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NEW RESULTS ON THE SEQUENCE SPACES INCLUSION

EQUATIONS INVOLVING THE SPACES w∞ AND w0

B. DE MALAFOSSE

Abstract. Given any sequence a = (an)n≥1 of positive real numbers and any set

E of complex sequences, we write Ea for the set of all sequences y = (yn)n≥1 such

that y/a = (yn/an)n≥1 ∈ E, in particular, ca denotes the set of all sequences y
such that y/a converges. In this paper, we use the well known sets

w∞ =
{
y ∈ ω : sup

n

(
n−1

n∑
k=1

|yk|
)
<∞

}
and

w0 =
{
y ∈ ω : lim

n→∞

(
n−1

n∑
k=1

|yk|
)

= 0
}

called the spaces of strongly bounded and strongly summable to zero sequences by
the Cesàro method. Then we deal with the solvability of the (SSIE) of the form

w∞ ⊂ E + F ′x with F ′ = c0, s1, or w∞ and w0 ⊂ E + F ′x with F ′ = c0, c,

s1, or w∞, where E is a linear space of sequences. We apply these results to the
solvability of each of the (SSIE) w∞ ⊂ w0 +F ′x, w∞ ⊂ bvp+F ′x, w∞ ⊂ (c0)Rt +F ′x,

w∞ ⊂ (c0)C(λ) + F ′x with F ′ ∈ {c0, s1, w∞}. These results extend some of those

stated in [18, 15].

1. Introduction

We write ω for the set of all complex sequences y = (yn)n≥1, `∞, c, and c0
for the sets of all bounded, convergent, and null sequences, respectively, also
`p = {y ∈ ω :

∑∞
n=1 |yn|p <∞} for 1 ≤ p < ∞. If y, z ∈ ω, then we write

yz = (ynzn)n≥1. Let U = {y ∈ ω : yn 6= 0} and U+ = {y ∈ ω : yn > 0}. We write
z/u = (zn/un)n≥1 for all z ∈ ω and all u ∈ U , in particular, 1/u = e/u, where e

is the sequence with en = 1 for all n. Finally, if a ∈ U+ and E is any subset of
ω, then we put Ea = (1/a)

−1 ∗ E = {y ∈ ω : y/a ∈ E}. Let E and F be subsets

of ω. In [5], the sets sa, s0
a, and s

(c)
a were defined for positive sequences a by

(1/a)
−1 ∗ E and E = `∞, c0, c, respectively. In [6], the sum Ea + Fb and the

product Ea ∗ Fb were defined, where E, F are any of the symbols s, s0, or s(c).
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Then, in [9], we determined the solvability of sequences spaces inclusion equa-
tions Gb ⊂ Ea + Fx where E, F , G ∈

{
s0, s(c), s

}
and some applications were

given to sequence spaces inclusions with operators. Recall that the spaces w∞
and w0 of strongly bounded and summable sequences are the sets of all y such
that

(
n−1

∑n
k=1 |yk|

)
n≥1

is bounded and tends to zero. These spaces were studied

by Maddox [4] and by Malkowsky, Rakočević, Başar and Altay (cf. [1, 2, 29]).
In [12, 22, 25], we gave some properties of well known operators defined on the

sets Wa = (1/a)
−1 ∗ w∞ and W 0

a = (1/a)
−1 ∗ w0. In this paper, we deal with

special sequence spaces inclusion equations (SSIE), (resp., sequence spaces equa-
tions (SSE)), which are determined by an inclusion, (resp., identity) for which
each term is a sum or a sum of products of sets of the form (Ea)T and

(
Ef(x)

)
T

,

where f maps U+ to itself, E is any linear space of sequences, and T is a triangle.
Some results on (SSE) and (SSIE) were stated in [7]–[20], [23, 24, 25, 27]. In
[11], we used the sets of analytic and entire sequences denoted by Λ and Γ, and
defined by supn≥1

(
|yn|1/n

)
< ∞ and limn→∞

(
|yn|1/n

)
= 0, respectively. Then

we dealt with the solvability of (SSE) of the form ET +Fx = Fb, where T is either
of the triangles ∆ or Σ, where ∆ is the operator of the first difference and Σ is
the operator defined by Σny =

∑n
k=1 yk for all sequences y. More precisely, we

gave a solvability of the (SSE) E∆ + Fx = Fb, where E is any of the sets c0, `p,
(p > 1), w0, or Λ, and F = c or `∞. Then, there is a solvability of the (SSE)
EΣ + Fx = Fb, where E is any of the sets c0, c, `∞, `p, (p > 1), w0, Γ, Λ, and
F = c or `∞. Finally, there is a solvability of the (SSE) ΓΣ + Λx = Λb.

Throughout this paper, we consider the (SSIE) F ⊂ Ea + F ′x, as a perturbed
inclusion equation of the elementary inclusion equation F ⊂ F ′x. In this way,
it is interesting to determine the set of all positive sequences a for which the
elementary and the perturbed inclusion equations have the same solutions. In
[18, 25], writing Dr for the diagonal matrix with (Dr)nn = rn, (r > 0), we dealt
with the solvability of the (SSIE) using the operator of the first difference ∆,
defined by c ⊂ Dr ∗ E∆ + cx with E = c0 or s1. Then we considered the (SSIE)

c ⊂ Dr ∗EC1 + s
(c)
x with E = c0, c or s1, and s1 ⊂ Dr ∗EC1 + sx with E = c or s1,

where C1 is the Cesàro operator defined by (C1)ny = (
∑n
k=1 yk) /n. In this paper,

we extend some results stated in [15], where we dealt with the class of (SSIE) of the
form F ⊂ Ea+F ′x, where F ∈ {c0, `p, w0, w∞} and E, F ′ ∈ {c0, c, `∞, `p, w0, w∞},
(p ≥ 1). We generalize the previous results with the study of (SSIE) of the form
w∞ ⊂ E + F ′x, with F ′ = c0, s1, or w∞ and w0 ⊂ E + F ′x with F ′ = c0, c, s1, or
w∞, where E is a more general space.

This paper is organized as follows. In Section 2, we recall some well-known
results on sequence spaces and matrix transformations. In Section 3, we recall
some results on the multipliers and on the relation RE associated with the identity
Fx = Fy for some sets F of sequences. In Section 4, we study the (SSIE) of the
form F ⊂ Ea+F ′x, where E, F , and F ′ are linear spaces of sequences. In Section 5,
we extend some results of Section 4, and we deal with the solvability of the (SSIE)
of the form w∞ ⊂ E + F ′x, w0 ⊂ E + F ′x, where E is a linear space. In Section 6,
we apply the results of Section 5 to the study the (SSIE) of the form w∞ ⊂ E+F ′x
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involving the sets w0, bvp, (c0)Rt , or (c0)C(λ). Then we give a resolution of the

(SSE) E + Wx = w∞, where E is a linear subspace of w0. Finally, we solve the
(SSIE) w∞ ⊂

(
s0
r

)
∆

+ F ′x for r > 0, where F ′ is any of the spaces c0, `∞, or w∞.

2. Preliminaries and notations

An FK space is a complete linear metric space, for which convergence implies
coordinatewise convergence. A BK space is a Banach space of sequences that
is a FK space. A BK space E is said to have AK if for every sequence y =
(yk)k≥1 ∈ E, y = limp→∞

∑p
k=1 yke

(k), where e(k) = (0, . . . , 0, 1, 0, . . . ), 1 being in
the k-th position.

Let R be the set of all real numbers. For any given infinite matrix A =
(ank)n,k≥1, we define the operators An = (ank)k≥1 for any integer n ≥ 1, by
Any =

∑∞
k=1 ankyk, where y = (yk)k≥1, and the series are assumed convergent for

all n. So, we are led to the study of the operator A defined by Ay = (Any)n≥1

mapping between sequence spaces. When A maps E into F , where E and F
are subsets of ω, we write A ∈ (E,F ), (cf. [4, 30]). It is well known that if
E has AK, then the set B(E) of all bounded linear operators L mapping in E,
with norm ‖L‖ = supy 6=0 (‖L(y)‖E/‖y‖E) satisfies the identity B(E) = (E,E).
For any subset F of ω, we write FA = {y ∈ ω : Ay ∈ F} for the matrix domain
of A in F . Then, for any given sequence u = (un)n≥1 ∈ ω, we define the di-
agonal matrix Du by [Du]nn = un for all n. It is interesting to rewrite the set
Eu using a diagonal matrix. Let E be any subset of ω and u ∈ U+, we have

Eu = Du ∗ E = {y = (yn)n≥1 ∈ ω : y/u ∈ E}. We use the sets s0
a, s

(c)
a , sa

and (`p)a defined as follows (cf. [5, 21]). For given a ∈ U+, and p ≥ 1, we

put Da ∗ c0 = s0
a, Da ∗ c = s

(c)
a , Da ∗ `∞ = sa, and Da ∗ `p = (`p)a. We fre-

quently write ca instead of s
(c)
a to simplify. Each of the spaces Da ∗ E, where

E ∈ {c0, c, `∞} is a BK space normed by ‖y‖sa = supn(|yn|/an) and s0
a has AK.

The set `p, (p ≥ 1) normed by ‖y‖`p = (
∑∞
k=1 |yk|p)

1/p
is a BK space with AK.

If a = (Rn)n≥1 with R > 0, then we write sR, s0
R, s

(c)
R , (or cR), and (`p)R for the

sets sa, s0
a, s

(c)
a , and (`p)a, respectively. We also write DR for D(Rn)n≥1

. When

R = 1, we obtain s1 = `∞, s0
1 = c0 and s

(c)
1 = c. Recall that S1 = (s1, s1) is a

Banach algebra and (c0, s1) = (c, s1) = (s1, s1) = S1. We have A ∈ S1 if and only
if supn (

∑∞
k=1 |ank|) <∞.

We also use the following known properties, where the infinite matrix T is said
to be a triangle if Tnk = 0 for k > n, and Tnn 6= 0 for all n.

Lemma 1. Let a, b ∈ U+, and let E, F ⊂ ω be any linear spaces. We have
A ∈ (Ea, Fb) if and only if D1/bADa ∈ (E,F ).

Lemma 2 ([7, Lemma 9, p. 45]). Let T ′ and T ′′ be any given triangles and
let E, F ⊂ ω. Then for any given operator T represented by a triangle, we have
T ∈ (ET ′ , FT ′′) if and only if T ′′T T ′−1 ∈ (E,F ).
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3. Some results on matrix transformations
and on the multipliers of special sets

In this section, we define the spaces of a-strongly bounded and a-strongly null
sequences by the Cesàro method. Then, we recall some results on the multipliers
of sequence spaces and consider the equivalence relation RE .

3.1. On the triangles C(λ) and ∆(λ), and the sets Wa and W 0
a .

For λ ∈ U , the infinite matrices C(λ) and ∆(λ) are triangles defined as follows. We
have [C(λ)]nk = 1/λn for k ≤ n, and the nonzero entries of ∆(λ) are determined
by ∆(λ)]nn = λn for all n, and [∆(λ)]n,n−1 = −λn−1 for all n ≥ 2. It can
be shown that the matrix ∆(λ) is the inverse of C(λ), that is, C(λ)(∆(λ)y) =
∆(λ)(C(λ)y) = y for all y ∈ ω. If λ = e, we obtain the well known operator of
the first difference represented by ∆(e) = ∆. We then have ∆ny = yn − yn−1 for
all n ≥ 1, with the convention y0 = 0. It is usually written Σ = C(e) and then we
may write C(λ) = D1/λΣ. Note that ∆ = Σ−1. The Cesàro operator is defined by
C1 = C ((n)n≥1). We use the sets of spaces of a-strongly bounded and a-strongly
null sequences by the Cesàro method defined for a ∈ U+ by

Wa =

{
y ∈ ω : sup

n

(
1

n

n∑
k=1

|yk|
ak

)
<∞

}
and

W 0
a =

{
y ∈ ω : lim

n→∞

(
1

n

n∑
k=1

|yk|
ak

)
= 0

}
,

(cf. [26, 22, 12]). We have Wa = {y ∈ ω : C1D1/a|y| ∈ s1}. If a = (rn)n≥1 with

r > 0, then the sets Wa and W 0
a are denoted by Wr and W 0

r . For r = 1, we obtain
the well-known sets w∞ = {y ∈ ω : ‖y|w∞ = supn(n−1

∑n
k=1 |yk|) < ∞} and

w0 =
{
y ∈ ω : limn→∞

(
n−1

∑n
k=1 |yk|

)
= 0
}

called the spaces of strongly bounded
and strongly null sequences by the Cesàro method (cf. [28]).

3.2. On the multipliers of some sets

First, we need to recall some well known results. Let y and z be sequences and let E
and F be two subsets of ω, then we write M (E,F )={y∈ω : yz ∈ F for all z∈E},
the set M(E,F ) is called the multiplier space of E and F . We use the next lemma.

Lemma 3. Let E, Ẽ, F , and F̃ be arbitrary subsets of ω. Then

(i) M(E,F ) ⊂M(Ẽ, F ) for all Ẽ ⊂ E.

(ii) M(E,F ) ⊂M(E, F̃ ) for all F ⊂ F̃ .

The α-dual of a set of sequences E is defined as Eα = M (E, `1), and the β-dual
of E is defined as Eβ = M (E, cs), where cs = cΣ is the set of all convergent series.

Lemma 4. Let a, b ∈ U+ and let E and F be two subsets of ω. Then we have
Da ∗ E ⊂ Db ∗ F if and only if a/b ∈M(E,F ).
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In the following, we use the notation E+ = E ∩ U+ for any subset E of ω.

Lemma 5. Let E, F be linear spaces of sequences and assume F satisfies the
next property.

(1) z ∈ F ⇐⇒ |z| ∈ F for all z ∈ ω.
Then M(E+, F ) = M(E,F ).

Proof. Let a ∈M(E+, F ). Then for every y ∈ E, we have a|y| ∈ F , and by the
condition in (1), this implies |a|y|| = |ay| ∈ F . Again, by the condition in (1), we
have ay ∈ F and a ∈ M(E,F ). So, we have shown M(E+, F ) ⊂ M(E,F ). Since
E+ ⊂ E, we have M(E+, F ) ⊃M(E,F ). This concludes the proof. �

In the following, we use the results stated below.

Lemma 6 ([15, Lemma 6, pp. 214–215]). Let p ≥ 1. We have:

(i) (a) M (c, c0) = M (`∞, c) = M (`∞, c0) = c0 and M (c, c) = c.
(b) M (E, `∞) = M (c0, F ) = `∞ for E, F = c0, c, or `∞.
(c) M (c0, `p) = M (c, `p) = M (`∞, `p) = `p.
(d) M (`p, F ) = `∞ for F ∈ {c0, c, s1, `p}.

(ii) (a) M (w0, F ) = s(1/n)n≥1
for F = c0, c, or `∞.

(b) M (w∞, c0) = M (w∞, c) = s0
(1/n)n≥1

.

(c) M (`1, w∞) = s(n)n≥1
and M (`1, w0) = s0

(n)n≥1
.

(d) M (E,w0) = w0 for E = s1 or c.
(e) M (E,w∞) = w∞ for E = c0, s1, or c.

Remark 7. By [24, Remark 3.4], we have M (w0, w∞) = M (w∞, w∞) = `∞.

3.3. The equivalence relation RE

We need to recall some results on the equivalence relation RE which is defined
using the multiplier of sequence spaces. For b ∈ U+ and for any subset E of ω,
we denote by clE(b) the equivalence class for the equivalence relation RE defined
by xREy if Ex = Ey for x, y ∈ U+. It can easily be seen that clE(b) is the set
of all x ∈ U+ such that x/b ∈ M(E , E) and b/x ∈ M (E , E), (cf. [27]). Then we
have clE(b) = clM(E,E)(b). For instance, clc(b) is the set of all x ∈ U+ such that

s
(c)
x = s

(c)
b . This is the set of all sequences x ∈ U+ such that xn ∼ Cbn (n→∞)

for some C > 0. We denote by cl∞(b) the class cl`∞(b). Recall that cl∞(b) is the
set of all x ∈ U+ such that K1 ≤ xn/bn ≤ K2 for all n and for some K1, K2 > 0.

4. On the (SSIE) of the form F ⊂ Ea + F ′x, where E, F , and F ′

are linear spaces of sequences

In this section, we are interested in the study of the set of all positive sequences
x that satisfy the inclusion F ⊂ Ea + F ′x, where E, F , and F ′ are linear spaces
of sequences and a is a positive sequence. We may consider this problem as a
perturbation problem. If we know the set M(F, F ′), then the solutions of the
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elementary inclusion F ′x ⊃ F are determined by 1/x ∈ M(F, F ′). Now, the
question is: Let E be a linear space of sequences. What are the solutions of the
perturbed inclusion F ′x + E ⊃ F? An additionnal question may be the following
one: What are the conditions on E under which the solutions of the elementary
and the perturbed inclusions are the same?

4.1. Some results on the solvability of some (SSIE)

The solutions of the perturbed inclusion F ⊂ Ea + F ′x, where E, F , and F ′ are
linear spaces of sequences cannot be obtained in the general case. So, we are
led to deal with the case when a = (rn)n≥1, r > 0, for which most of these

(SSIE) can be totally solved. In the following, we use the notation Ia (E,F, F ′) =
{x ∈ U+ : F ⊂ Ea + F ′x}, where E, F , and F ′ are linear spaces of sequences and
a ∈ U+. For any set χ of sequences, we let χ = {x ∈ U+ : 1/x ∈ χ}. We use the
set Φ = {c0, c, s1, `p, w0, w∞} with p ≥ 1. By c(1) we define the set of all sequences
α ∈ U+ that satisfy limn→∞ αn = 1. Then, we consider the condition

(2) G ⊂ G1/α for all α ∈ c(1),

for any given linear space G of sequences. Notice that condition (2) is satisfied
for all G ∈ Φ. In this part, we denote by U+

1 the set of all sequences α with
0 < αn ≤ 1 for all n. We consider the condition

(3) G ⊂ G1/α for all α ∈ U+
1 ,

for any given linear space G of sequences. Then, we introduce a linear space of
sequences H which contains the spaces E and F ′. The proof of the next theorem is
based on the fact that if H satisfies the condition in (3), then we have Hα +Hβ =
Hα+β for all α, β ∈ U+ (cf. [24, Proposition 5.1, pp. 599–600]). Notice that c
does not satisfy this condition, but each of the sets c0, `∞, `p, (p ≥ 1), w0, and
w∞ satisfies the condition in (3). So, we have for instance, s0

α + s0
β = s0

α+β . In

the following, we write M(F, F ′) = χ. The next result is used to determine some
classes of (SSIE).

Theorem 8 ([15, Theorem 9, p. 216]). Let a ∈ U+ and let E, F , and F ′ be
linear subspaces of ω. Assume

a) χ satisfies the condition in (2).
b) There is a linear space of sequences H that satisfies the condition in (3),

and conditions (α) and (β), where
(α) E, F ′ ⊂ H,
(β) M (F,H) = χ.
Then we have:

(i) a ∈M (χ, c0) implies Ia (E,F, F ′) = χ.

(ii) a ∈M (F,E) implies Ia (E,F, F ′) = U+.

As a direct consequence of the preceding, we obtain the following result.

Corollary 9 ([15, Corollary 10, p. 216]). Let a ∈ U+, let E, F , and F ′ be linear
subspaces of ω. Assume χ satisfies condition (2) and assume E ⊂ F ′, where F ′

satisfies the condition in (3). Then we have:
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(i) a ∈M (χ, c0) implies Ia (E,F, F ′) = χ,

(ii) a ∈M (F,E) implies Ia (E,F, F ′) = U+.

4.2. An application to the (SSIE) of the form w∞ ⊂ Ea + F ′x

In this part, we recall some results stated in [15], and we study the set Ia(E,w∞,s1)
of all the solutions of the (SSIE) w∞ ⊂ Ea + sx with E ∈ {c0, c, s1}. Then we
consider the (SSIE) w∞ ⊂ Ea+Wx with E ∈ {c0, s1, w∞}. We obtain the following
proposition.

Proposition 10 ([15, Proposition 17, p. 219]). Let a ∈ U+. We have:

(i) Let E be any of the spaces c0, c, or s1. Then
(a) The condition a ∈ s0

(n)n≥1
implies Ia (E,w∞, s1) = s(1/n)n≥1

.

(b) The identity Ia (E,w∞, s1) = U+ holds in the following cases:

(α) a ∈ s0
(1/n)n≥1

for E = c0 or c.

(β) a ∈ s(1/n)n≥1
for E = s1.

(ii) Let E be any of the spaces c0, `∞, or w∞. Then
(a) The condition a ∈ c0 implies Ia (E,w∞, w∞) = s1.
(b) The identity Ia (E,w∞, w∞) = U+ holds in the following cases:

(α) a ∈ s0
(1/n)n≥1

for E = c0.

(β) a ∈ s(1/n)n≥1
for E = s1. (γ) a ∈ s1 for E = w∞.

5. On the (SSIE) of the form w∞ ⊂ E + F ′x and w0 ⊂ E + F ′x

In this section, we state the main results where we deal with the solvability of the
(SSIE) of the form w∞ ⊂ E +F ′x, with F ′ = c0, s1, or w∞, and w0 ⊂ E +F ′x, with
F ′ = c0, c, s1, or w∞, where E is a linear space of sequences.

5.1. Solvability of the (SSIE) of the form w∞ ⊂ E + F ′x

Now we state a theorem which is an extension of Proposition 10.

Theorem 11. Let E be a linear space of sequences that satisfies E ⊂ s0
(n)n≥1

.

Then we have:

(i) The solutions of the (SSIE) w∞ ⊂ E + sx are determined by
I (E , w∞, s1) = s(1/n)n≥1

.

(ii) The solutions of the (SSIE) w∞ ⊂ E + s0
x are determined by

I (E , w∞, c0) = s0
(1/n)n≥1

.

(ii) The solutions of the (SSIE) w∞ ⊂ E +Wx are determined by
I (E , w∞, w∞) = s1.

Proof. (i) Let x ∈ I (E , w∞, `∞). Then we have w∞ ⊂ E + sx. Now we let
µ ∈ U+. Then the inclusion

(4) s1 ⊂ s0
µ
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holds if and only if 1/µ ∈M (s1, c0), and since M (s1, c0) = c0, the inclusion in (4)
holds for all 1/µ ∈ c+0 . As we have just seen, we have E + sx ⊂ s0

(n)n≥1
+Dx ∗ s0

µ,

and since
s0

(n)n≥1
+Dx ∗ s0

µ = s0
(n)n≥1

+ s0
µx = s0

(n+µnxn)n≥1
,

we obtain w∞ ⊂ s0
(n+µnxn)n≥1

. So, the condition( 1

n+ µnxn

)
n≥1
∈M (w∞, c0) = s0

(1/n)n≥1

implies
n

n+ µnxn
→ 0 (n→∞)

and n/µnxn → 0 (n→∞) for all 1/µ ∈ c+0 . So, we have (n/xn)n≥1 ∈ M
(
c+0 , c0

)
and by Lemma 5, we have M

(
c+0 , c0

)
= M (c0, c0) = s1 which implies

1/x ∈ s(1/n)n≥1
. So, we have shown I (E , w∞, `∞) ⊂ s(1/n)n≥1

. Conversely, let

x ∈ s(1/n)n≥1
. Then we have 1/x ∈ s(1/n)n≥1

and by the identity s(1/n)n≥1
=

M (w∞, s1), we obtain w∞ ⊂ sx and x ∈ I (E , w∞, `∞). This shows s(1/n)n≥1
⊂

I (E , w∞, `∞) and we conclude I (E , w∞, `∞) = s(1/n)n≥1
. This completes the

proof of Part (i).
(ii) Let x ∈ I (E , w∞, c0). Then we successively obtain w∞ ⊂ E + s0

x, w∞ ⊂
s0

(n)n≥1
+ s0

x = s0
(n+xn)n≥1

and (1/ (n+ xn))n≥1 ∈ M (w∞, c0). Then, the identity

M (w∞, c0) = s0
(1/n)n≥1

successively implies (n/ (n+ xn))n≥1 ∈ c0, (n/xn)n≥1 ∈ c0
and x ∈ s0

(1/n)n≥1
. So we have shown I (E , w∞, c0) ⊂ s0

(1/n)n≥1
. Conversely, let x ∈

s0
(1/n)n≥1

. Then we have 1/x ∈ M (w∞, c0) and w∞ ⊂ s0
x and x ∈ I (E , w∞, c0).

So, we have shown s0
(1/n)n≥1

⊂ I (E , w∞, c0). This concludes the proof of Part (ii).

(iii) Let x ∈ I (E , w∞, w∞). Then we have w∞ ⊂ E + Wx, where E ⊂ s0
(n)n≥1

.

Now, we let λ ∈ U+. Then the inclusion

(5) w∞ ⊂ s0
(nλn)n≥1

holds if and only if (1/nλn)n≥1 ∈ M (w∞, c0), and since M (w∞, c0) = s0
(1/n)n≥1

,

the inclusion in (5) holds for all 1/λ ∈ c+0 . Then we have

w∞ ⊂ s0
(n)n≥1

+Dx ∗ s0
(nλn)n≥1

= s0
(n(1+λnxn))n≥1

,

and since M (w∞, c0) = s0
(1/n)n≥1

, we obtain( 1

n (1 + λnxn)

)
n≥1
∈ s0

(1/n)n≥1
for all 1/λ ∈ c+0 .

This implies 1/ (1 + λnxn) → 0 (n→∞) and 1/λx ∈ c0 for all 1/λ ∈ c+0 . So,
by Lemma 5, we have 1/x ∈ M

(
c+0 , c0

)
and x ∈ s1. This shows the inclusion

I (E , w∞, w∞) ⊂ s1. Conversely, let x ∈ s1. Then, we successively obtain 1/x ∈
M (w∞, w∞) and w∞ ⊂ Wx and x ∈ I (E , w∞, w∞). So, we have shown s1 ⊂
I (E , w∞, w∞). This concludes the proof. �
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Remark 12. The condition E ⊂ s0
(n)n≥1

used in Theorem 11 is stronger than

the condition E ⊂ sa where a ∈ s0
(n)n≥1

in Part (i) of Proposition 10, with E = s1.

Indeed, the equivalence of E = s0
(n)n≥1

⊂ sa and (n/an)n≥1 ∈ `∞, does not imply

a ∈ s0
(n)n≥1

.

5.2. On the (SSIE) of the form w0 ⊂ E + F ′x

In this part, we deal with the (SSIE) w0 ⊂ E + F ′x, where E is a linear space of
sequences and F ′ is any of the spaces c0, c, s1, w0, or w∞.

Proposition 13.

(i) The sets of all the solutions of each of the (SSIE) w0 ⊂ E + s
(c)
x and w0 ⊂

E+s0
x, where E ⊂ s0

λ with λn/n→ 0 (n→∞) is a linear space of sequences,
are determined by I (E , w0, c) = I (E , w0, c0) = s(1/n)n≥1

.

(ii) The solutions of each of the (SSIE) w0 ⊂ E + sx and w0 ⊂ E + F ′x, where
E ⊂ sλ with λn/n→ 0 (n→∞) is a linear space of sequences and F ′ = w0,
or w∞, are determined by I (E , w0, s1) = s(1/n)n≥1

and I (E , w0, F
′) = s1.

Proof. (i) Let x ∈ I (E , w0, c). Since E ⊂ s0
λ, we have w0 ⊂ s0

λ + s0
µx for

all 1/µ ∈ c+0 and w0 ⊂ s0
λ+µx. Then we have (λ+ µx)

−1 ∈ M (w0, c0), where

M (w0, c0) = s(1/n)n≥1
. So, we have( n

λn + µnxn

)
n≥1
∈ `∞ for all 1/µ ∈ c+0 ,

and there are K, K ′ > 0 such that

µnxn
n
≥ K − λn

n
> 0

and µnxn/n ≥ K ′ > 0 for all n. We conclude( 1

µn

n

xn

)
n≥1
∈ `∞ for all 1/µ ∈ c+0 ,

and by Lemma 5, we have (n/xn)n≥1 ∈ M
(
c+0 , `∞

)
= s1. So, we have shown

x ∈ s(1/n)n≥1
and I (E , w0, c) ⊂ s(1/n)n≥1

. Conversely, let x ∈ s(1/n)n≥1
. Since

s(1/n)n≥1
= M (w0, c), we successively obtain 1/x ∈ M (w0, c), w0 ⊂ s

(c)
x , and

x ∈ I (E , w0, c). We conclude I (E , w0, c) = s(1/n)n≥1
. Then we have I (E , w0, c0) ⊂

I (E , w0, c) = s(1/n)n≥1
and since s(1/n)n≥1

⊂ M (w0, c0), we conclude s(1/n)n≥1
⊂

I (E , w0, c0) and I (E , w0, c0) = s(1/n)n≥1
. This completes the proof of Part (i).

Part (ii). Let x ∈ I (E , w0, s1). Since E ⊂ sλ, we have w0 ⊂ sλ + sx = sλ+x

with λn/n → 0 (n→∞). Then we have (λ+ x)
−1 ∈ M (w0, s1) = s(1/n)n≥1

and
(
n (λn + xn)

−1
)
n≥1
∈ `∞ . So, there are K and K ′ > 0 such that xn/n ≥

K − λn/n and xn/n ≥ K ′ > 0 for all n. We conclude x ∈ s(1/n)n≥1
, and using

similar arguments as those above, we obtain I (E , w0, s1) = s(1/n)n≥1
.
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Case of the (SSIE) w0 ⊂ E + F ′x, where F ′ = w∞. We have w0 ⊂ s(λn+nxn)n≥1

and
(
(λn + nxn)−1

)
n≥1
∈M (w0, s1), where M (w0, s1) = s(1/n)n≥1

, which implies(
n(λn + nxn)−1

)
n≥1
∈ `∞ . So, there are K and K ′ > 0 such that xn ≥ K−λn/n

and xn ≥ K ′ > 0 for all n, and we conclude I (E , w0, w∞) ⊂ s1. The inclusion
s1 ⊂ I (E , w0, w∞) follows from the identity M (w0, w∞) = s1. The case of the
(SSIE) w0 ⊂ E +W 0

x can be studied using similar arguments as those above. This
completes the proof. �

As a direct consequence of the preceding we obtain the following results.

Corollary 14. Let E be a linear space of sequences that satisfy E ⊂ s(nα)n≥1
,

where 0 ≤ α < 1 and F ′ = c0, c, s1, w0, or w∞. Then the perturbed (SSIE)
w0 ⊂ E + F ′x is equivalent to w0 ⊂ F ′x and to 1/x ∈M (w0, F

′).

Proof. Let E ⊂ s(nα)n≥1
with 0 ≤ α < 1. Then we have limn→∞ nα−β = 0

for β ∈ ]α, 1[. This implies s(nα)n≥1
⊂ s0

(nβ)n≥1
with nβ/n → 0 (n→∞), and we

conclude by Proposition 13. �

Remark 15. We obtain a similar result for the (SSIE) w∞ ⊂ E + F ′x, where
F ′ is any of the sets c0, c, s1, w0, or w∞.

In the next result, we use the set bvp of p−bounded variation defined by bvp =
(`p)∆ with p ≥ 1.

Corollary 16. Let p ≥ 1 and let F ′ = c0, c, s1, w0, or w∞. Then, the (SSIE)
w0 ⊂ bvp + F ′x is equivalent to 1/x ∈M (w0, F

′).

Proof. Let p > 1 and q = p/ (p− 1). We have bvp ⊂ s0
(nα)n≥1

for 1/q ≤ α < 1,

since this inclusion is equivalent toD(1/nα)n
Σ ∈ (`p, c0) and by the characterization

of (`p, c0), (cf. [29, Theorem 1.37, p. 161]), we have n/nαq = 1/nαq−1 ≤ K for
some K > 0. We conclude by Corollary 14. The case p = 1 is a direct consequence
of the characterization of (`1, `∞) (cf. [29, Theorem 1.37, p. 161]). �

6. Application to some (SSIE) with operators

In this section, we apply the results of Section 5 to the solvability of the (SSIE)
w∞ ⊂ w0 + F ′x, w∞ ⊂ bvp + F ′x, w∞ ⊂ (c0)Rt + F ′x, and w∞ ⊂ (c0)C(λ) + F ′x
with F ′ ∈ {c0, s1, w∞}. Then, we consider the (SSIE) of the form w∞ ⊂ Ea + F ′x
where E , F ′ are any of the spaces c0, c, `p, (1 ≤ p ≤ ∞), w0, or w∞, and we solve
the (SSE) E + Wx = w∞ where E ⊂ w0. Finally, for r > 0, we solve the (SSIE)
w∞ ⊂

(
s0
r

)
∆

+ F ′x, where F ′ is any of the sets c0, s1, or w∞.

6.1. The solvability of the (SSIE) of the form w∞ ⊂ E +F ′x involving the
sets w0, bvp, (c0)Rt , and (c0)C(λ)

In this part, we use the Riesz matrix Rt with t = (tn)n≥1 ∈ U+, which is the

triangle whose the nonzero entries are defined by [Rt]nk = tk/Tn with k ≤ n,
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where Tn =
∑n
k=1 tk for all n, and Rt is also called the matrix of the weighted

means. From Theorem 11, we obtain the solvability of some new (SSIE) with
operators.

Corollary 17. Let E be any of the sets w0, bvp (p ≥ 1), (c0)Rt with T/t ∈
s(n)n≥1

, or (c0)C(λ), where λn = O(n) (n→∞). Then the sets I(E , w∞, F ′)
of all positive sequences x that satisfy each of the (SSIE) w∞ ⊂ E + F ′x with
F ′ ∈ {c0, s1, w∞} are determined by

I(E , w∞, c0) = s0
(1/n)n≥1

, I(E , w∞, s1) = s(1/n)n≥1
, I(E , w∞, w∞) = s1.

Proof. We confine our study to the case when F ′ = c0, the proof of the other
cases being similar. We apply Theorem 11 to each of the spaces E = w0, bvp
(p ≥ 1), (c0)Rt , and (c0)C(λ). The case E = w0 is a direct consequence of the

inclusion w0 ⊂ s0
(n)n≥1

. Case E = bvp. Let p > 1. Then the inclusion (`p)∆ ⊂
s0

(n)n≥1
is equivalent to D(1/n)n

Σ ∈ (`p, c0). By the characterization of (`p, c0), (cf.

[29, Theorem 1.37, p. 161]), this condition is equivalent to n/nq = 1/nq−1 = O(1)
(n→∞), where q = p/ (p− 1), and is satisfied since q > 1. The case p = 1 is a
direct consequence of the property D(1/n)n≥1

Σ ∈ (`1, c0). Case E = (c0)Rt . The

inclusion (c0)Rt ⊂ s0
(n)n≥1

is equivalent to

(6) D(1/n)n≥1
R−1
t ∈ (c0, c0).

From the identity Rt = D1/TΣDt, we obtain R−1
t = D1/t∆DT , and the condition

in (6), is equivalent to D(1/ntn)n≥1
∆DT ∈ (c0, c0). This condition is true since

Tn/tn = O(n) (n→∞).
The case E = (c0)C(λ) with λn = O(n) (n→∞) can be shown as above since

we have D(1/n)n≥1
∆Dλ ∈ (c0, c0). This completes the proof. �

Remark 18. We may rewrite Corollary 17 as follows. Let p ≥ 1. Then, by
Corollary 17 with E = bvp, the sets of all the solutions of each of the (SSIE)

w∞ ⊂ bvp + s0
x, w∞ ⊂ bvp + sx and w∞ ⊂ bvp + Wx are equal to s0

(1/n)n≥1
,

s(1/n)n≥1
, and s1, respectively. Then, for E = w0, the sets of all the solutions of

each of the (SSIE) w∞ ⊂ w0 + s0
x, w∞ ⊂ w0 + sx, and w∞ ⊂ w0 +Wx are equal to

s0
(1/n)n≥1

, s(1/n)n≥1
, and s1, respectively. In each case, the perturbed (SSIE) and

the elementary (SSIE) have the same set of solutions.

As a direct consequence of Corollary 17, we obtain the following results.

Corollary 19.

(i) The solutions of the (SSIE) w∞ ⊂ (c0)C1
+ s0

x are determined by

I ((c0)c1 , w∞, c0) = s0
(1/n)n≥1

.

(ii) The solutions of the (SSIE) w∞ ⊂ (c0)C1
+ sx are determined by

I ((c0)C1
, w∞, `∞) = s(1/n)n≥1

.

(iii) The solutions of the (SSIE) w∞ ⊂ (c0)C1
+Wx are determined by

I ((c0)C1 , w∞, w∞) = s1.
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6.2. On the solvability of the (SSIE) w∞ ⊂ Ea + F ′x, where E = c0, c, `p
1 ≤ p ≤ ∞, w0, or w∞

We easily deduce the next corollaries that are direct consequences of Theorem 11
and Lemma 6.

Corollary 20. Let a ∈ s+
1 . Then we have:

(i) The solutions of the (SSIE) w∞ ⊂W 0
a + s0

x are determined by

Ia (w0, w∞, c0) = s0
(1/n)n≥1

.

(ii) The solutions of the (SSIE) w∞ ⊂W 0
a + sx are determined by

Ia (w0, w∞, s1) = s(1/n)n≥1
.

(iii) The solutions of the (SSIE) w∞ ⊂W 0
a +Wx are determined by

Ia (w0, w∞, w∞) = s1.

Proof. These results follow from Theorem 11, where we have

(7) W 0
a ⊂ s0

(n)n≥1

if and only if (an/n)n≥1 ∈ M(w0, c0), where M(w0, c0) = s(1/n)n≥1
. So, the

condition a ∈ s1 implies the condition in (7), and we conclude by Part (i) (b)
of Theorem 11. Part (iii) can be shown in a similar way. This completes the
proof. �

Using similar arguments as those above, we obtain the next corollaries.

Corollary 21. Let a ∈ c0. Then we have:

(i) The solutions of the (SSIE) w∞ ⊂Wa + s0
x are determined by

Ia (w∞, w∞, c0) = s0
(1/n)n≥1

.

(ii) The solutions of the (SSIE) w∞ ⊂Wa + sx are determined by
Ia (w∞, w∞, `∞) = s(1/n)n≥1

.

(iii) The solutions of the (SSIE) w∞ ⊂Wa +Wx are determined by
Ia (w∞) = s1.

Corollary 22. Let a ∈ s0
(n)n≥1

∩ U+. Then we have:

(i) The solutions of the (SSIE) w∞⊂Ea+s0
x with E ∈ {c, s1} are determined

by Ia (E,w∞, c0) = s0
(1/n)n≥1

.

(ii) The solutions of the (SSIE) w∞ ⊂ Ea + sx with E ∈ {c, s1} are determined
by Ia (E,w∞, `∞) = s(1/n)n≥1

.

(iii) The solutions of the (SSIE) w∞ ⊂ Ea+Wx with E ∈ {c, s1} are determined
by Ia (E,w∞, w∞) = s1.

Corollary 23. Let a ∈ s+
(n)n≥1

. Then we have:

(i) The solutions of the (SSIE) w∞ ⊂ Ea + s0
x with E ∈ {c0, `p}, (p ≥ 1) are

determined by Ia (E,w∞, c0) = s0
(1/n)n≥1

.

(ii) (ii) The solutions of the (SSIE) w∞ ⊂ Ea + sx with E ∈ {c0, `p} are
determined by Ia (E,w∞, `∞) = s(1/n)n≥1

.
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(iii) The solutions of the (SSIE) w∞ ⊂ Ea +Wx with E ∈ {c0, `p}, (p ≥ 1) are
determined by Ia (E,w∞, c0) = s1.

Using Proposition 13, we obtain similar results on the (SSIE) w0 ⊂ Ea + F ′x,
where E = c0, c, or `p with 1 ≤ p ≤ ∞.

6.3. On the solvability of the (SSIE) of the form F ⊂ E + Wx, where F
is either w0 or w∞, and E ∈ {c0, c, `p, cs, cs0, bs}

Now, we recall the definitions of the sets cs = cΣ, bs = (`∞)Σ, and
cs0 = (c0)Σ that are called the sets of all convergent, bounded, and convergent
to zero series. More precisely, we have cs = {y ∈ ω :

∑∞
k=1 yk is convergent},

bs =
{
y : (

∑n
k=1 yk)

n≥1
∈ `∞

}
, and cs0 =

{
y : (

∑n
k=1 yk)

n
∈ c0

}
. We write

Ψ = {c0, c, `p, cs, cs0, bs}. Since we have E ⊂ `∞ for all E ∈ Ψ, by Theorem
11 and Proposition 13, we obtain the following corollary.

Corollary 24. Let F be either w0 or w∞, and let E ∈ Ψ, (1 ≤ p ≤ ∞). Then
we have:

(i) The solutions of each of the (SSIE) F ⊂ E+Wx are determined by Iw = s1.
(ii) The solutions of each of the (SSIE) F ⊂ E + sx are determined by
I∞ = s(1/n)n≥1

.

(iii) The solutions of the (SSIE) w∞ ⊂ E + s0
x are determined by

I0
1 = s0

(1/n)n≥1
,

and
the solutions of the (SSIE) w0 ⊂ E + s0

x are determined by
I0

2 = I∞ = s(1/n)n≥1
.

(iv) The solutions of the (SSIE) w0 ⊂ E + s
(c)
x , are determined by

Ic = I∞ = s(1/n)n≥1
.

6.4. On the solvability of the (SSE) E +Wx = w∞

In this part, we consider the (SSE) E + Wx = w∞ with E ⊂ w∞ ∩ s0
(n)n≥1

. For

instance, the identity w0 + Wx = w∞ is equivalent to the next statement. The
condition supn

(
n−1

∑n
k=1 |yk|

)
< ∞ holds if and only if there are u, v ∈ ω with

y = u + v and limn→∞
(
n−1

∑n
k=1 |uk|

)
= 0 and supn

(
n−1

∑n
k=1 |vk| /xk

)
< ∞

for all y. We obtain the following result.

Theorem 25. The set S (E , w∞) is the set of all positive sequences x such that
E +Wx = w∞, where E ⊂ w∞ ∩ s0

(n)n≥1
is a linear space, is determined by

S (E , w∞) = cl∞(e).

Proof. Let x ∈ S (E , w∞). Then we have

(8) E +Wx ⊂ w∞
and

(9) w∞ ⊂ E +Wx.
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By the hypothesis, we have E ⊂ w∞, and the inclusion in (8) implies Wx ⊂ w∞.
This means, x ∈ M (w∞, w∞), and by Remark 7, we conclude x ∈ s+

1 . Then
we have E ⊂ w∞ ∩ s0

(n)n≥1
⊂ s0

(n)n≥1
, and by Theorem 11, the (SSIE) in (9)

is equivalent to x ∈ s1. We conclude S (E , w∞) ⊂ cl∞(e). Conversely, assume
x ∈ cl∞(e). Then we have Wx = w∞, and since E ⊂ w∞, we obtain E + Wx =
E + w∞ = w∞. This completes the proof. �

From Theorem 25, we deduce that each of the equations cs + Wx = w∞,
c0 +Wx = w∞, `p +Wx = w∞, cs0 +Wx = w∞, and w0 +Wx = w∞ is equivalent
to x ∈ cl∞(e).

6.5. On the (SSIE) of the form w∞ ⊂
(
s0
r

)
∆

+ F ′x

In this subsection, for r > 0, we solve the (SSIE) w∞ ⊂
(
s0
r

)
∆

+ F ′x, where F ′ is
any of the sets c0, s1, or w∞. From Theorem 11, we obtain the next results.

Proposition 26. Let r > 0. Then we have:

(i) Let I0
r,δ = I

((
s0
r

)
∆
, w∞, c0

)
be the set of all positive sequences x that satisfy

the (SSIE) w∞ ⊂
(
s0
r

)
∆

+ s0
x determined by

I0
r,δ =

{
s0

(1/n)n≥1
if r ≤ 1,

U+ if r > 1.

(ii) Let I1
r,δ = I

((
s0
r

)
∆
, w∞, s1

)
be the set of all positive sequences x that satisfy

the (SSIE) w∞ ⊂
(
s0
r

)
∆

+ sx determined by

I1
r,δ =

{
s(1/n)n≥1

if r ≤ 1,

U+ if r > 1.

(iii) Let Iwr,δ = I
((
s0
r

)
∆
, w∞, w∞

)
be the set of all positive sequences x that

satisfy the (SSIE) w∞ ⊂
(
s0
r

)
∆

+Wx determined by

Iwr,δ =

{
s1 if r ≤ 1,
U+ if r > 1.

Proof. (i) Consider the case r ≤ 1. We have n−1
∑n
k=1 r

k = O (1) (n→∞),

and by Theorem 11 with E =
(
s0
r

)
∆

, this implies E ⊂ s0
(n)n≥1

. If r > 1, then we

have
(
s0
r

)
∆

= s0
r by [5, Theorem 2.6, p. 1789]. Then we have w∞ ⊂ s0

r since the

condition limn→∞n/r
n = 0 implies (1/rn)n≥1 ∈ M (w∞, c0). The statements in

Parts (ii) and (iii) may be shown in a similar way. This concludes the proof. �

Example 27. The perturbed (SSIE) w∞ ⊂ (c0)∆ + s0
x and w∞ ⊂ s0

x are
equivalent and the set of all positive sequences x that satisfy each of these (SSIE)

is determined by I0
1,δ = s0

(1/n)n≥1
.
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