1v3k−2, v3k−2v4k−3, v4k−3v5k−4

: 1 ≤ i ≤ 5(k − 1)}.

Thus |V (G)| = 5(k − 1) + 1 = 5k − 4 and |E(G)| = 5(k − 1) + 5 = 5k. Our first
observation here is about the neighbor graph H(G) (which, we shall denote by H
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throughout the proof for the ease of notation) of the graph G whose edge set is

E(H) = {vi−1vi+1, v2vk, v4k−3v5k−5

: where 2 ≤ i ≤ 5k − 5 and i 6= k, 2k − 1, 3k − 2, 4k − 3}.
Observe that in the absence of the edges v2vk and v4k−3v5k−5, H is simply the
(disjoint) union of six different paths each of which consists of vertices with either
all even suffixes or odd suffixes. Based on this observation, we now consider the two
subgraphs of H induced by the set of vertices with even suffixes and odd suffixes
and, we denote these two induced subgraphs of H by H1 and H2, respectively.
Thus

E(H1) = {vi−1vi+1, v2vk :

where i is odd only, 2 ≤ i ≤ 5k − 5 and i 6= 2k − 1, 4k − 3}
and

E(H2) = {vi−1vi+1, v4k−3v5k−5 :

where i is even only, 2 ≤ i ≤ 5k − 5 and i 6= k, 3k − 2}.

The neighbor graph H of the snake graph C5
10 is shown in Figure 8.

Figure 8. The neighbor graph H of the snake graph C5
10

Obviously

|V (H1)| = |V (H2)| = |V (H)|
2

=
|V (G)|

2
=

5k − 4

2
and moreover the graphs H1 and H2 are isomorphic. A very important observation
here is that the number 5k−4

2 is odd and this is because k ≡ 2 (mod 4). Our proof
is by contradiction. So assume that there exists a neighborhood-prime labeling of
G which, we denote by f . By Lemma 2.1, f is a prime labeling on its neighbor
graph H with 5k − 4 vertices where exactly 5k−4

2 vertices must be labeled with
even integers. For i = 1, 2; let Ni denote the number of vertices in Hi which are
labeled with even integers. Since, we know that N1 +N2 = 5k−4

2 and that 5k−4
2 is

odd, one of the numbers Ni is at least 1
2

(
5k−4

2 + 1
)

= 5k−2
4 . Since H1 and H2 are

isomorphic, without loss of generality, we may assume that N1 ≥ 5k−2
4 . Now the
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graph H1 consists of three components; two of which are paths and the remaining
one is a path after the removal of the additional edge v2vk. So the assignment of
5k−2

4 even integers (through the prime labeling f) to the vertices of H1 is extremely
tight as, we shall see now. Recall that any collection of vertices which are labeled
with even integers under a prime labeling is always an independent set. We denote
the three components of H1 by H1

1 , H
2
1 and H3

1 , where

E(H1
1 ) = {vi−1vi+1, v2vk : where i is odd and 3 ≤ i ≤ 2k − 3},

E(H2
1 ) = {vi−1vi+1 : where i is odd and 2k + 1 ≤ i ≤ 4k − 5},

E(H3
1 ) = {vi−1vi+1 : where i is odd and 4k − 1 ≤ i ≤ 5k − 5}.

Now as per the description of the component H1
1 given above; it may be verified

that its independence number is k
2 − 1 (in the absence of the edge v2vk it is k

2

though) and so at the most k
2 − 1 vertices in H1

1 can only be labeled with even
integers under f . Hence at least

(2.1)
(5k − 2

4

)
−
(k

2
− 1
)

=
3k + 2

4

number of vertices from H2
1 ∪H3

1 must be labeled with even integers. But H2
1 and

H3
1 are paths of even lengths k−2 and k

2 −1 (or, we may say paths on odd number

of vertices k − 1 and k
2 ), respectively. So the independence number of H2

1 ∪H3
1 is

(2.2)
1

2

(
(k − 1) + 1

)
+

1

2

(k
2

+ 1
)

=
3k + 2

4
.

Since the two numbers in (2.1) and (2.2) turn out to be the same; the only possible
way of labeling at least 3k+2

4 number of vertices of H2
1 ∪H3

1 with even integers is
to start with the very first vertex and then label every alternate vertex in both
the paths by the even integers. Accordingly, (looking at the edge sets of H2

1 and
H3

1 described above) the vertices in the following union set

{v2k, v2k+4, v2k+8, . . . , v3k−2, . . . , v4k−8, v4k−4} ∪ {v4k−2, v4k−6, . . . , v5k−8, v5k−4}
must all be labeled with even integers. (The presence of v3k−2 in the first set
is justified due to the assumption that k ≡ 2 (mod 4)). But if this is true then
all the four vertices of NG(v4k−3) namely v3k−2, v4k−4, v4k−2 and v5k−4 get even
labels and hence

gcd(f(NG(v4k−3))) ≥ 2.

But this contradicts our assumption that f is a neighborhood-prime labeling on G.
�

Remark 2.1. In Theorem 2.4, we prove that if k ≡ 2 (mod 4) then Cm
k is not

neighborhood-prime when m = 5. The following key points are useful in extending
the proof to the general case m ≡ 1 (mod 4) (m > 1).

1. m(k−1)+1
2 is an odd number which is also the cardinality of the vertex sets

of the subgraphs H1 and H2 in the general case. The number m(k−1)+1
2

being odd, once again H1 (without loss of generality) must be labeled with

at least m(k−1)+3
4 even integers.
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2. In the general case, H1 consists of m+1
2 components out of which m−1

2 are
paths and the remaining one is a path after the removal of the edge v2vk.
Moreover out of the m−1

2 components which are paths; m−3
2 are of (even)

lengths k − 2 and the remaining one is of (even) length k
2 − 1 .

3. The component of H1 with the additional edge v2vk can accommodate at
most k

2 −1 vertices with even labels and so the remaining m−1
2 components

must accommodate at least(m(k − 1) + 3

4

)
−
(k

2
− 1
)

=
(m− 2)k −m + 7

4

vertices with even labels. While doing so, once again, we end up with a
situation where one of the vertices from the set {v4k−3, v6k−5, v8k−7, . . . ,
v(m−1)k−(m−2)} has all its four neighbors being labeled with even integers
and so, we arrive at a contradiction.

The results of Section 2 can now be summarised and given as:

Theorem 2.5. The snake graph Cm
k is neighborhood-prime if and only if either

k 6≡ 2 (mod 4) or m 6≡ 1 (mod 4).

3. Neighborhood-prime labeling of general snake graphs Cm
k,q

The general snake graphs Cm
k,q were first introduced by Bigham et al. [2] wherein

they also defined terms like spine and belly of such snake graphs. In the following
paragraph, we explain this definition and terminology but simultaneously ask the
reader to refer to Figures 9a, 9b and 9c. The parameters k, q and m associated
with the graph Cm

k,q are positive integers satisfying the conditions k ≥ 3 and q ≤ k
2 .

(a) C2
5,1

(b) C3
8,2

(c) C3
7,3

Figure 9. A few examples of snake graphs Cm
k,q
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In order to define Cm
k,q, first, we consider m+1 vertices v1, v2, . . . , vm+1 arranged

from left to right. Then the general snake graph Cm
k,q is a graph with m(k− 1) + 1

vertices and mk edges which is obtained by completing a cycle C
(i)
k of length k

between every pair of points vi and vi+1 (where 1 ≤ i ≤ m) in such a way that the

lengths of the shorter and the longer paths (along the cycle C
(i)
k ) joining vi and

vi+1 are q and k − q, respectively. Further, the newly introduced q − 1 vertices
along this shorter path joining vi and vi+1 are known as spine vertices denoted by

sil, 1 ≤ l ≤ q − 1; where i refers to the cycle C
(i)
k which the spine vertex belongs

and l refers to the distance between sil and vi. Similarly, the k − q − 1 newly
introduced vertices along the longer path joining vi and vi+1 are known as belly

vertices denoted by bij , 1 ≤ j ≤ k−q−1; where i refers to the cycle C
(i)
k which the

belly vertex belongs and j refers to the distance between bij and vi. The vertices
other than the spine and belly vertices are precisely the vertices vi which are all
known as vertebrae. The shortest path of length qm from v1 to vm+1 is called the
spine. The path of (k − q)m edges from v1 to vm+1 that does not contain any
vertices on the spine is called the belly of the snake graph. Figures 9a, 9b and 9c
show various examples of the general snake graphs labeled with spine and belly
vertices and the vertebrae.

Note that if q = 1, then the graph Cm
k,q is same as the snake graph Cm

k studied
in Section 2 but if q > 1 and m > 2, then these two graphs are non-isomorphic.
Bigham et al. [2] introduced a concept of cyclic snake labeling related to snake
graphs Cm

k,q and analysed the cases under which the cyclic snake labeling (or its

slight modification) results into prime labeling. Accordingly, they managed to
show that Cm

k,1 is prime for all k and m and that Cm
k,2 is prime whenever k is odd

and m is less than or equal to the least prime factor of k − 2. For further results
in this direction refer [2]. Our focus will be on proving that Cm

k,2 and Cm
k,3 are

neighborhood-prime. Note that if m = 1, then Cm
k,q is just a cycle of length k and

if m = 2, then Cm
k,q is just a one point union (or fusion) of two cycles of length

k and these two situations have already been discussed in Section 2. Therefore,
while proving the results about neighborhood-prime labeling of the snake graphs
Cm

k,q, we consider m ≥ 3.

3.1. The case q = 2

Theorem 3.1. The snake graph Cm
k,2 is neighborhood-prime for all m ≥ 3.

Proof. Let G = Cm
k,2 be a snake graph with V (G) = {vj , vm+1, s

j
1, b

j
i : 1 ≤ j ≤

m, 1 ≤ i ≤ k − 3} and E(G) = {vjbj1, b
j
i b

j
i+1, b

j
k−3vj+1, vjs

j
1, s

j
1vj+1 : 1 ≤ j ≤

m, 1 ≤ i ≤ k − 4}. Then |V (G)| = m(k − 1) + 1 and |E(G)| = mk. We need to
define the required labeling f : V (G) → {1, 2, . . . , |V (G)|} separately for odd and
even k.

Case 1: k is odd.
For j = 1, 2, . . . ,m and i = 1, 2, . . . , k−3

2 ;, we define f by

f(vj) = (j − 1)(k − 1) + 1,
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f(bj2i) = (j − 1)(k − 1) + 1 + i,

f(sj1) = (j − 1)(k − 1) +
k − 1

2
+ 1,

f(bj2i−1) = (j − 1)(k − 1) +
k − 1

2
+ 1 + i.

Note that gcd(f(N(sj1))) = gcd(f(vj), f(vj+1)) = gcd((j−1)(k−1)+ 1, j(k−1)+
1) = 1 due to Lemma 1.1.

Case 2: k is even.
For j = 1, 2, . . . ,m; i = 1, 2, . . . , k−2

2 and l = 1, 2, . . . , k−4
2 ; here, we define f by

f(bj2i−1) =


(j − 1)

(k − 2

2

)
+ i, if j = 1, 2, . . . ,m− 1,

(m− 1)(k − 2)

2
+

m(k − 2)

2
+ 1 + i, if j = m,

f(vj) =
(m− 1)(k − 2)

2
+ (j − 1)

(k − 2

2

)
+ 1,

f(bj2l) =
(m− 1)(k − 2)

2
+ (j − 1)

(k − 2

2

)
+ 1 + l,

f(vm+1) =
(m− 1)(k − 2)

2
+ m

(k − 2

2

)
+ 1,

f(sj1) =
(m− 1)(k − 2)

2
+ (m + 1)

(k − 2

2

)
+ 2 + (m− j).

Using Lemma 1.1
(
with a = (m−1)(k−2)

2 + 1 and d = (k−2)
2

)
, we claim that

gcd(f(N(sj1))) = gcd(f(vj), f(vj+1)) = 1.

Also when k is even, f(b11) = 1 gives gcd(f(N(v1))) = gcd(f(b11), f(s11)) = 1.

Finally, for v 6= sj1 when k is odd and for v 6= sj1, v1 when k is even, it may
be verified that gcd(f(N(v))) is trivially 1. Thus G = Cm

k,2 is neighborhood-
prime. �

Example 3.1. Neighborhood-prime labeling of the snake graphs C3
11,2 and C4

8,2

are shown in Figure 10.

3.2. The case q = 3

Asplund et al. [1] define the set of neighborhood graphs of a given graph G as the
set of all possible graphs H such that V (H) = V (G), and for each v ∈ V (G) with
degG(v) ≥ 2, there exists exactly one edge uw ∈ E(H) where u,w ∈ NG(v). We
alert the reader about the noticeable difference between the concept of neighbor
graph introduced in Section 2 and the concept of neighborhood graphs introduced
over here. A major difference is that given a graph G, its neighbor graph is unique
whereas its neighborhood graphs can be more than one. We saw in Section 2
that neighbor graphs are used to give a necessary condition for the existence of
neighborhood-prime labeling of a given graph G, whereas the following theorem
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(a) C3
11,2

(b) C4
8,2

Figure 10. Neighborhood-prime labeling of the snake graphs C3
11,2 and C4

8,2

due to Asplund et al. [1] uses neighborhood graphs to give a sufficient condition
for the same.

Theorem 3.2 ([1]). For a graph G, if there exists its neighborhood graph H
which is prime, then G is neighborhood-prime.

Proof. Assume f : V (H) → {1, 2, . . . , |V (H)|} is a prime labeling of H. Let
v ∈ V (G) with degG(v) ≥ 2, and suppose u,w are the neighbors of v for which uw
is an edge in H. Since f is a prime labeling of H, we have gcd{f(u), f(w)} = 1,
and thus gcd{f(NG(v))} = 1 as well because {f(u), f(w)} ⊆ f(NG(v)). �

We shall show that Cm
k,3 is neighborhood-prime by showing that one of its

neigborhood graph is prime. For this, we introduce a new graph in this paper
denoted by P+

n,r, which is associated with the path Pn on n vertices. We shall

prove an important theorem related to a labeling of P+
n,r and this theorem will

form an important base for proving our main theorem.
Let Pn be a path on n vertices v1, v2, . . . , vn and {vi1 , vi2 , . . . , vir} be an inde-

pendent set of r vertices of the path for some 1 ≤ r ≤
⌈
n
2

⌉
. Then P+

n,r is defined
as a graph obtained from the path Pn after attaching exactly 2 pendent edges to
each of the r vertices vi1 , vi2 , . . . , vir . Thus, P+

n,r is a graph on n+2r vertices with
n+2r−1 edges. If n > 1, then the choice of the independent set {vi1 , vi2 , . . . , vir}
is not unique and so every such choice results into a graph P+

n,r. For instance, if
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n = 4, then, we have seven graphs of the type P+
4,r with respect to seven different

choices of the independent sets namely {v1}, {v2}, {v3}, {v4}, {v1, v3}, {v1, v4} and
{v2, v4}. One of the graphs P+

n,r for n = 14 and r = 5 can be seen in Figure 11.

So far, we have defined P+
n,r for 1 ≤ r ≤

⌈
n
2

⌉
. If, we use the notation P+

n,0 for the

path Pn, then in future, we can use the notation P+
n,r for all 0 ≤ r ≤

⌈
n
2

⌉
. This is

just for an added convenience. We know that for any positive integer k, the vertices
of a path Pn can be labeled with n consecutive integers k, k + 1, . . . , k + n− 1 in
such a way that any two adjacent vertices have relatively prime labels. We shall
now see that a similar type of labeling is possible in case of the graph P+

n,r also.

Lemma 3.1. Let P3 be a path on vertices v1, v2, v3 and P+
3,1 be the graph ob-

tained from the path P3 after attaching two pendent edges v12v2 and v22v2 to the
vertex v2 of P3. Then for any arbitrary positive integer k, the graph P+

3,1 can be
labeled with 5 consecutive integers k, k+1, . . . , k+4 such that the labels of any two
adjacent vertices in P+

3,1 are relatively prime and moreover v1 and v3 are assigned
the labels k and k + 4, respectively.

Proof. First, we fix the labels k and k+4 for the vertices v1 and v3, respectively.
Further, if k is odd then assign k + 2 to v2. Now assigning k + 1 and k + 3 to v12
and v22 randomly completes our requirement.

If k is even then k+ 1 and k+ 3 both are odd and further, both of them cannot
be a multiple of 3. So whichever is not a multiple of 3, assign that label to v2
and the remaining one along with k + 2 can be assigned to the vertices v12 and v22
randomly. It may be verified that this assignment meets our requirement. �

We ask the reader to verify that the method discussed in the proof of Lemma 3.1
can easily be adopted and extended to prove the following two theorems. As a
matter of help, see Figure 11.

Figure 11. A labeling of P+
14,5

Theorem 3.3. Consider a graph P+
n,r associated with the path Pn on n vertices

v1, v2, . . . , vn for some 0 ≤ r ≤
⌈
n
2

⌉
and in which v1 and vn are free from pendent

edges. Then for any arbitrary positive integer k, the graph P+
n,r can be labeled with

n+2r consecutive integers k, k+1, . . . , k+n+2r−1 such that the labels of any two
adjacent vertices in P+

n,r are relatively prime and moreover v1 and vn are assigned
the labels k and k + n + 2r − 1, respectively.

Theorem 3.4. Consider a graph P+
n,r associated with the path Pn on n vertices

v1, v2, . . . , vn for some 1 ≤ r ≤
⌈
n
2

⌉
and in which v1 has two pendent edges. Then

for any arbitrary positive integer k, the graph P+
n,r can be labeled with n + 2r
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consecutive integers k, k+1, . . . , k+n+2r−1 such that the labels of any two adjacent
vertices in P+

n,r are relatively prime and vn is assigned the label k. Moreover, if
k + 2n− 1 is neither even nor a multiple of 3, then such a labeling is possible with
an additional condition that v1 is assigned k + 2n− 1.

With this, we are now ready to prove our main theorem on neighborbood-prime
labeling of Cm

k,3.

Theorem 3.5. The graph Cm
k,3 is neighborhood-prime for all m ≥ 3.

Proof. The definition of Cm
k,q suggests that if q = 3, then k ≥ 6 and so this is

assumed throughout the proof. Let G = Cm
k,3 with vertex set

V (G) = {vj , vm+1, s
j
1, s

j
2, b

j
i : 1 ≤ j ≤ m, 1 ≤ i ≤ k − 4}

and

E(G) = {vjbj1, b
j
i b

j
i+1, b

j
k−4vj+1, vjs

j
1, s

j
1s

j
2, s

j
2vj+1 : 1 ≤ j ≤ m, 1 ≤ i ≤ k − 5}.

Then |V (G)| = m(k − 1) + 1 and |E(G)| = mk. Consider a neighborhood graph
H of G with V (H) = V (G) and whose edges are given by

E(H) = {uw : u,w ∈ NG(v) and where v ∈ V (G) is such that degG(v)=2}

∪ {bjk−4b
j+1
1 : 1 ≤ j ≤ m− 1}.(3.1)

Due to Theorem 3.2, it is enough to show that H is a prime graph. We do this by
taking two cases.

Case 1: k is even.
Subcase (i): m is even.
In this case notice that E(H) = E(H1) ∪ E(H2), where

E(H1) =
{
s12v1, v2j−1b

2j−1
2 , b2j−1

2i b2j−1
2i+2 , b2j−1

k−4 b2j1 , b2j2i−1b
2j
2i+1, s2j1 v2j+1,

b2jk−5v2j+1, v2l+1s
2l+1
2 : 1 ≤ i ≤ k − 6

2
, 1 ≤ j ≤ m

2
, 1 ≤ l ≤ m− 2

2

}
E(H2) =

{
b11s

1
1, b2j−1

2i−1 b
2j−1
2i+1 , v2jb

2j−1
k−5 , s2j−1

1 v2j , v2js
2j
2 , v2jb

2j
2 , b2lk−4b

2l+1
1 ,

b2j2i b
2j
2i+2, s

m
2 bmk−4 : 1 ≤ i ≤ k − 6

2
, 1 ≤ j ≤ m

2
, 1 ≤ l ≤ m− 2

2

}
.

Note that if k = 6, then i runs over an empty range which means that the edges
defined in terms of i will be absent from both edge sets. This understanding shall
prevail throughout the proof where such instances occur. Neighborhood graph H
of C6

12,3 can be observed in Figure 12.
One can verify that the neighborhood graph H of G is actually a (disjoint)

union of two graphs H1 and H2, where |V (H1)| = m(k−1)
2 + 1, |V (H2)| = m(k−1)

2

and moreover, H1 is of the type P+
m(k−3)+6

2 ,m−2
2

. We keep in mind that H2 is only

marginally different from H1 in the sense that after the removal of edges b11s
1
1 and

bmk−4s
m
2 ; H2 is of the type P+

m(k−3)
2 ,m2

. In view of Theorem 3.3 it is possible to

label the vertices of H1 with the help of m(k−1)
2 + 1 consecutive integers starting
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Figure 12. Neighborhood graph H of C6
12,3 with a prime labeling

with m(k−1)
2 + 1 and ending with m(k − 1) + 1, such that any two adjacent ver-

tices of H1 get relatively prime labels. Thus, we are done if, we show that the

graph H2 can be labeled with first m(k−1)
2 positive integers in such a way that

any two adjacent vertices of H2 get relatively prime labels. For this, we consider
the three subgraphs of H2 say H1

2 , H
2
2 and H3

2 which are induced (respectively)
by the three disjoint sets of vertices S1 = {v2, b11, b13, . . . , b1k−7, b

1
k−5, s

1
1, s

2
2}, S2 =

{vm, bm2 , bm4 , . . . , bmk−6, b
m
k−4, s

m−1
1 , sm2 } and S3 = V (H2) − S, where S = S1

⋃
S2.

Note that H1
2 , H

2
2 and H3

2 can also be understood as the three connected compo-
nents of the graph H2 obtained on removal of the two edges v2b

2
2 and bm−1

k−5 vm.
Define the labels of vertices of the set S1 ∪ S2 by

f(b12i−1) =
k

2
− i, 1 ≤ i ≤ k − 4

2
,

f(s11) =
k

2
,

f(s22) =


k

2
+ 1, if

k

2
is odd;

k

2
+ 2, if

k

2
is even,

f(v2) =


k

2
+ 2, if

k

2
is odd;

k

2
+ 1, if

k

2
is even,

f(bm2i) =
m(k − 1)

2
− k

2
+ i, 1 ≤ i ≤ k − 4

2
,

f(sm2 ) =
m(k − 1)

2
− 1,

f(sm−1
1 ) =

m(k − 1)

2
,

f(vm) = 1.
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We have assigned the labels to the vertices of sets S1 and S2 with the help of two
sets of integers{

2, 3, . . . ,
k

2
+ 1,

k

2
+ 2
}

∪
{

1,
m(k − 1)

2
− k

2
+ 1,

m(k − 1)

2
− k

2
+ 2, . . . ,

m(k − 1)

2
− 1,

m(k − 1)

2

}
.

The intermediate set of consecutive integers
{

k
2 + 3, k

2 + 4, . . . , m(k−1)
2 − k

2

}
can

be used to label all the vertices of the set S3 as per the following rule. We observe
that the subgraph H3

2 of H2 which is induced by the vertices of the set S3 is P+
n,r

(where n = (m − 2)(k−4
2 ) + m

2 − 2 and r = m
2 − 2) with end vertices as b22 and

bm−1
k−5 . So for u ∈ S3, we may define f(u) as per Theorem 3.3 so that f(b22) = k

2 +3

and f(bm−1
k−5 ) = m(k−1)

2 − k
2 and any two adjacent vertices in S3 get relatively

prime labels. Keeping in mind that f(v2) and f(b22) are always relatively prime
(being consecutive or consecutive odd integers) and that f(bm−1

k−5 ) and f(vm) are
relatively prime (as f(vm) = 1); it is not difficult to verify that f as defined above
is a prime labeling on H2 and so we are done in the case m is even.

Subcase (ii): m is odd.
In this case notice that E(H) = E(H1) ∪ E(H2), where

E(H1) =
{
s12v1, v2j−1b

2j−1
2 , b2j−1

2i b2j−1
2i+2 , b

2l−1
k−4 b

2l
1 , b2l2i−1b

2l
2i+1, b2lk−5v2l+1, s2l1 v2l+1,

v2l+1s
2l+1
2 , sm2 bmk−4 : 1 ≤ i ≤ k − 6

2
, 1 ≤ j ≤ m + 1

2
, 1 ≤ l ≤ m− 1

2

}
E(H2) =

{
b11s

1
1, b2j−1

2i−1 b
2j−1
2i+1 , b2j−1

k−5 v2j , s2j−1
1 v2j , v2ls

2l
2 , v2lb

2l
2 , b2l2ib

2l
2i+2,

b2lk−4b
2l+1
1 : 1 ≤ i ≤ k − 6

2
, 1 ≤ j ≤ m + 1

2
, 1 ≤ l ≤ m− 1

2

}
.

Neighborhood graph H of C5
14,3 is as in Figure 13.

Figure 13. Neighborhood graph H of C5
14,3 with a prime labeling
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The graph H is once again a (disjoint) union of two graphs H1 and H2 with

|V (H1)| = |V (H2)| = m(k−1)+1
2 . In fact, here H1 and H2 are isomorphic graphs.

Moreover, if the edges bmk−4s
m
2 and b11s

1
1 are removed from the graphs H1 and

H2, respectively then both these graphs are of type P+
n,r with n = m(k−3)+3

2 and

r = m−1
2 . We describe a method to label the vertices of H1 and H2 by considering

the two induced subgraphs of each of these two graphs and conclude that this
method results into prime labeling of H.

First consider the two subgraphs of H2 say H1
2 and H2

2 which are induced by
the two disjoint sets of vertices S1

2 = {v2, b11, b13, . . . , b1k−7, b
1
k−5, s

1
1, s

2
2} and S2

2 =

V (H2) − S1
2 , respectively. H1

2 and H2
2 can be understood as the two connected

components of H2 obtained after the removal of the edge v2b
2
2.

We label the vertices of H1
2 using the integers 2, 3, . . . , k

2 + 2 as follows:

f(b12i−1) =
k

2
− i; 1 ≤ i ≤ k − 4

2
,

f(s11) =
k

2
,

f(s22) =


k
2 + 1, if

k

2
is odd;

k
2 + 2, if

k

2
is even,

f(v2) =


k

2
+ 2, if

k

2
is odd;

k

2
+ 1, if

k

2
is even.

It is easily seen that any two adjacent vertices of H1
2 have relatively prime labels

under this f . Now, H2
2 is of the type P+

n,r (with n = m(k−3)−k+5
2 and r = m−3

2 )

with end vertices as b22 and sm1 . Hence the vertices of H2
2 are labeled under f using

the integers k
2 + 3, k

2 + 4, . . . , m(k−1)+1
2 + 1 as per Theorem 3.3. Consequently any

two adjacent vertices of H2
2 have relatively prime labels and moreover f(b22) = k

2+3.

Now consider the two subgraphs of H1 say H1
1 and H2

1 which are induced
by two disjoint sets of vertices S1

1 = {vm, bm2 , bm4 , . . . , bmk−6, b
m
k−4, s

m−1
1 , sm2 } and

S2
1 = V (H1) − S1

1 , respectively. H1
1 and H2

1 can be understood as the two con-
nected components of H1 after the removal of the edge bm−1

k−5 vm. We label the

vertices of H1
1 using the integer 1 along with consecutive integers m(k−1)− k

2 +2,

m(k − 1)− k
2 + 3 . . . ,m(k − 1) + 1 as follows:

f(bm2i) = m(k − 1)− k

2
+ 1 + i; 1 ≤ i ≤ k − 4

2
,

f(sm2 ) = m(k − 1),

f(sm−1
1 ) = m(k − 1) + 1,

f(vm) = 1.
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Note that any two adjacent vertices of H1
1 have relatively prime labels under f .

Now, H2
1 is of the type P+

n,r (with n = m(k−3)−k+5
2 and r = m−3

2 ) with end

vertices as s12 and bm−1
k−5 . Hence the vertices of H2

1 are labeled under f using

the consecutive integers m(k−1)+1
2 + 2, m(k−1)+1

2 + 3, . . . ,m(k − 1)− k
2 + 1 as per

Theorem 3.3. As a result any two adjacent vertices of H2
1 have relatively prime

labels and moreover f(bm−1
k−5 ) = m(k − 1) − k

2 + 1. Finally, f(u) is now defined
for all vertices of the graph H1

⋃
H2 = H. In view of the above arguments and

the fact that gcd(f(v2), f(b22)) = 1 = gcd(f(vm), f(bm−1
k−5 )), we conclude that f is

a prime labeling on H.
Case 2: k is odd.

We shall assume that k ≥ 9 and later comment on the case k = 7 (this is the
minimum value for odd k).
If k is odd, then the edge set of the neighborhood graph H of G as described in
(3.1) is given by

E(H) =
{
vjb

j
2, b

j
2ib

j
2i+2, bjk−5vj+1, sj1vj+1, sj2vj , s11b

1
1, sm2 bmk−4, b

j
2l−1b

j
2l+1,

brk−4b
r+1
1 : 1 ≤ i ≤ k − 7

2
, 1 ≤ j ≤ m, 1 ≤ l ≤ k − 5

2
, 1 ≤ r ≤ m− 1

}
.

Neighborhood graph H of C6
9,3 is as in Figure 14.

Figure 14. Neighborhood graph H of C6
9,3 with a prime labeling

We split the vertex set V (H) into sets S1 and S2 as

S1 =
{
bq2i, b

j
2l−1, v1, v2, vm, vm+1, s

1
1, s

1
2, s

2
2, s

m−1
1 , sm1 , sm2 : 1 ≤ i ≤ k − 5

2
,

1 ≤ l ≤ k − 3

2
, 1 ≤ j ≤ m and q = 1,m

}
∪ {b22}

and

S2 = V (H)− S1 =
{
bj2i, vr, s

2
1, s

m−1
2 sqp : 1 ≤ i ≤ k − 5

2
, 3 ≤ r ≤ m− 1,

2 ≤ j ≤ m− 1, 3 ≤ q ≤ m− 2 and p = 1, 2
}
− {b22}.
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The reason for this type of division is to see that the subgraph induced by S2

is of the type P+
n,r (for some n and r) and so assigning labels to the vertices of S2

shall be easy. We assign the labels to the vertices of S1 as follows:

f(vm) = 1, f(b22) = 2,

f(s12) = 3, f(v1) = 4,

f(b12i) = 4 + i, 1 ≤ i ≤ k − 5

2
,

f(v2) =


k + 5

2
, if

k − 1

2
is even;

k + 7

2
, if

k − 1

2
is odd.

f(s22) =


k + 7

2
, if

k − 1

2
is even;

k + 5

2
, if

k − 1

2
is odd.

f(s11) =
k + 9

2
,

f(bj2l−1) =
k + 9

2
+ (j − 1)

(k − 3

2

)
+ l, 1 ≤ l ≤ k − 3

2
1 ≤ j ≤ m,

f(sm2 ) = f(bmk−4) + 1,

f(sm−1
1 ) = f(sm2 ) + 1,

f(bm2i) = f(sm−1
1 ) + i, 1 ≤ i ≤ k − 5

2
,

f(vm+1) = f(bmk−5) + 1,

f(sm1 ) = f(vm+1) + 1 =
m(k − 3)

2
+ k + 6.

Clearly, if u and w are any two adjacent vertices from the set S1 which are
different from vm and b22, then the gcd of their labels is always 1 because they are
either consecutive or consecutive odd integers. Also if u or w is vm then the same is
true as f(vm) = 1. Finally, if u = b22, then (within the set S1) it is adjacent to only
v2, which is assigned an odd label whereas f(b22) = 2 and so in this way any two
arbitrary vertices in S1 get relatively prime labels and further, these labels come

from the set
{

1, 2, . . . , m(k−3)
2 + k + 6

}
. Now the subgraph of H which is induced

by the vertices from the set S2 is of the type P+
n,r (where n = m(k−3)

2 − k + 1 and

r = m− 3) with end point vertices as b2k−5 and bm−1
k−5 . So, we label the vertices of

P+
n,r with consecutive integers m(k−3)

2 + k + 7, m(k−3)
2 + k + 8, . . . ,m(k− 1) + 1 as

per Theorem 3.3 (but in the direction bm−1
k−5 to b2k−5) so that f(bm−1

k−5 ) = m(k−3)
2 +
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k + 7 and f(b2k−5) = m(k − 1) + 1. Thus, so far, we have shown that any two
adjacent vertices within the two subgraphs induced by the set of vertices S1 and
S2 have relatively prime labels under f and moreover, the labels come from the
set {1, 2, . . . ,m(k− 1) + 1}. Hence, in order to conclude that f is a prime labeling
on H, we just have to verify that if a vertex of S1 is adjacent to a vertex of S2 in
the graph H, then they have relatively prime labels. But there are only two such
pairs of vertices. One is u1 = b22, w1 = b2k−5 and the other is u2 = vm, w2 = bm−1

k−5 .

But f(vm) = 1, f(w2) = m(k−3)
2 + k + 7, f(b22) = 2 and f(b2k−5) = m(k − 1) + 1 is

an odd integer (as k is odd) and hence

gcd(f(u1), f(w1)) = 1 = gcd(f(u2), f(w2)).

So f is a prime labeling on H for k ≥ 9.
If k = 7 and further m = 3, then one has to observe that the set S2 is an
empty set now and so, we need to label the vertices of S1 only. But this is
done precisely as in the case k ≥ 9 and, we get through. Finally, if k = 7 and
m > 3, then the edge set E(H) misses out the edges of the form bj2ib

j
2i+2 and

consequently, the vertex b22 is adjacent to v3. As a result, the graph induced by
S2 is of the type P+

n,r (where n = 2(m − 3) and r = m − 3), with end point

vertices as v3 and bm−1
2 . Once again, label the vertices of S1 as before and the

vertices of the graph P+
n,r as per Theorem 3.4 with the help of consecutive integers

2m+ 14, 2m+ 15, . . . , 6m, 6m+ 1 so that f(v3) = 6m+ 1 and f(bm−1
2 ) = 2m+ 14.

Using the fact that gcd(f(b22), f(v3)) = gcd(2, 6m+ 1) = 1, it may be verified that
f defines a prime labeling on H in this case also and so, we are done. �

4. Conclusion

We have shown that Cm
k is neighborhood-prime iff either k 6≡ 2 (mod 4) or m 6≡ 1

(mod 4). Further, it is shown that the general snake graphs Cm
k,q are neighborhood-

prime for q = 2, 3. Investigating similar results for higher values of q seems to be
very challenging and a good scope for future work in this direction.
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