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A NOTE FOR COMPACT OPERATORS

ON INFINITE TENSOR PRODUCTS

M. SERTBAŞ and F. YILMAZ

Abstract. In this study, the compactness of the infinite tensor product of bounded

operators defined on the infinite tensor product of Hilbert Spaces has been inves-
tigated under some conditions. Also, we prove that some compact operators have

only point spectrum.

1. Introduction

The first definitions on infinite tensor product were given and studied by
J. von Neumann [12]. Several researchers later approached this subject from
a somewhat different viewpoint and established a coherent structure for dealing
with many similar concepts concerning operators, operator algebras, and func-
tionals [10, 11, 9, 13, 3, 4, 5]. H. Sahlmann et al. showed that the infinite
tensor product construction enables to give rigorous meaning to the infinite vol-
ume (thermodynamic) limit of the theory which has been out of reach so far in [15].
Moreover, Thiemann and Winkler applied the theory of the infinite tensor product
of Hilbert Spaces to quantum general relativity in their study [18], and Tepper
constructed the mathematical version of a physical film on which space-time events
can evolve by using the infinite tensor product of Hilbert spaces [17]. In order
to make the theory available for application physics, von Neumann’s method to
construct infinite tensor product of Banach spaces is extended [16].

Also, let x1 ∈ H1, x2 ∈ H2, and A1 ∈ B(H1), A2 ∈ B(H2) with H1 and H2

being Hilbert spaces, then the definitions of the single tensor product x1 ⊗ x2 ∈
H1 ⊗ H2 and the tensor product A1 ⊗ A2 on the tensor product space H1 ⊗ H2

is given and they have been considered variously by a number of authors, (see
[7, 8, 1, 14, 2] for further references). Also, compactness of A⊗B ∈ B(H1⊗H2)
was investigated by Zanni and Kubrusly [19], and Jinchuan [6].

What motivates us to this study is the studies [19] and [6] in the tensor product
space. In these studies, the compactness of the operator, which is defined by
the tensor product of two operators, is associated with the compactness of the
component operators on the tensor product space. Unfortunately, when we look
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in the literature that deals with in infinite tensor product space, we can not see
any results this problem.

In this paper, Hn and (· , ·)n are separable complex Hilbert spaces and inner
products on Hn, for all n ∈ N, respectively. Also, all linear bounded operators
space on Hn are denoted by B(Hn).

In this study, it is mentioned firstly that the infinite tensor product space of
Hilbert spaces Hn denoted by ⊗c

n∈N
Hn, which was established by giving the defi-

nition of ⊗x, including Hn, separable Hilbert space, is given the definition of the
infinite tensor product of An, denoted by ⊗

n∈N
An, on ⊗c

n∈N
Hn from [12] and [10].

Secondly, the necessary conditions are investigated for this operator to be compact.

2. Preliminaries

First of all, for any complex numbers sequence {zn}, the infinite product
∏+∞

n=1 zn
is said to converge to the number z ∈ C iff for all ε > 0, there exists n0(δ) ∈ N
for all n ≥ n0, n ∈ N, |

∏n
k=1 zk − z| < ε, and is quasi-convergent if

∏∞
n=1 |zk|

converges. In this case, the value of
∏∞

n=1 |zk| is equal
∏∞

n=1 zk if
∏∞

n=1 zk is even
convergent and equal to zero otherwise.

Let xn ∈ Hn for all n ∈ N. Then, is shown by ⊗x that

⊗x := ⊗
n∈N

xn := x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ · · · .

Similarly, for α ∈ C, x
(i)
n , xn, yn ∈ Hn, and n, i ∈ N, the following notations

α⊗x := α ⊗
n∈N

xn := x1 ⊗ x2 ⊗ · · · ⊗ xi−1 ⊗ αxi ⊗ xi+1 · · · ⊗ xn ⊗ · · · ,(
⊗1

x + · · ·+⊗i
x

)
(y1, y2, . . . ) =

(
⊗

n∈N
x(1)n + ⊗

n∈N
x(2)n + · · ·+ ⊗

n∈N
x(i)n

)
(y1, y2, . . . )

= ⊗
n∈N

x(1)n (y1, y2, . . . ) + ⊗
n∈N

x(2)n (y1, y2, . . . )

+ · · ·+ ⊗
n∈N

x(i)n (y1, y2, . . . )

are used.
Let xn ∈ Hn for all n ∈ N. Then, the infinite singular tensor product ⊗x =

⊗n∈N xn = x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ . . . means that

⊗x (y1, y2, . . . ) = ⊗
n∈N

xn (y1, y2, . . . ) :=
∏
n∈N

(xn, yn)n

for every (y1, y2, . . . ) ∈ ×n∈NHn. Similarly, scalar multiplication of ⊗x and sum
of a finite number of ⊗i

x, i ∈ N are defined by

α⊗x (y1, y2, . . . ) = α ⊗
n∈N

xn (y1, y2, . . . ) =

i−1∏
n=1

(xn, yn)n (αxi, yi)i

∞∏
n=i+1

(xn, yn)n
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and(
⊗1

x+⊗2
x+. . .+⊗i

x

)
(y1, y2, . . . ) =

(
⊗

n∈N
x(1)n + ⊗

n∈N
x(2)n +. . .+ ⊗

n∈N
x(i)n

)
(y1, y2, . . . )

= ⊗
n∈N

x(1)n (y1, y2, . . . ) + · · ·+ ⊗
n∈N

x(i)n (y1, y2, . . . )

=
∏
n∈N

(
x(1)n , yn

)
n

+
∏
n∈N

(
x(2)n , yn

)
n

+· · ·+
∏
n∈N

(
x(i)n , yn

)
n
,

respectively.
The set of formed by all finite sum of infinite singular tensor products with

convergent condition by ⊗c
n∈NHn, is such that

⊗c

n∈N
Hn :=

{ k∑
i=1

⊗i
x : ⊗i

x = ⊗
n∈N

x(i)n , x(i)n ∈ Hn, n, k ∈ N, 1 ≤ i ≤ k,

∏
n∈N
‖x(i)n ‖n is convergent

}
.

It can be seen that ⊗c

n∈N
Hn is a linear vector space with scalar multiplication

and sum of two elements are defined by

α · ⊗x := α⊗x,

k∑
i=1

⊗i
x +

m∑
i=1

⊗i
y :=

k+m∑
i=1

⊗i
x

for all k + 1 ≤ i ≤ k +m, ⊗i
x = ⊗i−k

y , respectively. Also, it is obviously seen that

its zero is ⊗0 := x
(0)
1 ⊗ x

(0)
2 ⊗ . . . such that

∏
n∈N
‖x(0)n ‖n = 0 for every x

(0)
n ∈ Hn,

for all n ∈ N.

Lemma 2.1. For arbitrary ⊗x ∈ ⊗c
n∈NHn such that ⊗x 6= 0, the set defined

by

⊗c
x

n∈N
Hn :=

{ k∑
i=1

⊗i
y ∈ ⊗c

n∈N
Hn : ⊗i

y = ⊗
n∈N

y(i)n , y(i)n ∈ Hn, n, k ∈ N, 1 ≤ i ≤ k

and
∏
n∈N

(
xn, y

(i)
n

)
n

is convergent

}
is a linear subspace of ⊗c

n∈N
Hn.

Proposition 2.1. Let ⊗x,⊗y,⊗z ∈ ⊗c

n∈N
Hn be such that all of them are not

equal to zero. Then the following statements hold:

a) ⊗x ∈ ⊗c
x

n∈N
Hn.
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b) If ⊗y ∈ ⊗c
x

n∈N
Hn, then ⊗x ∈ ⊗c

y
n∈N

Hn.

c) If ⊗y ∈ ⊗c
x

n∈N
Hn and ⊗z ∈ ⊗c

y
n∈N

Hn, then ⊗z ∈ ⊗c
x

n∈N
Hn.

d) Let ⊗y and ⊗z ∈ ⊗c
x

n∈N
Hn.

∏
n∈N

(yn, zn)n =0 if and only if some (yn, zn)n =0.

e) If ⊗y ∈ ⊗c
x

n∈N
Hn and ⊗z /∈ ⊗c

x
n∈N

Hn, then
∏
n∈N

(yn, zn)n = 0.

Proof. It can be seen in [12, Definition 3.3.2, Lemma 3.3.3, and Theorem I]. �

Lemma 2.1 and Proposition 2.1 are useed in the proof of the next Lemma 2.2.

Lemma 2.2. ⊗c

n∈N
Hn is a pre-Hilbert space with the inner product defined by

(· , ·)c : ⊗c

n∈N
Hn × ⊗c

n∈N
Hn −→ C,

(2.1)

( k∑
i=1

⊗i
x ,

m∑
j=1

⊗j
y

)
c

=

k∑
i=1

m∑
j=1

∏
n∈N

(
x(i)n , y(j)n

)
n
.

(for details see in [12, Lemma 3.3.2, Lemma 3.4.1, and Lemma 3.4.3]).

Proposition 2.2. If dimHn ≥ 1, then dim⊗c
n∈NHn = ∞, and moreover, it

is nonseparable.

Definition 1. We denote by⊗n∈NHn the Cauchy-completion of the pre-Hilbert
space ⊗c

n∈NHn.

Theorem 2.1 ([10]). Let An ∈ B (Hn) for all n ∈ N and
∏

n∈N ‖An‖ be
convergent, then the infinite tensor product of An, which is denoted by ⊗n∈NAn

on ⊗
n∈N

Hn, can be defined by

⊗
n∈N

An : ⊗
n∈N

Hn −→ ⊗
n∈N

Hn,

⊗
n∈N

An

( k∑
i=1

⊗i
x

)
:=

k∑
i=1

(
⊗

n∈N
An

)
⊗i

x :=

k∑
i=1

⊗
n∈N

Anx
(i)
n ,

and ⊗n∈NAn ∈ B
(
⊗n∈NHn

)
. Finally, its norm is∥∥∥ ⊗
n∈N

An

∥∥∥ =
∏
n∈N
‖An‖.

Proposition 2.3. Let α, β ∈ C and An, Bn, A
(1)
n , A

(2)
n be linear operators on

Hn for all n ∈ N. The following identities are true:

a) αβ ⊗
n∈N

An = A1 ⊗ · · · ⊗ βAj ⊗ · · · ⊗ αAi ⊗ . . . , for arbitrary i, j ∈ N.

b) A1 ⊗ · · · ⊗
(
A

(1)
n +A

(2)
n

)
⊗ . . .

=
(
A1 ⊗ · · · ⊗A(1)

n ⊗ . . .
)

+
(
A1 ⊗ · · · ⊗A(2)

n ⊗ . . .
)

.
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Proposition 2.4 ([10]). Let An ∈ B (Hn) for all n ∈ N, and ⊗n∈NAn ∈
B
(
⊗n∈NHn

)
. Also, A−1n and A∗n are inverse and adjoint of An for all n ∈ N,

respectively. Then, the following identities hold:

a) ⊗
n∈N

(AnBn) =
(
⊗

n∈N
An

)(
⊗

n∈N
Bn

)
.

b) If An is invertible and
∏
n∈N
‖A−1n ‖n < +∞, then ⊗

n∈N
An is invertible and(

⊗
n∈N

An

)−1
= ⊗

n∈N
A−1n .

c)
(
⊗

n∈N
An

)∗
= ⊗

n∈N
A∗n.

3. Compact operators

Theorem 3.1. Let ⊗i∈NA
(n)
i be an operator sequence in B

(
⊗i∈NHi

)
such

that A
(n)
i = Ai for i ∈ N r {k1, k2, . . . , km}. If the sequences {A(n)

i } converge to

Ai for all i ∈ {k1, k2, . . . , km}, then the operator sequence ⊗i∈NA
(n)
i converges to

⊗i∈NAi.

Proof. Suppose that ⊗i∈NA
(n)
i is in ∈ B

(
⊗c

i∈NHi

)
for all n ∈ N, defined by

A
(n)
i = Ai for i ∈ N r {1, 2}, and A

(n)
i ∈ B (Hi) for all i ∈ N. We note that this

assumption does not impair the generality of the theorem. If A
(n)
i → Ai for all

i ∈ {1, 2} as n→∞, then∥∥∥ ⊗
i∈N

A
(n)
i − ⊗

i∈N
Ai

∥∥∥ = ‖A(n)
1 ⊗A(n)

2 ⊗A3 ⊗ · · · −A1 ⊗A2 ⊗A3 ⊗ . . . ‖

=
∥∥∥((A(n)

1 −A1

)
⊗A(n)

2 ⊗A3 ⊗ . . .
)

+
(
A1 ⊗

(
A

(n)
2 −A2

)
⊗A3 ⊗ . . .

)∥∥∥
≤
∥∥∥(A(n)

1 −A1

)
⊗A2 ⊗A3 ⊗ · · · ⊗Ai ⊗ . . .

∥∥∥
+
∥∥∥A1 ⊗

(
A

(n)
2 −A2

)
⊗A3 ⊗ · · · ⊗Am ⊗ . . .

∥∥∥
=
∥∥∥A(n)

1 −A1

∥∥∥ ∞∏
i=2

∥∥∥A(n)
i

∥∥∥+ ‖A1‖
∥∥∥A(n)

2 −A2

∥∥∥ ∞∏
i=3

∥∥∥A(n)
i

∥∥∥
−→ 0 as n −→∞.

Consequently, it is obtained that the operator sequence ⊗i∈NA
(n)
i converges to

⊗i∈NAi. �

Lemma 3.1. Let {x(n)k } be a sequence in Hk for fixed k ∈ N and for all n ∈ N.

If the sequence ⊗n
x, defined by ⊗n

x := x1 ⊗ x2 ⊗ · · · ⊗ xk−1 ⊗ x(n)k ⊗ xk+1 ⊗ · · · ⊗
xi ⊗ · · · ∈ ⊗i∈NHi for all xi ∈ Hi and n , i ∈ N, converges in ⊗i∈NHi to ⊗x =
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x1 ⊗ x2 ⊗ · · · ⊗ xk−1 ⊗ xk ⊗ xk+1 ⊗ · · · ⊗ xi ⊗ · · · ∈ ⊗i∈NHi for all xi ∈ Hi, i ∈ N,

then {x(n)k } converges to xk in Hk.

Proof. Let ⊗n
x := x1⊗x2⊗ · · ·⊗xk−1⊗x(n)k ⊗xk+1⊗ · · ·⊗xi⊗ · · · ∈ ⊗

i∈N
Hi for

all i ∈ N, xi ∈ Hi, where k is a fixed natural number, and for all n ∈ N, x
(n)
k ∈ Hk.

If ⊗n
x converges to ⊗x = x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ · · · ∈ ⊗

i∈N
Hi, then

‖⊗n
x −⊗x‖ −→ 0 as n −→∞.

Because of the following equation

⊗n
x −⊗x =

(
x1 ⊗ · · · ⊗ x(n)k ⊗ xk+1 ⊗ . . .

)
− (x1 ⊗ · · · ⊗ xk ⊗ xk+1 ⊗ . . . )

= x1 ⊗ · · · ⊗
(
x
(n)
k − xk

)
⊗ · · · ⊗ xi ⊗ . . . ,

it is obtained that∥∥∥x1 ⊗ · · · ⊗ (x(n)k − xk
)
⊗ · · · ⊗ xi ⊗ . . .

∥∥∥ =
∥∥∥x(n)k − xk

∥∥∥
k

+∞∏
i=1
i 6=k

‖xi‖i.

From the last relation, it is seen that {x(n)k } converges to xk in Hk. �

Theorem 3.2. Let Ai ∈ B(Hi) for all i ∈ N and ⊗i∈NAi ∈ B (⊗i∈NHi). If
⊗n∈NAi is a nonzero compact operator, then Ai is a nonzero compact operator for
all i ∈ N.

Proof. Suppose that ⊗i∈NAi ∈ B (⊗i∈NHi) is a nonzero compact operator.
Thus, ⊗i∈NAixi 6= ⊗0 for some ⊗i∈N xi, and hence Aixi 6= 0 for all i ∈ N. Consider

an arbitrary bounded sequence {x(n)k } of vectors in Hk for a fixed number k ∈ N,

and a sequence {⊗n
x} defined by ⊗n

x = x1⊗· · ·⊗xk−1⊗x(n)k ⊗xk+1⊗· · ·⊗xi⊗ . . .
for all n, i ∈ N. Since {x(n)k } is bounded and

sup
n∈N
‖ ⊗n

x ‖ = sup
n∈N
‖x1 ⊗ · · · ⊗ xk−1 ⊗ x(n)k ⊗ xk+1 ⊗ · · · ⊗ xi ⊗ . . . ‖

= sup
n∈N

(
‖x(n)k ‖k

+∞∏
i=1
i6=k

‖xi‖i

)
=

+∞∏
i=1
i 6=k

‖xi‖i sup
n∈N
‖x(n)k ‖k,

{⊗n
x} is a bounded sequence. Moreover, when the operator ⊗i∈NAi is compact,

then there exists a subsequence ⊗mn
x of ⊗n

x such that (⊗i∈NAi)⊗mn
x converges in

⊗i∈NHi. Therefore, there exists an element yk in Hk and(
⊗
i∈N

Ai

)
⊗mn

x =
(
⊗
i∈N

Ai

)(
x1 ⊗ · · · ⊗ x(mn)

k ⊗ · · · ⊗ xk+1 ⊗ . . .
)

= A1x1 ⊗ · · · ⊗Akx
(mn)
k ⊗ · · · ⊗Aixi ⊗ . . .

−→ A1x1 ⊗ · · · ⊗ yk ⊗Ak+1xk+1 ⊗ . . . , as n→ +∞.
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Using the last result and Lemma 3.1, the subsequence {Akx
(mn)
k } is convergent

in Hk. This means that Ak is a compact operator. Similarly, it can be shown that
Ai is compact for all i ∈ N. �

Remark 3.1. The inverse of the last theorem, that is, if each component is
compact, it is generally not true that the tensor product of operators is compact.
For example, consider Hn := C2 and An := I (the identity operator) for all n ∈ N.
It is known that An is compact for all n ∈ N. However, the tensor product space
⊗n∈NHn has infinite dimension, and so the identity operator ⊗n∈N I on ⊗n∈NHn

is not compact operator.

Theorem 3.3. Let An be a compact operator for all n ∈ N such that
dim Range(Ai) ≥ 2 for all i ∈ {kn : n ∈ N} ⊂ N. If the operator ⊗n∈NAn is
compact on ⊗n∈NHn , then 0 ∈ σp(⊗n∈NAn).

Proof. If ⊗n∈NAn = 0, it is apparent. Suppose that ⊗n∈NAn is a nonzero
compact operator on ⊗n∈NHn and dim Range(An) ≥ 2 for all n ∈ N. This
assumption does not impair the generality of the theorem. In this case, there is
a nonzero element ⊗x = x1 ⊗ x2 ⊗ . . . in ⊗n∈NHn such that ⊗n∈NAn⊗x 6= 0.
Moreover, since dim Range(An) ≥ 2 for all n ∈ N, it can be found at least an
element ⊗y = y1 ⊗ y2 ⊗ · · · ⊗ yn ⊗ · · · ∈ ⊗n∈NHn such that (Anxn, Anxy)n = 0
for all n ∈ N, and specially chosen that ‖yn‖n = 1 and Anyn 6= 0. Now, we can
construct a bounded sequence in ⊗n∈NHn as follows

⊗n
x = x1 ⊗ · · · ⊗ xn−1 ⊗ yn ⊗ xn+1 ⊗ . . . .

Since ⊗n∈NAn is a compact operator, there is a ⊗(kn)
x subsequence such that

⊗i∈NAi⊗(kn)
x is convergent on B

(
⊗n∈NHn

)
. In addition, the following equality

holds∥∥∥ ⊗
n∈N

An ⊗
n∈N

x(kn)− ⊗
n∈N

An ⊗
n∈N

x(km)
∥∥∥2 =

( ‖Akn
ykn
‖2

‖Aknxkn
‖2

+
‖Akm

ykm
‖2

‖Akm
xkm
‖2
)∏
n∈N
‖Anxn‖2

for n 6= m. Since limn→+∞ ‖Anxn‖ = 1 and ⊗n∈NAn⊗(kn)
x is a Cauchy sequence,

it has to be such that limn→+∞ ‖Akn
ykn
‖ = 0. Hence,∥∥∥ ⊗

n∈N
An ⊗y

∥∥∥ =
∏
n∈N
‖Anyn‖n = 0

is obtained, and this means that 0 ∈ σp(⊗n∈NAn). �

Corollary 3.1. Let An be a compact operator for all n ∈ N such that
dim Range(Ai) ≥ 2 for all i ∈ {kn : n ∈ N} ⊂ N. If the operator ⊗n∈NAn is
compact on ⊗n∈NHn , then σ(⊗n∈NAn) = σp(⊗n∈NAn).
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