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NOTES ON BAER MODULES AND THEIR DUAL

N. GHAEDAN and M. R. VEDADI

Abstract. In this paper, we give new categorical characterizations of (dual-)Baer
modules and then several applications of them are presented. Among other things,

it is proved that a module MR is Baer if and only if for every N ≤ MR, Rej−1(N) is

a direct summand of MR. This shows that a module MR is Baer and co-retractable
if and only if it is semisimple. Hence, over a ring Morita equivalent to a per-

fect duo ring, all Baer modules are semisimple. If R is a right semi-hereditary

and u.dim(RR) is finite, then every finitely generated torsionless R-module M is
Baer. Dually, dual-Baer modules over certain rings are also investigated. If the left

R-module M+ = HomZ(M,Q/Z) is Baer, then it is shown that HomR(M,N)M is

a pure submodule MR for any N ≤ MR.

1. Introduction

Throughout the paper, all rings are associative with identity and all modules are
unital right modules. In [10], a ring R was called Baer if for every non-empty
subset X of R, the right annihilator X in R is of the form eR for some e = e2 ∈ R.
The concept of Baer ring was extended to modules by S. T. Rizvi and C. S. Roman
in [16] and [18]. A module MR is called Baer if for every non-empty subset X of
EndR(M), the right annihilator X in M is a direct summand of MR. Baer modules
and their generalizations have been studied among many other works, see [13] and
[3] (therefore their references) for recent works on the subjects. The dual notion
of the Baer modules was introduced and studied in [20], where a module MR was
called dual-Baer if for every N ≤ MR, the right ideal HomR(M,N) of EndR(M)
is generated by an idempotent element; see [19] and [4] for some recent works on
the dual-Baer modules.

In this paper, we first give new characterizations of (dual-)Baer modules in
Theorems 2.2, 2.3 and 2.4. Then we show that a module M is semisimple if
and only if it is Baer and co-retractable (Theorem 2.6). Baer modules and dual-
Baer modules over certain rings are investigated and, among other things, it is
shown that if R is a ring Morita invariant to a right duo ring (resp. semi-artinian
commutative ring), then (dual-)Baer modules are precisely semisimple modules
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(see Theorems 3.3 and 3.6). Finally, we apply our characterization of Baer modules
to investigate conditions on MR under which the character left R-module M+ is
Baer and prove that if MR is a non-zero strongly torsionfree extending and the
R-module M+ is Baer, then MR is dual-Baer. Any unexplained terminology and
all the basic results on rings and modules that are used in the sequel can be found
in [1] and [12].

2. Characterizations of (dual) Baer modules
and (co-)retractability

If K and L are two R-modules, then Tr(K,L) means
∑
{f(K) | f : K → L} and

Rej(K,L) means
⋂
{ker f | f : K → L}. If MR is a module, then the class of

R-modules that are generated, (resp., co-generated) by M is denoted by Gen(MR)
(resp. Cog(MR)). We begin with the following characterization.

Lemma 2.1. Let MR be a nonzero module and EndR(M) = S. Then N ∈
Gen(MR) if and only if HomR(M,N)M = N = Tr(M,N).

Proof. By [21, Theorem 13.5]. �

Theorem 2.2.

(i) Every exact sequence 0 → X → M → Y → 0 of R-modules with Y ∈
Cog(M) splits if and only if M is a Baer R-module.

(ii) Every exact sequence 0 → X → M → Y → 0 of R-modules with X ∈
Gen(M) splits if and only if M is a dual Baer R-module.

Proof. (i) (⇒). To show that a module MR is Baer, Let N = rM (X) for some
X ⊆ S. Then N =

⋂
f∈X ker f . Hence, we can deduce that M/N ∈ Cog(M).

Now the exact sequence 0 → N
ı→ M

π→ M/N → 0 splits by our assumption.
This means N ≤⊕ M .

(⇐). Suppose that if 0 → X
f→ M → Y → 0 is an exact sequence of R-modules

with Y ∈ Cog(MR). LetN=Im f , then there exists a one to one R-homomorphism
θ : M/N → MΛ for some set Λ. For each λ ∈ Λ, let fλ = πλθ, where πλ is the
canonical projection on MΛ. If X = {fλ | λ ∈ Λ}, then it is easily seen that N =
rM (X). Thus Im f is a direct summand of MR by the Baer condition on M . It
follows that the exact sequence splits.

(ii) By Lemma 2.1, this is the dual of (i) and has a similar argument. �

Theorem 2.3. The following conditions are equivalent for a module MR.

(a) MR is dual Baer.
(b) For every nonempty set Λ, every R-homomorphism f : M (Λ) → M pre-

serves direct summands.
(c) For every nonempty set Λ, every R-homomorphism f : M (Λ) →M , Im f is

a direct summand of MR.
(d) For every N ≤MR, Tr(M,N) ≤⊕ MR.
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Proof. This is obtained by Theorem 2.2. �

Regarding the Theorem 2.3, we introduce the dual notation for Tr(M,N), where
N ≤ M and give a similar result for Baer modules. By Rej−1(N), we mean
π−1(Rej(M/N,M)), where π : M →M/N is the canonical epimorphism. Clearly,
N ≤ Rej−1(N), and N = Rej−1(N) if and only if M/N ∈ Cog(M). In [18,
Proposition A3], it is proved that if MR is a Baer module, then for every f ∈
EndR(M) the inverse image through f of any direct summand of M is again
a direct summand. This shows that f is continuous with respect to a certain
topology on M . In the following characterization of Baer modules, we observe in
a way the converse of [18, Proposition A3].

Theorem 2.4. The following conditions are equivalent for a module MR.

(a) MR is Baer.
(b) For every nonempty set Λ and every R-homomorphism f : M → MΛ, the

inverse image f−1(D) is a direct summand of M , where D is a direct sum-
mand of MΛ.

(c) For every nonempty set Λ and every R-homomorphism f : M →MΛ, ker f
is a direct summand of MR.

(d) For every N ≤MR, Rej−1(N) ≤⊕ MR.

Proof. (a) ⇒ (b) Let MR be Baer and f : M → MΛ be an R-homomorphism
for some Λ. If D is a direct summand of MΛ and N = f−1(D), then we have the
natural monomorphism M/N → M/D. It follows that M/N ∈ Cog(M). Hence,
N is a direct summand of M by Theorem 2.2.
(b) ⇒ (c) is clear.
(c) ⇒ (a) Let {fi}i ∈ EndR(M). Consider the R-homomorphism f : M → MΛ

with f(m) = {fi(m)}i. Then by our assumption f−1(0) is a direct summand of
MR. Thus ∩i ker fi is a direct summand of M , proving that MR is Baer.
The equivalence (d) ⇔ (a), follows by Theorem 2.2 and the above notes. �

The Theorem 2.3 shows that a module MR is dual Baer if and only if
Tr(M,X) ≤⊕ MR for every X ≤ MR. Clearly, Tr(M,X) ≤ X. Thus if MR

is dual Baer, then a submodule X ≤ MR contains a non-zero direct summand of
MR if and only if HomR(M,X) 6= 0. Modules MR in which HomR(M,N) 6= 0 for
every 0 6= N ≤ MR is called retractable [11]. Dually, an R-module MR is called
co-retractable if HomR(M/N,M) 6= 0 for every N < MR. Below we study the
retractable (co-retractable) condition for Baer and dual Baer modules and then
we shall give some applications of our results.

Lemma 2.5. Let MR be a nonzero module.

(i) If MR is co-retractable, then Rej−1(N)/N � M/N for every proper
N ≤MR.

(ii) If MR is retractable, then Tr(M,N) ≤ess N for every nonzero N ≤MR.

Proof. We only prove (i). Let N < MR and K = Rej−1(N). Clearly, N ≤ K.
Suppose that K/N + L/N = M/N . If L 6= M , since MR is co-retractable, there
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exists nonzero homomorphism g : M/L → M . Consider the natural epimorphism
p : M/N →M/L, then 0 6= gp ∈ HomR(M/N,M) and gp(L/N) = 0. On the other
hand, by the definition of K, we have gp(K/N) = 0. It follows that gp(M/N) = 0,
a contradiction. Thus L = M and we are done.

The equivalences (i) ⇔ (ii) and (i) ⇔ (iii) below are dual of each others. The
equivalence (i) ⇔ (iii) appeared in [19, Corollary 2.19]. �

Theorem 2.6. The following statements are equivalent for a module MR.

(i) MR is semisimple.
(ii) MR is co-retractable and Baer.
(ii) MR is retractable and dual Baer.

Proof. We need to show that (ii) or (iii) ⇒ (i). Let MR be co-retractable and
Baer (the other case is similar). IfN ≤MR andK = Rej−1(N), thenK ≤⊕ MR by
Theorem 2.4. This shows that K/N ≤⊕ M/N . On the other hand, K/N �M/N
by Lemma 2.5. Hence, N = K. Therefore, every submodule of M is a direct of
M , as desired. �

Corollary 2.7. Let MR be a non-zero quasi-projective module. Then the
R-module M/J(M) is dual Baer if and only if it is a semisimple R-module.

Proof. By [5, (3.4)], any quasi-projective module with zero Jacobson radical is
retractable. Hence, the result is obtained by Theorem 2.6. �

An R-module M is said to be torsionless if M is cogenerated by R.

Proposition 2.8.

(a) A ring R is Baer if and only if every cyclic torsionless right (left) R-module
is projective.

(b) Every n-generated torsionless right(left) R-module is projective if and only
if Mn(R) is a Baer ring.

Proof. (a) Since a cyclic R-module R/I is projective if and only if the exact
sequence 0→ I → R→ R/I → 0 splits, the result is an application of Theorem 2.2
for M = R.
(b) This is now obtained by (a) and the fact that the standard Morita equivalent
between R and Mn(R) corresponds n-generated R-modules to cyclic Mn(R)-mod-
ules. �

We end this section with a result on the direct sum of dual-Baer modules similar
to [17, Proposition 3.20]. Some applications of Theorem 2.2 will be given in the
next section. The following lemma is used in Proposition 2.10 and Remark 2.11(2).

Lemma 2.9. Let M =
⊕

i∈IMi (I an index set) such that HomR(Mi,Mj) = 0

(i 6= j). Assume 0 → X
f→ M

g→ Y → 0 is an exact sequence of R-modules. For
each i, replace ιi(Mi) with Mi and let gi = g|Mi , Ki = ker gi, Xi = f−1(Ki) and
fi = f |Xi

. Then we have:

(a) For each i, the sequence 0→ Xi
fi→Mi

gi→ g(Mi)→ 0 is exact.
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(b) If Y ∈Cog(M), then for each i, g(Mi)∈Cog(Mi) and g(M)=
⊕

i∈I g(Mi).
(c) If X ∈ Gen(M), then for each i, Xi ∈ Gen(Mi) and X =

⊕
i∈I Xi.

Proof. (a) It has a routine argument.

(b) Let Y
θ
↪→

⊕
i(Mi)

Λ. Then by hypothesis, θg(Mi) ⊆ (Mi)
Λ for each i ∈ I. It

follows that g(M)=
⊕

i∈I g(Mi) and g(Mi) ∈ Cog(Mi).

(c) Clearly, {Xi}i∈I are R-linear independent. Let
⊕

i(Mi)
(Λ) α→ X be a surjec-

tive R-homomorphism. By hypothesis, fαψi((Mi)
(Λi) ⊆ Mi, where ψi : M

(Λi)
i →⊕

i(Mi)
(Λi) is the natural R-monomorphism. If x ∈ X, then there are ui ∈M (Λi)

i

(i = 1, . . . , n) such that α(
∑
i ui) = x. Since fα(ui) ∈ Mi, we have fα(ui) ∈ Ki.

Thus x ∈
∑
iXi. It follows that X =

∑
iXi and so Xi ∈ Gen(Mi). �

Proposition 2.10. Let M=
⊕

i∈IMi (I an index set) such that HomR(Mi,Mj)
= 0 (i 6= j). If every Mi is a dual Baer R-module, then MR is dual Baer.

Proof. These are obtained by Lemma 2.9 and Theorem 2.2. �

Remarks 2.11. If we consider the equivalent conditions presented in Theo-
rem 2.2 for (dual) Baer modules, then:

1) We can give a simultaneous proof for [16, Theorem 2.17] and [20, Corollary 2.5]
that state “a direct summand of a Baer (resp. dual Baer) module is a Baer (resp.
dual Baer) module”. In fact, these are obtained by Theorem 2.2 and the fact

that an exact sequence 0 → X
f→ N

g→ Y → 0 splits if the exact sequence

0 → X ⊕ L f⊕1L→ N ⊕ L β→ Y → 0 with β(n, l) = g(n) splits. Note that if there

exists N ⊕L α→ X⊕L such that α(f ⊕1L) = 1X⊕L, then we have hf = 1X , where
h : N → X with h(n) = πα(n, 0) and π : X ⊕ L→ X is the natural projection.

2) Let M =
⊕

i∈IMi (I an index set) such that HomR(Mi,Mj) = 0 (i 6= j). In
[17, Proposition 3.20] it is proved that if every Mi is a Baer R-module, then MR

is Baer. Now using Theorem 2.2 and Lemma 2.9, we can give an alternative proof
for [17, Proposition 3.20].

3. Applications

In this section, we give some applications of our results. A ring R is called von
Neumann regular (regular for short) if for every a ∈ R there is b ∈ R such that
a = aba.

Proposition 3.1. If R is a Baer ring, then annR(P ) is a direct summand of
RR for any projective right R-module P . The converse is not true in general.

Proof. Let R be a Baer ring and PR be projective. If I = annR(P ), then
R/I ∈ Cog(RR). Hence, I is a direct summand of RR by Theorem 2.2. For
the last statement, note that if R is any simple ring, then the annihilator of any
nonzero R-module is zero. But there exist simple rings that are not Baer. For if R
is a right self-injective simple ring, then by [12, Corollary 13.5], we have A = lr(A)
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for any finitely left ideal A of R. Thus if further R is Baer, then R must be a
regular ring. However, there exists self-injective simple ring which is not regular;
see [7]. �

A ring R is said to be right duo if every right ideal in R is a two sided ideal.
The following lemma may be appeared in the literature, we give a proof for com-
pleteness.

Lemma 3.2. If R is a ring Morita invariant to a right duo perfect ring the
every nonzero R-module is co-retractable.

Proof. We may suppose that R is a right duo and a perfect ring. Let N be
a proper submodule of a nonzero module MR. Since R is right perfect, then the
nonzero module M/N has a maximal submodule K/N . On the other hand, by [2,
Theorem 2.14], the simple R-module M/K can be embedded in MR. It follows
that HomR(M/N,M) is nonzero, as desired. �

Theorem 3.3. Let R be a ring Morita invariant to a right duo perfect ring,
then Baer R-modules are precisely semisimple R-modules.

Proof. The result follows from Lemma 3.2 and Theorem 2.6. �

Recall that the singular submodule Z(MR) of an R-module M is defined by
Z(MR) = {m ∈MR | mA = 0 for some essential right ideal A of R}. The module
MR is called singular (resp. nonsingular) if Z(MR) = M (resp. Z(MR) = 0). It is
well known that if N is an essential submodule of MR, then M/N is a singular R-
module. Also, if R is a right semi-hereditary ring, then it is known that Z(RR) = 0.
A submodule K of MR is said to be closed in M , whenever if K is essential in a
submodule L of MR, then K = L.

Proposition 3.4. If R is a right semi-hereditary and u.dim(RR) is finite, then
every finitely generated torsionless R-module M is Baer.

Proof. Let MR be a finitely generated torsionless R-module and 0 → X →
M → Y → 0 be an exact sequence of R-modules with Y ∈ Cog(M). Since MR

is torsionless, Y is also a torsionless R-module. By our assumption Z(RR) = 0,
hence Z(YR) = 0. Now suppose that Y = R(n)/K, then K is a closed submodule
of R(n). Because if K is essential in L for some submodule L of R(n), then L/K
is singular submodule of Y , and so K = L. It follows that the uniform dimension
of YR is finite by [12, Theorem 6.35]. Therefore, Y can be embedded in a free
R-module by [14, Proposition 3.4.3]. Now YR must be projective because R is
right semi-hereditary. Hence, the exact sequence splits, as desired. �

Proposition 3.5. If R is a ring such that R
(n)
R is extending (e.g., R is right

self-injective), then every n-generated nonsingular R-module MR is Baer.

Proof. Just note that if Y = R(n)/K is an n-generated nonsingular R-module,
then K is a direct summand of R(n). Hence, YR is projective, see the proof of
Proposition 3.4. �
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In [15], rings over which all nonzero modules are retractable are studied. Hence,
over such rings (e.g., commutative semi-Artinian rings), dual Baer modules are
precisely semisimple modules.

Theorem 3.6. Let R be a ring Morita invariant to a commutative ring.

(i) A finitely generated R-module is dual Baer if and only if it is semisimple.
(ii) If R is semi-Artinian, then dual Baer R-modules are precisely semisimple

R-modules.

Proof. By Theorem 2.2, we can suppose that R is a commutative ring. Thus
by [9, Theorem 2.7], every finitely generated R-module is retractable. Also if R is
semi-Artinian, then all nonzero R-modules are retractable [9, Theorem 2.8]. Thus
the result is obtained by Theorem 2.6. �

An R-module M is called divisible if Mc = M for every regular element in c ∈ R.
Note that the class of divisible R-modules is closed under arbitrary direct sums
and homomorphic images. Hence, if M is a divisible R-module and X ∈ Gen(MR),
then X is also a divisible R-module.

Proposition 3.7. If R is a semiprime right Goldie ring, then every torsionfree
injective module is dual Baer.

Proof. Let MR be a torsionfree injective R-module and 0→ X →M → Y → 0
be an exact sequence of R-modules with X ∈ Gen(M). Since MR is injective, it
is divisible. It follows that XR is divisible (for X is generated by M). Thus XR is
injective by [8, Proposition 6.12]. Hence, the exact sequence splits and the result
holds by Theorem 2.2. �

Proposition 3.8. If R is a right hereditary right Noetherian ring, then injective
module is dual Baer.

Proof. Note that since R is assumed to be right Noetherian, every direct sum
of injective R-modules is injective. Hence, if MR is injective, then so is every
R-module in Gen(M) by the hereditary condition. The rest of the proof is similar
to the proof of Proposition 3.7. �

For any right R-module M , the left R-module HomZ(M,Q/Z) is called the
character of M and is denoted by M+. We conclude the paper with further
application of the Theorem 2.2 to show that if RM

+ is Baer, then MR has a
condition close to the dual Baer condition. A submodule N of a module MR is
called pure if any system of equations

∑t
i=1 xiaij = nj ∈ N (j = 1, . . . ,m, aij ∈ R)

which is solvable in M , is also solvable in N , equivalently, if for any left R-module
A, the homomorphism i⊗ 1A is one to one, where i : N →M is the inclusion map

and 1A : A→ A is the identity map. The exact sequence 0→ X
f→M → Y → 0 is

then called pure exact if the Im f is a pure submodule of M . Clearly, every direct
summand of MR is a pure submodule of M . Hence, in view of Theorem 2.3, we
may consider the condition weaker than the dual Baer condition for a module M :
Tr(M,X) is a pure submodule MR for any X ≤MR.
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Proposition 3.9. If MR is a generator for Mod-R, then the left R-module M+

is Baer if and only if it is a semisimple left R-module.

Proof. Let MR be a generator for Mod-R. Note that for every left R-module
L, there exists a natural R-monomorphism from L into the left R-module L++.
It follows that M+ is a co-generator for R-Mod. Because if X is a left R-module,
then X+ ∈ Gen(M) and so X++ ∈ Cog(M+). Thus the result is obtained by
Theorem 2.2. �

Proposition 3.10. Let M be a non-zero R-module.

(i) The exact sequence 0→ N → M of R-modules is pure exact if and only if
the sequence M+ → N+ → 0 splits.

(ii) Let MR be flat. An exact sequence 0→ X →M → Y → 0 of R-modules is
pure if and only if YR is flat.

Proof. (i) This follows from [6, Proposition 5.3.8]
(ii) It is true by [12, Corollary 4.86]. �

Theorem 3.11. Suppose that MR is a non-zero module such that the left
R-module M+ is Baer. Then Tr(M,X) is a pure submodule MR for any X ≤MR.

Proof. Suppose that the left R-module M+ is Baer. Let X≤MR and Tr(M,X)
= N . Then N ∈ Gen(M). Consider the exact sequence 0→ N →M →M/N → 0
in Mod-R. Note that since N ∈ Gen(M), we have N+ ∈ Cog(M+). Thus we
obtain the exact sequence 0 → (M/N)+ → M+ → N+ → 0 in R-Mod with
N+ ∈ Cog(M+) by [12, Proposition 4.8]. Now by the Baer condition on M+ and
Theorem 2.2, the sequence M+ → N+ → 0 splits. Hence, N is a pure submodule
of MR by Proposition 3.10(i). �

Proposition 3.12. Let M be a non-zero R-module. If MR is self-generator
and the left R-module M+ is Baer, then all submodules of MR are pure.

Proof. This follows from Theorem 3.11. �

We call an R-moduleM strongly torsionfree if annR(m) = 0 for any 0 6= m ∈M .

Theorem 3.13. Suppose that M is a non-zero strongly torsionfree extending
R-module. If the left R-module M+ is Baer, then MR is dual-Baer.

Proof. We apply Theorem 2.3. Let X be a submodule of MR and N =
Tr(M,X). By Theorem 3.11, N is a pure submodule of MR. We shall show that
N is a direct summand of MR. Hence, by the extending condition, it is enough to
prove that N is an essentially closed submodule of MR. Now suppose that N is
essential in K ≤ MR and 0 6= k ∈ K. Then there is r ∈ R such that 0 6= kr ∈ N .
Let n = kr that means the equation xr = n has solution in M and so by purity
condition on N , the equation must have a solution in N . Therefore, there exists
n′ ∈ N such that n′r = n. It follows that (n′ − k)r = 0, hence k = n′ ∈ N by our
assumption on M . Proving that N = K, as desired. �

It is well known that R is a von Neumann regular ring if and only if every right
(left) ideal is pure in RR (RR).
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Corollary 3.14. If the left R-module R+ is Baer (semisimple), then R is a
von Neumann regular ring.

Proof. It is obtained by Proposition 3.12 and the above notes. �
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