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FINITE DIFFERENCE SCHEMES

FOR A NONLINEAR BLACK-SCHOLES MODEL

WITH TRANSACTION COST AND VOLATILITY RISK

S. MASHAYEKHI and J. HUGGER

Abstract. Several nonlinear Black-Scholes models have been proposed to take

transaction cost, large investor performance and illiquid markets into account. One
of the most comprehensive models introduced by Barles and Soner in [4] considers

transaction cost in the hedging strategy and risk from an illiquid market. In this

paper, we compare several finite difference methods for the solution of this model
with respect to precision and order of convergence within a computationally feasible

domain allowing at most 200 space steps and 10000 time steps. We conclude that

standard explicit Euler comes out as the preferred explicit method and standard
Crank Nicolson with Rannacher time stepping as the preferred implicit method.

1. Introduction

The classical linear Black-Scholes model for option pricing assumes a complete
market without transaction cost, illiquidity or feedback issues like large investor
performance. Several nonlinear Black-Scholes models have been proposed in recent
years to deal with these inadequacies. Nonlinearity in the nonlinear Black-Scholes
models always arises from a nonlinear volatility function depending not only on
time t and underlying asset price S but also on the Greek Gamma, i.e., the second
derivative of the option price V (S, t) with respect to S. Hence the nonlinear
Black-Scholes model equation is
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−rV = 0, (S, t)∈(0, Smax)×(0, T )

with the following terminal and boundary Dirichlet conditions

(2) V (S, T ) = κ(S, T ), V (0, t) = κ(0, t), V (Smax, t) ' κ(Smax, t),

where we use the utility function

κ(S, t) =


max{S e−γ(T−t)−K e−r(T−t), 0} for the call option,
max{K e−r(T−t)−S e−γ(T−t), 0} for the put option,
B e−r(T−t)H(S −K) for the bet option.

(3)
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γ, σ and r are the dividend yield, volatility (on the underlying risky asset) and
market interest rate (on the riskfree asset), respectively, K is the Strike Price, H
the Heaviside function and Smax � K is the upper bound on the computational
domain in the S variable.

Two known“numerical issues” from the linear case are expected to carry over
to the nonlinear case:

First of all, many methods oscillate either around the strike price S = K or
around the upper bound for the computational domain S = Smax. One way to
eliminate such oscillations is to use a monotone method that cannot oscillate. Al-
ternatively oscillations near S = Smax are easily observed and removed simply by
increasing Smax, of course at the cost of an increase in computational time. Initiat-
ing methods oscillating around S = K by smaller timesteps (4 initial quartersteps
has been suggested as optimal) with a nonoscillating method tends to remove
the oscillations without decreasing the convergence rate of the oscillating method.
Most notable example is probably Crank-Nicolson with 4 initial quartersteps by
implicit Euler explored in [11].

The second “numerical issue” is the degradation in observed convergence order
caused by the singular terminal condition for options unless extremely small step-
sizes are used. Such stepsizes often lie outside what is computationally feasible.

In this article, we will investigate these two problems for a number of finite
difference schemes and one particular nonlinear model proposed by Barles and
Soner in [4].

The nonlinearity of the nonlinear case may provide “numerical issues” of its
own. Uniqueness of solution is typically an issue for nonlinear problems just as the
“nice” smoothening feature of linear heat conduction may be lost. Such nonlinear
features will not be dealt with here, but let us just note, that no practical problems
in this direction have been observed.

In section 2, we review the Barles and Soner model for nonlinear volatility. In
section 3, we present a number of different finite difference methods for the Barles
and Soner model. In section 4, we present some numerical results with the different
finite difference schemes for the Barles and Soner model. Finally in section 5, we
discuss our results and present the conclusions.

2. The Barles and Soner nonlinear volatility model

Barles and Soner [4] considers both transaction cost and risk from volatile port-
folios. They take an approach based on utility maximization which results in the
following adjustment of the volatility

σ2
BS

(
t, S,

∂2V

∂S2

)
= σ2
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Here a = κ2R, where κ is the “Leland transaction cost” (denoted µ in [4]) and
R is a risk aversion factor (denoted γ in [4]). Finally, Ψ(x) is the solution of the
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nonlinear ODE

Ψ′(x) =
Ψ(x) + 1

2
√
xΨ(x)− x

, x 6= 0(5)

with the initial condition Ψ(0) = 0. In appendix A of [4], the existence of a

unique continuous viscosity solution to this problem was shown. It was also shown
that Ψ ≥ 0, i.e., that the adjustment factor to σ2

0 is nonnegative for any argument
of Ψ. For the numerical experiments an unspecified explicit time stepping finite
difference scheme is used with small time steps near maturity (t = T ) and larger
time steps away from maturity. Lesmana and Wang [10] present an implicit first
order time stepping and upwind asset price stepping finite difference method that
we here denote ImpUp. Zhou et al [13] present a positivity-preserving scheme
that we denote PosPre. Both schemes are used to solve the Barles and Soner
model.

Note that σ0 — the volatility of the underlying asset — is assumed constant
and if we take σ(t, S, VSS) = σ0, we have the classical linear Black-Scholes model.

3. Finite Difference Schemes

Arenas et al [2] present a nonstandard explicit finite difference scheme for the
numerical pricing of options in an illiquid market modeled by Frey et al in [8],
[7] and [6]. González et al [9] then apply the same scheme for the parameterized
model by Bakstein and Howison [3]. The method is shown to be nonnegative,
nondecreasing, stable and consistent for both model problems. Here we consider
this method for solving the option pricing problem with the Barles and Soner model
(4–5) which has not previously been attempted. For short the method is denoted
NFDM and we compare to NFDM to ImpUp and PosPre, both previously used
to solve the Barles and Soner model. Finally, we compare two standard methods,
namely explicit first order in time and central second order in S denoted FtCS
and Crank-Nicolson denoted CN. CN is stabilized with “Rannacher time stepping”
(see [11]) — starting up with 4 quarter steps using the fully implicit first order
in time and second order in S “Implicit Euler” scheme — and hence the notation
CNR is used. Also we apply Kα-optimization to all 5 methods minimizing the
error by adjusting stepsizes so that the strike price K is situated in an optimal
position in the element that it resides in (see [11]).

The volatility function in (1) is then taken to be σBS from (4–5) and in order
to follow the original presentation dividend is not considered (γ = 0) and time is
reversed by replacing the time variable t by τ = T − t, and consequently V (S, t)
by U(S, τ). This transforms equation (1) into
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with σBS given by (4–5) whereas the terminal and boundary conditions (2) for V
are transformed into the obvious initial and boundary conditions for U

U(S, 0) = κ(S, T ), U(0, τ) = κ(0, T − τ), U(Smax, τ) ' κ(Smax, T − τ)(7)

with κ still given by (3).
We describe our 5 FDM’s using the following finite difference operators:
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where φ(h) = (e
√
rh−2 + e−

√
rh)/r = h2 + O(h4) and θ(k) = (1 − e−rk)/r =

k + O(k2). Noting that the initial and boundary conditions are the same for all
methods, our 5 FDM’s are described by their main update equations:
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PosPre is solving ûτ − 1
2σ

2
BSx

2ûxx = 0 arising from equation (6) through the
transformation x(S, τ) = erτ S and û(x, τ) = erτ U(S, τ) used in [13]. PosPre for
(6) is highly non-standard.

NFDM is explicit, i.e., has short computational time, but is only condition-
ally stable. It is non negative and non oscillating and has order of convergence
O(dt+ dS).

ImpUp is implicit, i.e., has long computational time, but is unconditionally
stable. It is non oscillating and has order of convergence O(dt+ dS).

PosPre is explicit, i.e., has short computational time, and is unconditionally
stable. It is non-negative and non-oscillating and has order of convergence O(dt+
dS2+ dt

dS2 ), and hence is only conditionally consistent with the condition dt
dS2 −→ 0
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as dt and dS go to zero, but the tough condition dt = O(dS4) in order not to lose
orders of convergence compared to the standard FtCS method.

FtCS is explicit, i.e., has short computational time, but is only conditionally
stable. It may oscillate (but in practice only around S = Smax) and has order of
convergence O(dt+ dS2).

CN is implicit, i.e., has long computational time, but is unconditionally stable.
It in not L-Stable and may oscillate (in practice both at S = K and at S = Smax)
and has order of convergence O(dt2 + dS2).

The proof of the properties of NFDM, FtCS and CN for the Barles and Soner
model will be presented elsewhere. The properties of ImpUp are shown in [10]
and the properties of PosPre are shown in [13].

4. Numerical Results

We reuse the parameter values from [10] γ = 0, r = 0.1, σ0 = 0.2, K = 40,
T = 1, Smax = 80 and B = 1. We compare results obtained with NFDM, Im-
pUp, PosPre, FtCS and CNR (see (8–9)) with these parameter values. For the
transaction cost parameter a, we consider the values 0 (linear Black-Scholes), 0.02
and 0.05 (considered in [10]) and also 0.1 and 0.4 (as extreme values). As it
turns out, Smax = 2K = 80 is sufficient to avoid oscillations in FtCS and CN at
S = Smax. Since in any case a computational domain including S ∈ [0, 2K] would
seem reasonable, the non-oscillatory methods provide no advantage when it comes
to reducing the size of the computational domain.

The first step in solving the Barles and Soner model is the solution of the
nonlinear ODE (5). This equation is solved in [1] with the ”ode45” solver in
MATLAB based on the well-known Ruge-Kutta-Fehlberg 45 scheme. Instead, we
follow the approach from [10] using an implicit exact solution derived in [5]. We
then use Maple’s fsolve command to find specific values of Ψ. The implicit exact
solution takes the form

√
|x| =


− sinh−1(

√
Ψ(x)√

Ψ(x) + 1
+
√
ψ(x) for x > 0,

− sin−1(
√
−Ψ(x)√

Ψ(x) + 1
−
√
−ψ(x) for x < 0.

(10)

We begin our numerical experiments by illustrating the effect of the transaction
cost parameter a on the initial option price at t = 0 that we compute with NFDM
for h = dS = 2, k = dt = 0.00078125 and a = 0, 0.02, 0.05, 0.1 and 0.4. The results
for the bet (digital call) option are very similar to those for the put and call which
are almost identical because of the put-call-parity. Hence we only show results for
the put option. In the top left of Figure 1, we show the option price V (S, 0) =
U(S, T ) for the put option and in the top right we show the difference between
the nonlinear put option solved by NFDM and the exact solution to the linear put
option (a = 0). Similarly, the bottom row shows the difference between two Greeks
for the nonlinear put option and the exact Greeks for the linear put option. The
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Figure 1. Nonlinear European Put option solved with NFDM for different transaction cost

parameters at time 0 and differentiated with second order finite differences. Top left: Numerical
option price. (Insert shows (S, V ) ∈ [30, 50]× [0, 11]). Top right: Numerical option price minus
exact option price in the linear case a = 0. Bottom left: Numerical option Delta minus exact

option delta in the linear case a = 0. Bottom right: Numerical option Gamma minus exact

option gamma in the linear case a = 0.

Greeks (Delta (∂V∂S (S, 0) = ∂U
∂S (S, T )) and Gamma (∂

2V
∂S2 (S, 0) = ∂2U

∂S2 (S, T ))) are
computed from the NFDM solution using second order finite differences. Note that
only for the case a = 0, (the curves marked by circles in Figure 1) the differences
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actually constitute a numerical error. For other values of a, the difference is only
used for scaling. Figure 1 shows that bigger transaction cost parameters cause
more extreme solution values without otherwise changing the overall picture. It
should be noted, however, that increasing the transaction cost parameter a heavily
influences the stability condition for NFDM. For dS = 2 and a ≤ 0.1 dt = 0.0125
is sufficient, whereas for a = 0.4, it has been necessary to take dt = 0.00078125 in
order to get a stable numerical solution. In Figure 2 we show the stability regions
for NFDM for a = 0.02 and a = 0.4, respectively, with the boundary consisting of
unstable points (dS,dt = 0.1 · 2−j) such that (dS, dt = 0.1 · 2−(j+1)) is stable. For
comparison we have included also the stability boundary for the classical FtCS.
The results indicate that explicit FDM’s become increasingly problematic with
increasing transaction cost parameter a. In order to maintain a reasonably sized
stability region within the computational domain, we compare the various methods
for a low transaction cost parameter a = 0.02 below.

Figure 2. Log-Log-Stability region for NFDM and FtCS with transaction cost parameter a =

0.02 (Left figure) and a = 0.4 (Right figure).

For a systematic comparison of the 5 finite difference methods we shall compute
base solutions (BasSol) with a series of meshes with dS ∈ [0.5, 8.0] and dt ∈
[0.0002, 0.1]. We need an estimate of the exact solution which is not known for the
nonlinear models. The estimate will be based on a Fine mesh reference solution
(RefSol) computed on a mesh with dS = 0.375 and dt ' 0.0001 which is finer
than the base meshes. The fine mesh is defined as our limit for computational
feasibility and takes several days to compute in our Maple setup. RefSol will
either be computed with the method itself or with the CNR method which is
found to be the better performing method for the linear problem (a = 0). (These
results will be presented elsewhere).

We consider the local error estimate E(S) = RefSol−BasSol at any nodal point
S ∈ [0, Smax] and at time t = 0 which is a time discretization point for all methods.
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Instead the S grid of RefSol is finer than that of BasSol and generally does not have
overlapping nodes. When nodes are not overlapping a linear interpolation between
the 2 closest neighbors is then performed resulting in a RefSol in the same nodal
points as BasSol. We also consider the global error estimate E∞ = maxS |E(S)|,
the maximum taken over all S-nodal points for BasSol.

The local error estimate E(S) with transaction cost parameter a = 0.02 at
time t = 0 and with CNR as reference method is shown in Figure 3 for step sizes
h = dS = 2 and k = dt = 0.0125. For this particular snapshot FtCS is providing

BetCall

Figure 3. Local estimated errors E(S) for nonlinear European option solved with NFDM,
ImpUp, PosPre, FtCS and CNR with dS = 2 and dt = 0.0125 for transaction cost pa-

rameter a = 0.02. The reference solution is computed with CNR for a fine mesh with

dS = 0.375 and dt = 0.00009765625. Left: Call option. (Insert shows FtCS and CNR with
(S,E(S)) ∈ [0, 80]× [−0.0055, 0.008]). Right: Bet option.

the smallest global error estimate, closely followed by CNR while NFDM, ImpUp
and PosPre are falling significantly behind. Note that the 10 times smaller E(S)
for the bet option than for the call option is countered by the 40 times smaller
maximal solution value for the bet (V bet

max = 1) than for the call (V call
max = 40).

For a more thorough investigation, the global error estimate is computed for
call and bet options for all 5 FDM’s, and for all BasSol using the FDM itself
for RefSol. A selection of convergence plots with logarithmic axes showing the
global error estimate E∞ for the call option solved with NFDM, PosPre, FtCS
and CNR, and for all BasSol are shown in Figure 4. The bet options are omitted
since they show very similar results. ImpUp is omitted since in the linear case
(a = 0) it shows a behavior very similar to CNR only with significantly bigger
errors (smaller order of convergence).

Since the exact solution is not known for the nonlinear options, we estimate
convergence orders based on the numerical solutions in two different ways: Ta-
bles 1–2 illustrate the convergence of the error eR ' CRq (not knowing whether
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log10(estimated NFDM error) log10(estimated PosPre error)

log10(estimated FtCS error) log10(estimated CNR error)

Figure 4. Global estimated errors E∞ for nonlinear European Call options when solved with

NFDM (top left), PosPre (top right), FtCS (bottom left) and CNR (bottom right) for transaction

cost parameter a = 0.02 at time t = 0. The reference solution is computed with NFDM, PosPre,
FtCS and CNR, respectively, for a fine mesh with dS = 0.375 and dt = 0.00009765625.

R is dS or dt) for NFDM, PosPre, FtCS and CNR when halving both step sizes in

each iteration so that Ratio = 2q =
|eh−eh/2|
|eh/2−eh/4|

. We obtain quadratic convergence

for FtCS and CNR, linear but decreasing order of convergence for NFDM and
sublinear but increasing order of convergence for PosPre. Clearly, neither NFDM
nor PosPre stabilize with respect to order of convergence within the computa-
tionally feasible domain. We also propose a more thorough approach focusing on
convergence order in both variables S and t simultaneously and utilizing data from
all BasSol in a weighted least squares approximation over all stable data points
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Table 1. Convergence results for the nonlinear call option solved with NFDM and FtCS.

Nodes NFDM FtCS
S t Error Difference Ratio Error Difference Ratio

10 320 0.969558 0.126505
20 640 0.362126 0.607432 0.032240 0.094265
40 1280 0.161670 0.200456 3.03 0.009176 0.023064 4.09
80 2560 0.090007 0.071663 2.80 0.002706 0.006470 3.56

160 5120 0.026759 0.063248 1.13 0.000986 0.001720 3.76

Table 2. Convergence results for the nonlinear call option solved with CNR and PosPre.

Nodes CNR PosPre
S t Error Difference Ratio Error Difference Ratio

10 320 0.127837 0.077035
20 640 0.032952 0.094885 0.075434 0.001601
40 1280 0.009476 0.023476 4.04 0.065135 0.010299 0.16
80 2560 0.002836 0.006640 3.53 0.040396 0.024739 0.42

160 5120 0.001026 0.001810 3.66 0.011714 0.028682 0.86

(dSi,dtj , (E∞)i,j) of the form

(11) min
a,b,α,β

∑
i,j

wi,j · ((E∞)i,j − (a · dSαi + b · dtβj ))2.

The stepsizes are recorded so that they decrease with increasing index, i.e.,
dSi+1 ≤ dSi and dtj+1 ≤ dtj , and the simple weight function wi,j = i · j putting
higher weight on smaller step sizes is applied. Obviously, selecting a different
weight function may change the results somewhat. Points where the error is in-
creasing with decreasing dS are omitted. In the least squares minimizations the
side conditions 0 ≤ a, 0 ≤ b, 0 ≤ α ≤ 2.5 and 0 ≤ β ≤ 2.5 are imposed. The
following convergence orders are computed. For the implicit PosPre and CNR the
results in the square braces [·] are for the “bubbles” for large dt and small dS (see
figure 4):

NFDM ECall
∞ = 0.067dS1.3 EBet

∞ = 0.012dS1.1

FtCS ECall
∞ = 0.002dS2.0 EBet

∞ = 0.008dS1.1(12)

CNR ECall
∞ = 0.002dS2.0 [0.089dt1.1] EBet

∞ = 0.007dS1.2

PosPre ECall
∞ = 0.058 [7.170dt0.5] EBet

∞ = ”Oscillating error”

The oscillating error for the PosPre bet is consistent with the conditional consis-
tency condition dt

dS2 −→ 0, indicating that smaller dt’s are required.
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We venture the following conclusions based on the graphs and the least squares
calculations: The implicit methods PosPre and CNR show convergence with de-
creasing dt of order 0.5 and 1.1, respectively, in the bubble. For the explicit
methods NFDM and FtCS, the bubbles are covered by the instability region. In
order to get errors below 0.001, smaller values of dS are required which is compu-
tationally infeasible. A better alternative to investigate is obviously mesh grading
the S-mesh, or some transformation method as suggested in [12] (ch. 11, for a
nonlinear jumping volatility model) but this is beyond the scope of the current ar-
ticle. For the call option FtCS and CNR show the expected quadratic convergence
with dS outside the bubble whereas NFDM only shows an order slightly above lin-
ear and PosPre shows no convergence at all. For the bet option both FtCS, CNR
and NFDM show orders of convergence in dS slightly above linear. The stability
area for FtCS is comparable to the one for NFDM (see Figure 2). Comparing
the methods clearly FtCS and CNR stand out above the rest, the choice being
whether to go for the fast computational times for the explicit FtCS, dealing with
the instability area increasing in size with the transaction cost parameter a and
reducing the usable area for the explicit methods to approximately 0 ≤ a ≤ 0.1, or
whether to accept the longer computational times of the implicit CNR, avoiding
the concerns about feasible dt–dS combinations for the implicit, absolutely stable
CNR.

5. Conclusions

The “classical Explicit Euler” is the better explicit method and the “classical with a
twist Crank-Nicolson with Rannacher time stepping” is the better implicit method
among the FDM’s tested on the Barles and Soner nonlinear Black-Scholes model.
The non-oscillating methods do not offer any enhancement of the performance
in the cases considered. The explicit methods suffer from an instability region
growing with the transaction cost parameter a rendering them somewhat useless
for a ≥ 0.1. None of the methods considered shows significant convergence with
dt — the error from the S-direction dominating except for the coarsest time step
sizes. Because of computer time limitations, the brute force solution (smaller
dS) seems out of reach pointing instead towards graded S-meshes as the obvious
solution to get in the ideal zone where the errors from t and S are balanced.
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