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ROBUST SUFFICIENT OPTIMALITY CONDITIONS

AND DUALITY IN SEMI-INFINITE MULTIOBJECTIVE

PROGRAMMING WITH DATA UNCERTAINTY

I. AHMAD, A. KAUR and M. K. SHARMA

Abstract. A semi-infinite multiobjective programming problem in the face of data
uncertainty in constraints is considered. Robust sufficient optimality conditions

for weakly robust efficient, robust efficient and properly robust efficient solutions

to the problem are established. Mond-Weir type dual model is formulated and
appropriate duality results are obtained. The results are illustrated with a bi-

objective uncertainty semi-infinite problem.

1. Introduction

In mathematical programs, the feasible set contains all those points that satisfy
constraints of the problem, and the constraints further depend on the availability of
the resources and environment. In the real life optimization problems, the input
information may come from an uncertain or incomplete source. For example,
multiobjective optimization problems arising in the financial market may involve
varying costs, returns and future demands that might be unknown or hidden at
the time of the decision making. So these parameters have to be replaced with
some initial forecast or measurements.

Robust optimization approach is a deterministic approach that has come out to
be a potent method for studying mathematical programming under uncertainty, as-
sociating a robust counterpart to an uncertain optimization problem. This method
intends to find the solution by considering all the possible values of the parame-
ters within their prescribed set of uncertainty including the worst case of all the
existing scenarios. A detailed study of robust optimization can be found in [3].
Researchers have explored diverse aspects of such problems. Goberna et al. [8]
obtained characterization of efficient, properly efficient as well as strongly efficient
solutions to a linear semi-infinite multiobjective program. Along with these they
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discussed various applications including a linear robust vector program. Goberna
et al. [9] studied the radius of feasibility, optimality and duality for a robust coun-
terpart of a linear multiobjective problem affected by data uncertainty.

Goberna et al. [10] characterized weakly efficient solutions to a multiobjec-
tive convex uncertain problem by estimating bounds on the radius of feasibility.
Huang and Chen [11] studied optimality conditions of a convex multiobjective
problem with data uncertainty in both objectives and constraints via the weighted
sum approach. Jeyakumar et al. [12] discussed optimality of an uncertain con-
vex program using robust optimization approach by exploring various properties
of optimal solutions to the robust problem. Lee and Lee [17] presented approxi-
mated (ε-) solutions to a robust program. They studied robust N and S optimality
conditions and duality results for ε-solutions to a robust programming problem.

Duality theory has played a key role in convex programming and enough litera-
ture is available for programs in which data uncertainty has not been incorporated.
But since the last decade, the study of duality theory for optimization problems
with uncertain parameters has gained the interest of several authors around the
globe. Beck and Ben-Tal [2] first obtained duality results for a robust problem
linked to a convex data uncertainty problem. Kim [15] studied Mond-Weir type
duality for a robust multiobjective program associated with an uncertainty prob-
lem. To get further insight into development of duality theory in robust programs,
one can refer to the work of Chen et al. [4], Chuong [5], Jeyakumar et al. [13],
and Jeyakumar and Li [14].

Semi-infinite programming problems involve optimizing a finite number of ob-
jectives with finite variables in the presence of infinitely many constraints. Lee and
Lee [16] discussed optimality and duality for a robust semi-infinite programming
problem. The functions involved were assumed to be convex which is a general-
ization of the robust linear programs presented in [8, 9]. Motivated by the work
of Lee and Lee [16] and Tung [18], we study the robust optimality conditions and
duality results for robust semi-infinite multiobjective programs in the generalized
convex setting. The pseudoconvexity and quasiconvexity assumptions on the ob-
jectives and constraint functions respectively are used to discuss the mentioned
results.

A brief outline of this paper is as follows. Section 2 deals with problem for-
mulation and preliminaries. In Section 3, robust sufficient optimality conditions
for the existence of robust weakly efficient, robust efficient, and properly robust
properly efficient solutions are studied for an uncertain semi-infinite multiobjective
program. Section 4 contains the duality results such as weak, strong and strict
converse duality theorems. In Section 5, a numerical example is discussed.

2. Problem formulation and preliminaries

In this section, we present a semi-infinite multiobjective programming problem
with data uncertainty in constraints along with some notations and definitions.
We denote by Rn the n-dimensional Euclidean space. For Rn, Rn+ denotes the
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corresponding non-negative orthant and intRn+ denotes the interior of Rn+. We
shall first define the ordering in Rn, as the problem involves vector functions. For
u, v ∈ Rn, we have the ordering

u ≥ v ⇔ uj ≥ vj for every j = 1, 2, . . . , n;

u ≥ v ⇔ uj ≥ vj for every j = 1, 2, . . . , n and ui > vi for some i = 1, 2, . . . , n;

u > v ⇔ uj > vj for every j = 1, 2, . . . , n;

u = v ⇔ uj = vj for every j = 1, 2, . . . , n.

A general semi-infinite multiobjective programming problem is as follows:

Problem (SIP) Minimize f(x) = (f1(x), f2(x), . . . , fk(x))

subject to gt(x) ≤ 0 for all t ∈ T,

where fi, gt : Rn → R, i = 1, 2, . . . , k, t ∈ T are continuously differentiable func-
tions. The set T is an arbitrary index set (possibly infinite) and the feasible set of
(SIP) is given by FS = {x ∈ Rn : gt(x) ≤ 0 for all t ∈ T}.

We shall study the semi-infinite multiobjective programming problem with data
uncertainty in constraints. It is assumed that the uncertainty factors lie in some
compact sets and uncertainty of each constraint is independent of the uncertainty
in the other constraints. Consider the following semi-infinite multiobjective pro-
gram under data uncertainty (USIP):

Problem (USIP) Minimize f(x) = (f1(x), f2(x), . . . , fk(x))

subject to gt(x, vt) ≤ 0 for all t ∈ T,

where fi : Rn → R, i = 1, 2, . . . , k are same as in (SIP) and gt : Rn×Rq → R, t ∈ T ,
are continuously differentiable functions. In (USIP), vt ∈ Rq is an uncertainty
parameter which lies in some convex and compact set Vt ⊂ Rq, t ∈ T . The set Vt
depends on t ∈ T . The set valued mapping V : T ⇒ Rq is defined as V(t) := Vt for
all t ∈ T . We say that v is an element of V, when v is a selection from the elements
of V. This occurs in such a way that vt ∈ Vt for all t ∈ T . So the points in the
graph of Vt are of the type (t, vt). Throughout, we assume that T is a compact
metric space with V being compact valued and upper semi-continuous on T .

We write the following robust optimization problem (RSIP) to deal with data
uncertainty:

Problem (RSIP) Minimize f(x) = (f1(x), f2(x), . . . , fk(x))

subject to gt(x, vt) ≤ 0 for all vt ∈ Vt, t ∈ T.

The functions fi, gt are the same as defined in (USIP). The feasible solutions are
those elements of Rn which are feasible for any possible situation of uncertainty
from the given uncertainty sets. The set of the robust feasible solutions, namely
the robust feasible set, is defined as

F := {x ∈ Rn : gt(x, vt) ≤ 0 for all t ∈ T and vt ∈ Vt}.

Now, we give some basic definitions which will be used in the subsequent sections.
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Definition 2.1. An element x ∈ F is called a feasible solution to (RSIP) or a
robust feasible solution to (USIP).

Definition 2.2. A feasible solution u ∈ F is called weakly robust efficient
solution to (USIP) or weakly efficient solution to (RSIP) if there does not exist
any x ∈ F such that f(x) < f(u).

Definition 2.3. A feasible solution u ∈ F is called robust efficient solution to
(USIP) or an efficient solution to (RSIP) if there does not exist any x ∈ F such
that f(x) ≤ f(u).

Definition 2.4. A feasible solution u ∈ F is said to be properly efficient solu-
tion to problem (RSIP) or properly robust efficient solution to problem (USIP) if
it is efficient for (RSIP) and there exists a scalar M > 0, such that for each x ∈ F
and for each j = 1, 2, . . . , k, fj(x) < fj(u),

fj(u)− fj(x)

fi(x)− fi(u)
≤M,

or equivalently

fi(x)− fi(u) ≥M1(fj(u)− fj(x)) for M1 =
1

M

for some i = 1, 2, . . . , k such that fi(x) > fi(u). So we call such solutions to be
properly robust efficient solutions to (USIP).

The above notion is introduced by Geoffrion [7], to rule out the existence of
certain anomalous efficient solutions which lead to infinite loss in one objective for
a small gain in another objective. Further, let us denote by RT the following space
of sequences

RT := {λ = (λt)t∈T : t ∈ T}.
We denote by R(T ) the linear space of mappings of the type µ ∈ RT such that
{t ∈ T : µt 6= 0} is a finite set. It can also be defined as

R(T ) := {λ = (λt)t∈T : λt = 0, t ∈ T, except for finitely many t ∈ T}.
The non-negative cone of R(T ) is defined as follows:

R(T )
+ = {λ = (λt)t∈T ∈ R(T ) : λt ≥ 0, t ∈ T}.

The definitions of generalized convex functions as discussed below will be used
in achieving the main results of this article.

Definition 2.5. Assume a vector function f : X → Rk and X ⊆ Rn.
(i) f is said to be pseudoconvex at u ∈ X if for all x ∈ X, we have

f(x) < f(u) =⇒ ∇f(u)(x− u) < 0.

(ii) f is said to be quasiconvex at u ∈ X if for all x ∈ X, we have

f(x) ≤ f(u) =⇒ ∇f(u)(x− u) ≤ 0.

(iii) f is said to be strongly pseudoconvex at u ∈ X if for all x ∈ X, we have

f(x) ≤ f(u) =⇒ ∇f(u)(x− u) ≤ 0.
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(iv) f is said to be strictly pseudoconvex at u ∈ X if for all x ∈ X, we have

f(x) ≤ f(u) =⇒ ∇f(u)(x− u) < 0.

(v) f is said to be weak strictly pseudoconvex at u ∈ X if for all x ∈ X, we have

f(x) ≤ f(u) =⇒ ∇f(u)(x− u) < 0.

Definition 2.6 ([12, 16]). Let x ∈ F and T1(x) = {t ∈ T : ∃ vt ∈ Vt such that
gt(x, vt) = 0} and let Vt(x) = {vt ∈ Vt : gt(x, vt) = 0}. We say that the Extended
Mangasarian-Fromovitz Constraint Qualification (EMFCQ) is satisfied at x ∈ F
if and only if there exists d ∈ Rn such that

∇xgt(x, vt)T d < 0 for all t ∈ T1(x), vt ∈ Vt(x).

3. Robust sufficient optimality conditions

In this section, we discuss robust sufficient optimality conditions for a feasible
solution to be weakly robust efficient, robust efficient, or a properly robust efficient
solution.

Theorem 3.1. Let x̄ be a robust feasible solution to (USIP). Suppose that there

exist µ ∈ Rk+ r {0}, (λt)t∈T ∈ R(T )
+ and vt ∈ Vt, t ∈ T such that

k∑
i=1

µi∇fi(x̄) +
∑
t∈T

λt∇xgt(x̄, vt) = 0,(1) ∑
t∈T

λtgt(x̄, vt) = 0.(2)

Further, suppose that
∑
t∈T

λtgt(·, vt) is quasiconvex at x̄ and the function f is pseu-

doconvex at x̄. Then x̄ is a weakly robust efficient solution to (USIP).

Proof. Assume to the contrary that, x̄ is not a weakly robust efficient solution
to (USIP), i. e., x̄ is not a weakly efficient solution to (RSIP). This means that
there is an x ∈ F such that

(3) f(x) < f(x̄).

The pseudoconvexity of f at x̄ gives

(4) ∇f(x̄)(x− x̄) < 0.

Since µ ≥ 0, therefore

(5) ∇(µT f(x̄))(x− x̄) < 0 ⇐⇒
k∑
i=1

µi∇fi(x̄)(x− x̄) < 0.

Now as x ∈ F and for (λt)t∈T ∈ R(T )
+ , we get that λtgt(x, v̄t) ≤ 0, t ∈ T. This

along with (2) yields

(6)
∑
t∈T

λtgt(x, vt)−
∑
t∈T

λtgt(x̄, vt) ≤ 0, t ∈ T.
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The quasiconvexity of
∑
t∈T

λtgt(·, vt) at x̄ implies

(7)
∑
t∈T

λt∇xgt(x̄, vt)(x− x̄) ≤ 0, t ∈ T

which along with (1) entails

(8)

k∑
i=1

µi∇fi(x̄)(x− x̄) = −
∑
t∈T

λt∇xgt(x̄, vt)(x− x̄) ≥ 0.

But (8) is a contradiction to (5). Hence x̄ is a weakly robust efficient solution to
(USIP). �

Theorem 3.2. Let x̄ be a robust feasible solution to (USIP). Suppose that,

there exist µ ∈ Rk+ r {0}, (λt)t∈T ∈ R(T )
+ and vt ∈ Vt, t ∈ T such that (1) and (2)

hold at x̄. Further, suppose that the function
∑
t∈T λtgt(·, vt) is quasiconvex at x̄.

If any of the following assumptions hold:

(i) f is weak strictly pseudoconvex at x̄ or
(ii) f is strongly pseudoconvex at x̄ and µ ∈ intRk+.

Then x̄ is a robust efficient solution to (USIP).

Proof. Suppose for the sake of contradiction that x̄ is not a robust efficient
solution to (USIP). This means that there exists an x ∈ F such that

(9) f(x) ≤ f(x̄).

(i) Since f is weak strictly pseudoconvex at x̄, we get ∇f(x̄)T (x − x̄) < 0. This
along with µ ∈ Rk+ r {0} implies

(10)

k∑
i=1

µi∇fi(x̄)(x− x̄) < 0.

(ii) In this part, since f is strongly pseudoconvex at x̄, (9) implies∇f(x̄)T(x−x̄)≤0.
This along with µ ∈ int Rk+ gives

(11)

k∑
i=1

µi∇fi(x̄)(x− x̄) < 0.

Now using the same approach as in Theorem 3.1, we arrive at

(12)

k∑
i=1

µi∇fi(x̄)(x− x̄) = −
∑
t∈T

λt∇xgt(x̄, vt)(x− x̄) ≥ 0,

which contradicts both equations (10) and (11). This means that x̄ is a robust
efficient solution to (USIP). �

The following lemma ([7]) will be used to obtain properly efficient solutions to
(RSIP).
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Lemma 3.3 ([7]). Given a set F ⊆ Rn of feasible points and a function
h : Rn → Rk. If for some fixed µ(> 0) in Rk, x̄ is an optimal solution to the
following scalar minimization problem

(Pλ) Min µTh(x) subject to x ∈ F,

then x̄ is a properly efficient solution to the following multiobjective problem (P ):

(P ) Min h(x) = (h1(x), h2(x), . . . , hk(x)) subject to x ∈ F.

Theorem 3.4. Let x̄ be a feasible solution to (RSIP). Suppose that there exist

µ > 0, (λt)t∈T ∈ R(T )
+ and vt ∈ Vt, t ∈ T such that (1) and (2) hold at x̄. Further

suppose that the functions
∑
t∈T λtgt(·, vt) is quasiconvex at x̄ and the function

µT f is pseudoconvex at x̄. Then x̄ is a properly efficient solution to (RSIP).

Proof. It is given that x̄ ∈ F and that
∑
t∈T

λtgt(·, vt) is quasiconvex at x̄. Then

along the lines of the proof of Theorem 3.1, we get

(13)

k∑
i=1

µi∇fi(x̄)(x− x̄) = −
∑
t∈T

λt∇xg(x̄, vt)(x− x̄) ≥ 0.

Relation (13) implies

(14) ∇(µT f(x̄))(x− x̄)T ≥ 0.

This, along with pseudoconvexity of µT f , provides us with the following inequality

µT f(x) ≥ µT f(x̄) for all x ∈ F.(15)

This implies that x̄ is an optimal solution to (RSIPλ) which by Lemma 3.3 implies
that x̄ is a properly efficient solution to (RSIP). Hence the theorem. �

4. Robust dual model

We present the following Mond-Weir type dual for robust semi-infinite program
(RSIP):

Dual (RSIMWD) Maximize f(u) = (f1(u), f2(u), . . . , fk(u))

subject to

k∑
i=1

αi∇fi(u) +
∑
t∈T

λt∇xgt(u, vt) = 0,∑
t∈T

λtgt(u, vt) ≥ 0, t ∈ T,

λt ∈ R(T )
+ , α ∈ Rk+ r {0}, vt ∈ Vt.

In the absence of uncertainty parameters, the above Mond-Weir dual is obtained
by Chuong and Kim [6] for a semi-infinite program (RSIP). Now, we discuss
the weak, strong and strict converse duality theorems under pseudoconvexity and
quasiconvexity.
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Theorem 4.1 (Weak Duality). Let x be a feasible solution to (RSIP) and
(u, α, λt, vt) be feasible solution to (RSIMWD). Suppose that

∑
t∈T λtgt(·, vt) is

quasiconvex at u. Furthermore,

(i) if f(·) is pseudoconvex at u, then the following cannot hold

(16) f(x) < f(u),

(ii) if f(·) is strongly pseudoconvex at u and α > 0, then the following cannot
hold

(17) f(x) ≤ f(u),

(iii) if f(·) is weak strictly pseudoconvex at u, then the following cannot hold

(18) f(x) ≤ f(u).

Proof. The feasibility of x for (RSIP) implies,
∑
t∈T λtgt(x, vt) ≤ 0 and the dual

feasibility of (u, α, λt, vt) gives
∑
t∈T λtgt(u, vt) ≥ 0 for λt ∈ R(T )

+ . Combining, we
get

(19)
∑
t∈T

λtgt(x, vt)−
∑
t∈T

λtgt(u, vt) ≤ 0.

Since
∑
t∈T λtgt(·, vt) is quasiconvex at u, we get

(20) ∇x
(∑
t∈T

λtgt(u, vt)
)

(x− u) ≤ 0 ⇐⇒
∑
t∈T

λt∇xgt(u, vt)(x− u) ≤ 0.

Now by first dual feasibility condition, we have

(21)

k∑
i=1

αi∇fi(u) = −
∑
t∈T

λt∇xgt(u, vt),

hence

(22)

k∑
i=1

αi∇fi(u)(x− u) = −
∑
t∈T

λt∇xgt(u, vt)(x− u) ≥ 0 (by (20)).

Now, we justify (i)–(iii).
(i) Suppose to the contrary that f(x)− f(u) < 0. The pseudoconvexity of f at

u implies

(23) ∇f(u)(x− u) < 0 =⇒
k∑
i=1

αi∇fi(u)(x− u) < 0 (for α ∈ Rk+ r {0}).

But (23) and (22) contradict each other. So, we conclude that f(x)− f(u) < 0 is
not true. Hence, we have proved the first part of the theorem.

(ii) In this part also, if we assume that the result does not hold, i. e., f(x) ≤
f(u). As f is strongly pseudoconvex at u, we have

∇f(u)(x− u) ≤ 0.
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This along with α > 0 implies

(24)

k∑
i=1

αi∇fi(u)(x− u) < 0.

The rest of the proof is the same as in part (i).
(ii) The proof of this part also is the same as in part (i). �

Theorem 4.2 (Strict Converse Duality). Let x̄ be a feasible solution to (RSIP)
and (ū, ᾱ, λ̄t, v̄t) be a feasible solution to (RSIMWD). Let

∑
t∈T λ̄tgt(·, v̄t) be qua-

siconvex at ū and ᾱT f be strictly pseudoconvex at ū. If

(25)

k∑
i=1

ᾱifi(x̄) =

k∑
i=1

ᾱifi(ū),

then x̄ = ū.

Proof. Assume that x̄ 6= ū. As (ū, ᾱ, λ̄t, v̄t) is a feasible solution to (RSIMWD)

and x̄ is a feasible solution to (RSIP) for λ̄t ∈ R(T )
+ , we obtain

(26)
∑
t∈T

λ̄tgt(x̄, v̄t)−
∑
t∈T

λ̄tgt(ū, v̄t) ≤ 0, t ∈ T.

The above inequality along with the quasiconvexity of
∑
t∈T λ̄tgt(·, v̄t) gives

(27)
∑
t∈T

λ̄t∇xgt(ū, v̄t)(x̄− ū) ≤ 0, t ∈ T.

Inequality (27) and the first dual feasibility condition yield

(28)

k∑
i=1

ᾱi∇fi(ū)(x̄− ū) ≥ 0.

Since ᾱT f is strictly pseudoconvex at ū, (28) implies

(29)

k∑
i=1

ᾱifi(x̄) >

k∑
i=1

ᾱifi(ū).

Comparing (25) with (29), we arrive at a contradiction. Thus the proof is com-
pleted. �

We assume that gtm(xm, vtm) → gt(x, vt) and ∇gtm(xm, vtm) → ∇gt(x, vt)
whenever T 3 tm → t ∈ T , Vtm 3 vtm → vt ∈ Vt, and Rn 3 xm → x ∈ Rn
as m→∞, in view of necessary optimality conditions being used for strong dual-
ity theorem (as discussed by Lee and Lee [16]).

Theorem 4.3 (Strong Duality). Let ū be a weakly efficient solution to (RSIP)
and for each x ∈ Rn and t ∈ T, gt(x, ·) be concave on Vt. Also, suppose that

(EMFCQ) hold at ū. Then there exist (ᾱ, λ̄t, v̄t) ∈ Rk+ r {0} × R(T )
+ × Vt such

that (ū, ᾱ, λ̄, v̄t) is a feasible solution to the Mond-Weir dual problem (RSIMWD).
Further, if the assumptions of weak duality Theorem 4.1(i) hold at every feasible
solution of dual, then (ū, ᾱ, λ̄t, v̄t) is also a weakly efficient solution to (RSIMWD).
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Proof. If ū is a weakly efficient solution to (RSIP) and the constraint qualifi-
cation (EMFCQ) is satisfied at ū, then by necessary optimality conditions [16],

there exist ᾱ ≥ 0, λ̄t ∈ R(T )
+ , v̄t ∈ Vt, t ∈ T and

∑k
i=1 ᾱi = 1 such that

k∑
i=1

ᾱi∇fi(ū) +
∑
t∈T

λ̄t∇xgt(ū, v̄t) = 0,(30) ∑
t∈T

λ̄tgt(ū, v̄t) = 0.(31)

Equations (30) and (31) give that (ū, ᾱ, λ̄t, v̄t) is a feasible solution to (RSIMWD).
Now, we will show that this point is a weakly efficient solution to (RSIMWD). The
proof is as follows:

If this is not a weakly efficient solution to the dual, then there exists a feasible
solution to (RSIMWD), say (ũ, α̃, λ̃t, ṽt), such that f(ũ) > f(ū). In wake of ū
being a feasible solution to primal, we get a contradiction to weak duality Theo-
rem 4.1(i). Hence (ū, ᾱ, λ̄t, v̄t) is a weakly efficient solution to (RSIMWD). This
completes the proof of the theorem. �

Note. Fractional programming problems have been of better advantage in real
life, as ratio optimization often describe an efficiency measure for a system. Such
problems arise in management decision making, warehouse personnel allocation,
information theory and in routing problems which tend to the maximization of
profit to time ratio or the minimization of cost to time ratio. A recent study in
fractional programs may be found in [1]. The results of Sections 3 and 4 may be
extended for a fractional analogue of the problem (USIP). However the proofs of
parallel results are left as an exercise to the readers.

5. An illustrative example

We discuss the main results obtained in the paper with the help of the following
robust bi-objective program:

(UP) Minimize f(x) = (x3 + x,−2x)

subject to 2xvt − 3 ≤ 0,

where vt is an uncertainty parameter such that vt ∈ Vt = [−t, t + 1] and t ∈ T =
[1, 2]. The robust counterpart is

(RP) Minimize f(x) = (x3 + x,−2x)

subject to 2xvt − 3 ≤ 0,

for all vt ∈ Vt, t ∈ T, x ∈ R,

where the set of feasible solutions is given by

FRP = {x ∈ R, 2xvt − 3 ≤ 0, vt ∈ [−t, t+ 1], t ∈ T = [1, 2]}.
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We obtain the feasible region to be [− 3
4 ,

1
2 ] for the set FRP . We consider the point

x̄ = 1
2 such that∑

t∈T
λtgt(x, vt)−

∑
t∈T

λtgt

(1

2
, vt

)
=
∑
t∈T

λt(2xvt − 3−
(

2
(1

2

)
(vt)− 3)

)
=
∑
t∈T

λtvt(2x− 1) ≤ 0.
(32)

It follows

(33)

∇x
(∑
t∈T

λtgt(x, vt)
)

(x− x̄) = ∇x
(∑
t∈T

λt(2xvt − 3)
)(
x− 1

2

)
=
∑
t∈T

λt(2vt)
(
x− 1

2

)
=
∑
t∈T

λtvt(2x− 1) ≤ 0 (by (32)).

Hence,
∑
t∈T λtgt(·, vt) is quasiconvex at x̄ = 1

2 . The function f(x) = (x3+x,−2x)

is pseudoconvex at x̄ = 1
2 . For x̄ = 1

2 , µ = ( 1
2 ,

1
2 ), λt = 1

48 for t = 2 and λt = 0
for all t ∈ [1, 2), and vt = 3. So the equations (1) and (2) are satisfied. Hence,
we conclude that x̄ = 1

2 is a weakly efficient solution to (RP) and hence a weakly
robust efficient solution of (UP).

The robust Mond-Weir type dual for the above primal (RP) is written as follows:

(RD) Maximize f(x) = (u3 + u,−2u)

subject to 3α1u
2 + α1 − 2α2 + 2

∑
t∈T

λtvt = 0,∑
t∈T

λt(2xvt − 3) ≥ 0,

vt ∈ [−t, t+ 1], t ∈ [1, 2],

x ∈ R, α1, α2 ≥ 0, α 6= 0.

u= 1
2 is a feasible solution to (RP) and ( 1

2 , (
1
2 ,

1
2 ), 1

48 , 3) satisfies the feasibility con-
ditions of the dual model (RD). The assumptions of weak duality theorem (i) hold
at these points. Hence the weak duality relation holds between (RP) and (RD).

Now at u = 1
2 , we have T1(x) = {t ∈ T : ∃ vt ∈ Vt s.t. gt(x, vt) = 0} = {2} and

Vt(x)={vt ∈ Vt : gt(x, vt) = 0}={3}. Then for d = −1, ∇xgt(x, vt)T d < 0, for all
t ∈ T1(x), vt ∈ Vt(x). Rest of the assumptions followed from weak duality imply
that ( 1

2 , (
1
2 ,

1
2 ), 1

48 , 3) is a weakly efficient solution of the dual (RD).

6. Conclusions

In this paper, a robust counterpart of an uncertain semi-infinite multiobjective
programming problem has been studied. By using pseudoconvexity and quasicon-
vexity assumptions on the functions involved, we devised optimality conditions
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that identify the efficient solutions to the given program. We have studied suffi-
cient optimality conditions for three types of solutions to (RSIP) namely, weakly
robust efficient solution, robust efficient solution, and properly robust efficient so-
lution. Then, we have constructed the Mond-Weir type dual program for a robust
semi-infinite programming problem and discussed weak, strong, and strict con-
verse duality theorems to establish the relationship between the primal and its
dual problem. A numerical example of weak duality theorem has been also pro-
vided. We have concluded this paper with an extension of the above-discussed
program to fractional programming problems. This paper opens different avenues
for the future work of the researchers. For example, this work can be extended to
the study of a problem with uncertainty into the objective function also. Also, a
new program can be introduced which has non-differentiable objective functions
and constraints or adding some non-differentiable functions to the respective func-
tions.

Acknowledgment. The authors wish to thank the anonymous referee for the
valuable suggestions which have considerably improved the previous versions of the
manuscript.
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