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SYMPLECTIC LIE GROUPS AND DOUBLED GEOMETRY

D. N. PHAM and F. YE

Abstract. A left invariant flat para-Kähler structure is constructed on the tangent

Lie group of a symplectic Lie group (G,ω). Remarkably, it is shown that the left
invariant para-Kähler form on TG coincides with a certain pullback of the standard

symplectic form on T ∗G. The immediate upshot of this is that T ∗G can be equipped

with a Lie group structure for which the standard symplectic form is left invariant.
Lastly, the double field theory geometry of the double manifold TG is studied using

the geometric framework of Vaisman [22, 23].

1. Introduction

Paracomplex geometry (with particular emphasis on para-Hermitian and para-
Kähler geometry) (cf. [6]) has seen something of a resurgence in the last decade
due to an idea from string theory called double field theory (see [12, 10, 11] and
the references therein). Formally, double field theory is a field theory where the
symmetry of T-duality is made manifest. The mathematical framework of double
field theory centers around a ‘double manifold’ where one takes the local coordi-
nates (x1, . . . , xn) of ordinary spacetime and adds ‘dual’ coordinates (x̃1, . . . , x̃n).
The physics literature on double field theory implicitly associates the following
characteristics to a double manifold:

1. The double manifold is covered by a set of ‘distinguished’ local coordinate
systems (xi, x̃j). If (xi, x̃j) and (yi, ỹj) are overlapping distinguished coor-
dinate systems, then

∂yi

∂x̃j
= 0,

∂ỹj
∂xi

= 0,
∂x̃i
∂ỹj

=
∂yj

∂xi
.

As Vaisman noted in [22], the third condition necessarily implies that ∂x̃i

∂ỹj

and ∂yj

∂xi are locally constant. In particular, a double manifold must be a
type of affine manifold.
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2. The double manifold admits a flat metric η of signature (n, n), where n
is the dimension of the original space. With respect to distinguished local
coordinates (xi, x̃j), η is given locally by

η = dxi ⊗ dx̃i + dx̃i ⊗ dxi.

Ultimately, in [22] it was Vaismann who was the first to realize that double man-
ifolds were actually a type of para-Hermitian manifold. More precisely, Vaisman
identified double manifolds with flat para-Kähler manifolds. Within this frame-
work, Vaisman expressed the basic ideas of double field theory in a differential
geometric invariant manner. Shortly after [22], Vaisman showed that the double
field theory geometry he had defined for flat para-Kähler manifolds could be gen-
eralized to (non-flat) para-Hermitian manifolds [23]. Whether this more general
setting had any relevance to string theory was a question that Vaisman left to the
physicists. Regardless, the geometry of double field theory that was formulated
within this para-Hermitian framework is quite rich from a purely mathematical
perspective. Notably, it has a clear relationship to Hitchin’s generalized geometry
[9, 15] and to objects such as Courant algebroids [22, 23, 5, 8, 16].

The work of Vaisman [22] serves as motivation for the study of flat para-Kähler
manifolds. Following Vaisman, we use the terms ‘double manifold’ and ‘flat para-
Kähler manifold’ interchangeably especially when discussing double field theory.
In this paper, we show that the tangent bundle of a symplectic Lie group admits
a left invariant flat para-Kähler metric, where the tangent bundle is equipped
with its natural Lie group structure. Hence, the tangent bundle of a symplectic
Lie group represents a genuine double manifold for double field theory. It fol-
lows immediately from this that by taking higher iterations of tangent bundles,
T k+1G := T (T kG), where T 0G := G is a (nonabelian) symplectic Lie group, one
can generate (nonabelian) Lie groups of arbitrarily high dimension which admit
left invariant flat para-Kahler metrics.

The rest of this paper is organized as follows. In section 2, we give a lightening
review of the necessary background for this paper. In Section 3, we construct
a left invariant flat para-Kähler structure on the tangent bundle of a symplectic
Lie group. In Section 4, we study the relationship between the left invariant flat
para-Kähler structure on the tangent bundle TG of a symplectic Lie group, and
the cotangent bundle and its standard symplectic form. In particular, we show
that the para-Kähler form on TG arises as a certain pullback of the standard
symplectic form on T ∗G. A nice consequence of this result is that T ∗G can be
endowed with a Lie group structure for which the standard symplectic form is left
invariant. Lastly, in Section 5, we study some of the double field theory geometry
of the double manifold TG for G a symplectic Lie group.

2. Preliminaries

In this section, we recall the relevant background and fix our notation and con-
ventions for the rest of the paper. Throughout this paper, we employ the Einstein
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summation convention of summing over repeated indices unless stated explicitly
otherwise. For a smooth map ϕ : M → N , we denote the corresponding pushfor-
ward between tangent bundles by ϕ∗ : TM → TN . For a vector field A on M , we
denote its value at p ∈M by Ap ∈ TpM . For a Lie group G, the identity element is
denoted as e. The left and right translation maps by an element g ∈ G is denoted
by lg : G→ G and rg : G→ G, respectively. We set g := TeG and equip g with the
Lie algebra structure of the space of left invariant vector fields on G. With some
abuse of notation, we often regard X ∈ g as the left invariant vector field whose
value at e is X. Lastly, for a vector bundle E → M , we denote the sections of E
by Γ(E).

2.1. Symplectic Lie groups

In this section, we give a quick overview of symplectic Lie groups. A more com-
prehensive review can be found in [3].

Definition 2.1. A symplectic Lie group is a Lie group G together with a left
invariant symplectic form ω. The pair (g, ωe) is called a symplectic Lie algebra.

Left invariance implies that the structure of a symplectic Lie group is essentially
determined at the Lie algebra level. With abuse of notation, we drop the subscript
‘e’ from ωe and simply write (g, ω) for the associated symplectic Lie algebra. The
cocycle condition for ω is

−dω(X,Y, Z) = ω([X,Y ], Z) +ω([Y,Z], X) +ω([Z,X], Y ) = 0 for all X,Y, Z ∈ g.

Fixing a basis X1, . . . , Xn of g and writing [Xi, Xj ] = ckijXk and ωij = ω(Xi, Xj),
the cocycle condition for ω in component form is

(2.1.1) clijωlk + cljkωli + clkiωlj = 0.

Denoting the inverse (ωij) := (ωij)
−1, the cocycle condition can be rewritten as

(2.1.2) cliaωljω
am = cmij + cljaωliω

am.

We conclude this section with some examples.

Example 2.2. The Lie group of affine transformations on Rn is the Lie group
of (n+ 1)× (n+ 1) real matrices given by

Aff(n) =

{(
A v
0 1

)
| A ∈ GL(n,R), v ∈ Rn

}
.

Its corresponding Lie algebra is then

aff(n) =

{(
A v
0 0

)
| A ∈ gl(n,R), v ∈ Rn

}
.

A natural basis for aff(n) is {Eij | 1 ≤ i ≤ n, 1 ≤ j ≤ n + 1}, where Eij is the
(n+ 1)× (n+ 1) matrix whose elements are all zero except for the (i, j) element
which is 1. Let

α = E∗12 + E∗23 + · · ·+ E∗n,n+1.
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Let ω be the left invariant 2-form on Aff(n) given by

ω(X,Y ) := −dα(X,Y ) = α([X,Y ]) for all X,Y ∈ aff(n).

As an exact 2-form, ω is automatically closed. With some additional work, one
can also show that ω is nondegenerate (cf. [1]). Hence, (Aff(n), ω) is a symplectic
Lie group.

Example 2.3. Let h4 be the 4-dimensional Lie algebra with basis e1, e2, e3, e4

whose nonzero bracket relations are given by

[e1, e2] = e3, [e4, e3] = e3, [e4, e1] =
1

2
e1, [e4, e2] = e1 +

1

2
e2.

Define ω ∈ ∧2h∗4 by

ω = a(e∗1 ∧ e∗2 − e∗3 ∧ e∗4) + be∗1 ∧ e∗4 + ce∗2 ∧ e∗4 a 6= 0.

One can show that the pair (h4, ω) is a symplectic Lie algebra (cf. [18]). Hence,
any Lie group whose Lie algebra is (isomorphic to) h4 is a symplectic Lie group
with left invariant symplectic form given by ω.

2.2. Para-Kähler Geometry

Paracomplex geometry (cf. [6]) is essentially the ‘real’ analog of complex geom-
etry. Recall that in complex geometry, one begins with the notion of an almost
complex manifold which is a smooth manifold M together with an endomorphism
J : TM → TM satisfying J2 = − id. The morphism implies a decomposition of
the complexified tangent bundle into its ±i eigenbundles:

TMC = TM (1,0) ⊕ TM (0,1).

The almost complex manifold (M,J) is a complex manifold if and only if TM (1,0)

(and hence TM (0,1)) are involutive. In this case, J is then called an integrable
almost complex structure or simply a complex structure. The integrability of J is
equivalent to the vanishing of the Nijenhuis tensor

NJ(X,Y ) := J [X, JY ] + J [JX, Y ] + [X,Y ]− [JX, JY ] for all X,Y ∈ Γ(TM).

In paracomplex geometry, one has the following analog of this idea.

Definition 2.4. An almost paracomplex manifold is a pair (M,K), where M
is a smooth manifold of dimension 2n and K : TM → TM is an endomorphism
satisfying K2 = id such that the kernels of P+ := 1

2 (id +K) and P− := 1
2 (id−K)

are both subbundles of TM of rank n. The endomorphism K is called an almost
paracomplex structure. (M,K) is a paracomplex manifold if the tensor

NK(X,Y ) := K[X,KY ]+K[KX,Y ]− [X,Y ]− [KX,KY ] for all X,Y ∈ Γ(TM)

vanishes. In this case, K is called an integrable almost paracomplex structure or
simply a paracomplex structure.

The kernels of P− and P+, respectively, are the +1 and −1 eigenbundles of K:

L := kerP−, L̃ := kerP+.
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The ±1 eigenbundles then yield a direct sum decomposition of the (real) tangent
bundle.

TM = L⊕ L̃.
It is easy to see thatNK ≡ 0 if and only if L and L̃ are both involutive distributions.

Unlike the complex case, however, the involutivity of L and L̃ are independent of
one another.

Example 2.5. Let S1 and S2 be smooth manifolds of dimension n. Then
S1 × S2 has a natural paracomplex structure K. A product coordinate system
(W1×W2, x

i, yj) consists of natural paracomplex coordinates. On this coordinate
system, K is locally given by

K|W1×W2 =
∂

∂xi
⊗ dxi − ∂

∂yi
⊗ dyi.

On W1 ×W2, the +1 eigenbundle L has local frame ∂
∂xi , i = 1, . . . , n, and the −1

eigenbundle has local frame ∂
∂yi , i = 1, . . . , n.

For a general paracomplex manifold (M,K), it follows from the Frobenius the-

orem that the involutivity of the +1 and −1 eigebundles L and L̃ implies that
for every p ∈ M , there is a coordinate neighborhood (U, xi, yj) such that ∂

∂xi ,

i = 1, . . . , n is a local frame for L and ∂
∂yi , i = 1, . . . , n is a local frame for L̃. This

natural division of coordinates is one of the requirements for the double manifold
of double field theory.

Example 2.5 is a very trivial way to construct a paracomplex manifold. A more
interesting way (which is relevant to the current paper) is as follows. Starting
with a manifold M and a connection ∇ on M , we can always turn the tangent
bundle TM (regarded as a manifold in its own right) into both an almost complex
and an almost paracomplex manifold. Recall that a connection ∇ determines a
direct sum decomposition of TTM := T (TM) into a horizontal subbundle H and
a vertical subbundle V (cf. [7]):

TTM = H ⊕ V.

The vertical subbundle is simply kerπ∗ where π : TM → M is the natural pro-
jection. The horizontal subbundle H is determined by the connection ∇. For the
convenience of the reader, we briefly recall the details of this fact. From ∇, we
construct a map

F∇ : TTM → TM

called the connection map which is defined as follows. Let X ∈ TM and let
ξ ∈ TX(TM). Let σ(t) : (−ε, ε) → TM be any smooth curve such that σ(0) = X
and σ̇(0) = ξ. Then

F∇(ξ) :=
Dσ

dt

∣∣∣
t=0

,

where D/dt is the covariant derivative associated to ∇ of the vector field σ(t) along
the curve π(σ(t)). The horizontal subbundle is then defined by H := kerF∇. From
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the direct sum decomposition TTM = H ⊕ V , one constructs an almost complex
structure J∇ and an almost paracomplex structure K∇ via (cf. [21]):

π∗(J
∇ξ) = −F∇ξ, F∇(J∇ξ) = π∗ξ

and

K∇
∣∣∣
H

= idH , K∇
∣∣∣
V

= − idV .

The above definitions imply the following compatibility relation:

(2.2.1) J∇K∇ = −K∇J∇.
By direct calculation, one obtains necessary and sufficient conditions for the inte-
grability of J∇ and K∇ (cf. [7, 21]).

Proposition 2.6.

(i) J∇ is an integrable almost complex structure iff ∇ is flat and torsion free.
(ii) K∇ is an integrable almost paracomplex structure iff ∇ is flat.

We conclude this section by recalling the definitions of para-Hermitian and para-
Kähler manifolds (which are analogous to the notions of Hermitian and Kähler
manifolds in complex geometry).

Definition 2.7. A para-Hermitian manifold is a triple (M,K, g), where (M,K)
is a paracomplex manifold and g is a pseduo-Riemannian metric satisfying
g(K·,K·) = −g(·, ·). The associated fundamental 2-form is defined by

ω(·, ·) := g(K·, ·).
(M,K, g) is called para-Kähler if dω = 0. In this case, ω is called the para-Kähler
form.

Remark 2.8. Note that the metric g of a 2n-dimensional para-Hermitian man-

ifold (M,K, g) has signature (n, n). Moreover, if L is the +1 eigenbundle and L̃
is the −1 eigenbundle, then

g(L,L) = ω(L,L) = g(L̃, L̃) = ω(L̃, L̃) = 0,

where ω is the fundamental 2-form. Note also that g(·, ·) = ω(K·, ·).

2.3. The tangent Lie group

Let G be a Lie group with multiplication m : G × G → G and inverse ι : G → G.
For (g, h) ∈ G×G, we make the following natural identification:

T(g,h)(G×G) ' TgG× ThG.
The tangent bundle TG inherits a natural Lie group structure with group product

m∗ : TG× TG→ TG, m∗ : TgG× ThG→ TghG,

and inverse
ι∗ : TG→ TG, ι∗ : TgG→ Tg−1G.

TG with this natural Lie group structure is called the tangent Lie group. For
X ∈ g and g ∈ G, we define Xg := (lg)∗X ∈ TgG. Every element of TgG is then
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(uniquely) given by Xg for some X ∈ g. For Xg ∈ TgG and Yh ∈ ThG, one can
show that the group product and inverse on TG are given respectively by

Xg · Yh = (rh)∗Xg + Ygh ∈ TghG

and

X−1
g = −(rg−1)∗X ∈ Tg−1G.

The identity element on TG is then 0 ∈ g. Recall that one has a smooth vector
bundle isomorphism

ϕ : TG→ G× g, Xg 7→ (g,X).

Transferring the natural Lie group structure of TG to G× g via ϕ, we see that

(2.3.1)
(g,X) · (h, Y ) = (gh,Adh−1X + Y ),

(g,X)−1 = (g−1,−AdgX).

Hence, the natural Lie group structure on TG is isomorphic to the semidirect
product Gn g, where G has a right action on g given by X · g := Adg−1X and g is
regarded as an abelian group. Using this canonical isomorphism, we set TG = Gng
for the remainder of the paper. The tangent space of TG at (g,X) then has the
following natural identification:

T(g,X)(TG) = T(g,X)(Gn g) = TgG× TXg ' TgG× g.

The underlying vector space of the Lie algebra of TG is then identified with

T0e
(TG) = T(e,0)(Gn g) ' g× g.

For X ∈ g, one finds that the left invariant vector fields on TG determined by
(X, 0) and (0, X) take the following values at the point (g, Y ) ∈ TG:

(2.3.2) (X, 0)(g,Y ) = (Xg,−[X,Y ]) ∈ TgG× g

and

(2.3.3) (0, X)(g,Y ) = (0g, X) ∈ TgG× g.

By direct calculation, one finds that the Lie algebra structure of TG is given by

[(X, 0), (Y, 0)]=([X,Y ], 0), [(X, 0), (0, Y )]=(0, [X,Y ]), [(0, X), (0, Y )]=(0, 0).

The left invariant vector fields (X, 0) and (0, X) can also be understood in terms
of the notion of complete and vertical lifts (cf. [24]). We briefly recal the general
construction. Let M be a manifold and A a vector field on M . Let φt be the flow
of A. The vector field A induces two flows on TM (viewed as a manifold in its
own right); one flow is given by

ρAt : TM → TM, ρAt (B) := B + tAp for all B ∈ TpM, p ∈M

and the other flow is φ̂t := (φt)∗. The vector field on TM whose flow is ρA is
called the vertical lift of A and is denoted by Av and the vector field whose flow

is φ̂t is called the complete lift of A and is denoted as Ac. One can show that for
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X ∈ g, the left invariant vector fields (X, 0) and (0, X) on the tangent Lie group
TG are none other than the complete and vertical lifts of X, respectively, that is,

Xc = (X, 0), Xv = (0, X).

Expressing the above bracket relations in this new light, we have

(2.3.4) [Xc, Y c] = [X,Y ]c, [Xc, Y v] = [X,Y ]v, [Xv, Y v] = 0.

3. The tangent Lie group as a double manifold

In this section, we show that the tangent Lie group of every symplectic Lie group
admits a flat para-Kähler metric and thus represents a double manifold for double
field theory. As we are working with Lie groups, we limit ourselves only to left
invariant structures.

3.1. Paracomplex structure

Let G be a Lie group of dimension n. As noted in Section 2.3, we make the
identification TG = Gn g for the tangent Lie group. We also make the following
identification with regard to the tangent space of TG at the point (g, Y ):

(3.1.1) T(g,Y )(TG) ' TgG× TY g ' TgG× g.

Let X1, . . . , Xn be a basis for g and let ∇ be an arbitrary left invariant connection1

on G. Write
[Xi, Xj ] = ckijXk, ∇XiXj = ΓkijXk.

As noted in Section 2.3, the complete and vertical lifts of X ∈ g are the left
invariant vector fields of TG given by

Xc = (X, 0), Xv = (0, X).

Let K∇ be the associated almost paracomplex structure defined in Section 2.2.
We now determine the conditions on ∇ so that K∇ is left invariant. We will see
that there is only one possible choice for ∇ that yields left invariance for K∇ and
this choice is also integrable. Let

TTG = H ⊕ V
be the direct sum decomposition of TTG into the horizontal and vertical subbun-
dles determined by ∇. We begin with the following lemma for the connection map
F∇ : TTG→ TG.

Lemma 3.1. Let (g, Y ) ∈ TG and (Ag, B) ∈ T(g,Y )(TG), where A,B, Y ∈ g
have components

Y = yiXi, A = aiXi, B = biXi.

Then F∇(Ag, B) =
[
bk + aiyjΓkij

]
(Xk)g.

1Recall that a connection ∇ on a Lie group G is left invariant if ∇XY is left invariant when X

and Y are left invariant vector fields. Hence, the space of left invariant connections is in one to

one correspondence with the space of bilinear maps g× g→ g, where g = Lie(G).
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Proof. Let C(t) = (c1(t), c2(t)), where

c1(t) := g · exp(tA), c2(t) := Y + tB.

Then C(0) = (g, Y ) and Ċ(0) = (Ag, B). Let ŷj(t) := yj and b̂j(t) := tbj . By
definition,

F∇(Ag, B) :=
DC

dt

∣∣∣
t=0

=

[
d

dt

∣∣∣
t=0

(ŷj(t) + b̂j(t))

]
(Xj)g + (ŷj(0) + b̂j(0))ai∇(Xi)gXj

= bj(Xj)g + aiyjΓkij(Xk)g

=
[
bk + aiyjΓkij

]
(Xk)g ∈ TgG. �

Proposition 3.2. The almost paracomplex structure K∇ is left invariant and
integrable if and only if ∇XY = [X,Y ] for X,Y ∈ g. In this case, the horizontal
subbundle H has global frame Xc

1 , . . . , X
c
n. The vertical subbundle V (which is

always independent of ∇) has global frame Xv
1 , . . . , X

v
n. In particular, K∇Xc

i = Xc
i

and K∇Xv
i = −Xv

i . When G is nonabelian and ∇XY = [X,Y ] for X,Y ∈ g, the
almost complex structure J∇ is not integrable.

Proof. Write

K∇Xc
i = pjiX

c
j + qjiX

v
j

and

K∇Xv
i = rjiX

c
j + sjiX

v
j .

K∇ is then left invariant precisely when pji , q
j
i , r

j
i , and sji are constants. Let

(g, Y ) ∈ TG. Since H = kerF∇, it follows from Lemma 3.1 that H(g,Y ) is spanned
by

(3.1.2) Ai := ((Xi)g,−yjΓkijXk), i = 1, . . . , n.

Since the vertical space is kerπ∗, where π : TG→ G is the projection, we see that
V(g,Y ) is spanned by

(3.1.3) (Xv
i )(g,Y ) = (0g, Xi), i = 1, . . . , n.

In other words, Xv
1 , . . . , X

v
n is a global frame for V . Hence, K∇Xv

i = −Xv
i (and

thus rji = 0 and sji = −δji ). Using (2.3.2) and (2.3.3), we have

(Xc
i )(g,Y ) = Ai + yj(Γkij − ckij)(Xv

k )(g,Y ),

Hence,

K∇(Xc
i )(g,Y ) = Ai − yj(Γkij − ckij)(Xv

k )(g,Y ).(3.1.4)

(3.1.4) implies

pji = δji , qki = 2yj(ckij − Γkij).

Since Y = yiXi is arbitrary, qki is a constant if and only if Γkij = ckij , which is
equivalent to the statement that ∇XY = [X,Y ] for X,Y ∈ g. The Jacobi identity
now implies that ∇ is flat when Γkij = ckij ; Proposition 2.6 implies that K∇ is



170 D. N. PHAM and F. YE

paracomplex. Note however that if Γkij = ckij , then ∇ is torsion free precisely when
g (and hence G) is abelian. Proposition 2.6 implies that the associated almost
complex structure J∇ is not integrable when G is nonabelian.

Taking Γkij = ckij , (3.1.2) and (2.3.2) imply that

Ai = (Xc
i )(g,Y ), i = 1, . . . , n.

Hence, Xc
1 , . . . , X

c
n is a global frame for H, which implies that

K∇Xc
i = Xc

i . �

3.2. The metric

Let (G,ω) be a symplectic Lie group and fix a basis X1, . . . , Xn of g. Write

[Xi, Xj ] = ckijXk, ωij := ω(Xi, Xj), (ωij) := (ωij)
−1.

A natural basis on the Lie algebra of TG (which we denote as Lie(TG)) is then

Xc
1 , . . . , X

c
n, X

v
1 , . . . , X

v
n.

The Lie algebra structure on Lie(TG) is then given by (2.3.4). Let K denote the
left invariant paracomplex structure on TG given by Proposition 3.2.

It was proved in [19] that the tangent Lie group of a symplectic Lie group is
itself a symplectic Lie group. However, the left invariant symplectic form con-
structed in [19] is incompatible with the left invariant paracomplex structure K.
Fortunately, the construction given in [19] can be easily modified to yield a left
invariant symplectic form which is compatible with K. Let ω̂ be the left invariant
2-form on TG given by

(3.2.1) ω̂(Xc, Y c) = ω̂(Xv, Y v) = 0, ω̂(Xc, Y v) = ω(X,Y ) for all X,Y ∈ g.

Note that the definition of ω̂ also implies ω̂(Xv, Y c) = ω(X,Y ).

Proposition 3.3. ω̂ is a left invariant symplectic form on TG which satisfies
ω̂(K·,K·) = −ω̂(·, ·).

Proof. The left invariance of ω̂ follows immediately from the definition of ω̂ in
(3.2.1) and the fact that ω is a left invariant 2-form on G. To show that ω̂ is
closed, it suffices to show that

−dω̂(A,B,C) = ω̂([A,B],C) + ω̂([B,C],A) + ω̂([C,A],B) = 0

for all A, B, C ∈ Lie(TG). Since A, B, and C are ultimately a sum of complete
and vertical lifts of left invariant vector fields on G, we just need to check that:

dω̂(Xv, Y v, Zv) = 0,(3.2.2)

dω̂(Xv, Y v, Zc) = 0,(3.2.3)

dω̂(Xv, Y c, Zc) = 0,(3.2.4)

dω̂(Xc, Y c, Zc) = 0(3.2.5)

for all X,Y, Z ∈ g. Equations (3.2.2) and (3.2.5) follow from the fact that

[Xc, Y c] = [X,Y ]c, [Xv, Y v] = 0
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for all X,Y ∈ g and the fact that H and V are both isotropic with respect to ω̂ by
definition. For (3.2.3), we have

−dω̂(Xv, Y v, Zc) = ω̂([Xv, Y v], Zc) + ω̂([Y v, Zc], Xv) + ω̂([Zc, Xv], Y v)

= ω̂([Y, Z]v, Xv) + ω̂([Z,X]v, Y v)

= 0,

where we have used the fact that [Xv, Y c] = [X,Y ]v. For (3.2.4), we have

−dω̂(Xv, Y c, Zc) = ω̂([Xv, Y c], Zc) + ω̂([Y c, Zc], Xv) + ω̂([Zc, Xv], Y c)

= ω̂([X,Y ]v, Zc) + ω̂([Y,Z]c, Xv) + ω̂([Z,X]v, Y c)

= ω([X,Y ], Z) + ω([Y,Z], X) + ω([Z,X], Y )

= −dω(X,Y, Z)

= 0.

For the non-degeneracy of ω̂, let A ∈ Lie(TG) be nonzero. Then A = Xc + Y v

for some X,Y ∈ g. Suppose first that X 6= 0. Then there exists Z ∈ g such that
ω(X,Z) 6= 0. So

ω̂(A, Zv) = ω̂(Xc, Zv) = ω(X,Z) 6= 0.

On the other hand, if X = 0, then Y 6= 0 and there exists a Z ′ ∈ g such that
ω(Y, Z ′) 6= 0. Then

ω̂(A, Z ′
c
) = ω̂(Y v, Z ′

c
) = ω(Y, Z ′) 6= 0.

Lastly, to verify the compatibility of ω̂ and K, let A,B ∈ Lie(TG). Then

A = Xc
1 + Y v1 , B = Xc

2 + Y v2

for some X1, Y1, X2, Y2 ∈ g. Then

ω̂(KA,KB) = ω̂(Xc
1 − Y v1 , Xc

2 − Y v2 ) = −ω̂(Xc
1 , Y

v
2 )− ω̂(Y v1 , X

c
2)

= −ω̂(Xc
1 + Y v1 , X

c
2 + Y v2 ) = −ω̂(A,B). �

Let η be defined by

(3.2.6) η(·, ·) := ω̂(K·, ·).

(3.2.1) and (3.2.6) immediately imply

(3.2.7)
η(Xc, Y c) = η(Xv, Y v) = 0,

η(Xc, Y v) = η(Y v, Xc) = ω(X,Y ), ∀ X,Y ∈ g.

(3.2.6), (3.2.7), and Proposition 3.3 imply that η is a left invariant para-Kähler
metric for (TG,K). It only remains to show that η is also flat. As a preliminary
step in doing this, let us first calculate the Levi-Civita connection of η with respect
to the above basis on Lie(TG). We denote the Levi Civitia connection by ∇0, and
we adopt the following notation for the Christoffel symbols:

∇0
Xc

i
Xc
j = ΓkijX

c
k + Γk̄ijX

v
k ,

∇0
Xc

i
Xv
j = Γkij̄X

c
k + Γk̄ij̄X

v
k ,



172 D. N. PHAM and F. YE

∇0
Xv

i
Xc
j = ΓkījX

c
k + Γk̄ījX

v
k ,

∇0
Xv

i
Xv
j = Γkīj̄X

c
k + Γk̄īj̄X

v
k .

Lemma 3.4. The nonzero Christoffel symbols of the Levi-Civita connection of
η with respect to the basis Xc

1 , . . . , X
c
n, X

v
1 , . . . , X

v
n are given by

Γmij = clikωljω
km, Γm̄ij̄ = cmij .

Proof. Let A, B, C ∈ Lie(TG). Since η is left invariant, the Koszul formula
reduces to

η(∇0
AB,C) =

1

2
(η([A,B],C) + η([C,A],B) + η([C,B],A)) .

Let A = Xc
i , B = Xc

j , and C = Xc
k. Then the Koszul formula along with (3.2.7)

and (2.3.4) imply

η(∇0
Xc

i
Xc
j , X

c
k) = 0.(3.2.8)

(3.2.8) and (3.2.7) imply that Γmij = 0. Taking C = Xv
k gives

(3.2.9)

η(∇0
Xc

i
Xc
j , X

v
k ) =

1

2

(
η([Xc

i , X
c
j ], Xv

k ) + η([Xv
k , X

c
i ], Xc

j ) + η([Xv
k , X

c
j ], Xc

i )
)
,

Γlijη(Xc
l , X

v
k ) =

1

2

(
η([Xi, Xj ]

c, Xv
k )+η([Xk, Xi]

v, Xc
j )+η([Xk, Xj ]

v, Xc
i )
)
,

Γlijω̂(Xl, Xk) =
1

2
(ω([Xi, Xj ], Xk)− ω([Xk, Xi], Xj)− ω([Xk, Xj ], Xi)) ,

Γlijωlk =
1

2
(clijωlk − clkiωlj − clkjωli).

(3.2.9) implies

(3.2.10) Γmij =
1

2
(cmij + clikωljω

km + cljkωliω
km).

Applying (2.1.2) to (3.2.10) gives

(3.2.11) Γmij = clikωljω
km.

Next substituting A = Xc
i , B = Xv

j , and C = Xc
k into the Koszul formula (and

simplifying) gives
(3.2.12)

η(∇0
Xc

i
Xv
j , X

c
k) =

1

2
(−ω([Xi, Xj ], Xk) + ω([Xk, Xi], Xj)− ω([Xk, Xj ], Xi)

−Γl̄ij̄ωlk =
1

2
(−clijωlk + clkiωlj − clkjωli).

(3.2.12) implies

(3.2.13) Γm̄ij̄ =
1

2
(cmij + clikωljω

km − cljkωliωkm).

Applying (2.1.2) to (3.2.13) gives

(3.2.14) Γm̄ij̄ = cmij .
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If we use Xv
k in place of Xc

k in the previous expression, the Koszul formula gives

η(∇0
Xc

i
Xv
j , X

v
k ) = 0

which implies Γm
ij̄

= 0.

For the next case, substitute A = Xv
i , B = Xc

j , and C = Xc
k into the Koszul

formula (and simplify):

η(∇0
Xv

i
Xc
j , X

c
k) =

1

2
(−ω([Xi, Xj ], Xk)− ω([Xk, Xi], Xj) + ω([Xk, Xj ], Xi))

=
1

2
dω(Xi, Xj , Xk) = 0.

This implies Γm̄
īj

= 0. The remaining Christoffel symbols Γm
īj

, Γm
īj̄

, Γm̄
īj̄

are shown

to be zero by a similar application of the Koszul formula and (2.3.4). �

Lemma 3.4 has the following immediate corollary.

Corollary 3.5. For A ∈ Lie(TG), let adAB := [A,B] for B ∈ Lie(TG) denote

the adjoint action on Lie(TG). Let ad†A : Lie(TG) → Lie(TG) denote the adjoint
of adA with respect to η, that is,

η(adAB,C) = η(B, ad†AC).

Then

∇0
XcY c = −ad†XcY

c, ∇0
XcY v = [X,Y ]v, ∇0

XvA = 0

for X,Y ∈ g and A ∈ Lie(TG).

Proof. ∇0
XcY v = [X,Y ]v follows from Γm

ij̄
= 0 and Γm̄

ij̄
= cmij . ∇0

XvA = 0

follows from

Γmīj = Γm̄īj = Γmīj̄ = Γm̄īj̄ = 0.

To verify the remaining equality, observe that

η(ad†XcY
c, Zc) = η(Y c, adXcZc) = η(Y c, [X,Z]c) = 0

for all X,Y, Z ∈ g. This implies that ad†Xc
i
Xc
j is of the form ad†Xc

i
Xc
j = AkijX

c
k. So

η(ad†Xc
i
Xc
j , Z

v
k ) = η(Xc

j , adXc
i
Xv
k ),

Alijη(Xc
l , X

v
k ) = clikη(Xc

j , X
v
l ),

Alijωlk = clikωjl.

Hence,

Amij = clikωjlω
km = −Γmij .

This in turn implies ∇0
XcY c = −ad†XcY c. �

Theorem 3.6. Let (G,ω) be a symplectic Lie group and let η be defined by
(3.2.6). Then η is a flat left invariant para-Kähler metric on (TG,K).
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Proof. As noted previously, the definition of η and Proposition 3.3 immediately
imply that η is a left invariant para-Kähler metric. To prove flatness, we need to
verify that

R(A,B)C := ∇0
A∇0

BC−∇0
B∇0

AC−∇0
[A,B]C = 0

for all A,B,C ∈ Lie(TG). Since every A ∈ Lie(TG) is of the form A = Xc + Y v

for some X,Y ∈ g and ∇0
Xv ≡ 0 by Lemma 3.4 and Corollary 3.5, we only need

to check that

R(Xc
i , X

c
j )Xc

k = 0, R(Xc
i , X

c
j )Xv

k = 0,

where X1, . . . , Xn is (again) a basis of g. Expand R(Xc
i , X

c
j )Xc

k by

R(Xc
i , X

c
j )Xc

k =
[
ΓljkΓmil − ΓlikΓmjl − clijΓmlk

]
Xc
m.

Using Lemma 3.4, we compute the coefficients:

ΓljkΓmil − ΓlikΓmjl − clijΓmlk
= cajbωakω

blcpiqωplω
qm − caibωakωblc

p
jqωplω

qm − clijcalbωakωbm

= −cajbωakcbiqωqm + caibωakc
b
jqω

qm − clijcalqωakωqm

= [−cajbcbiq + caibc
b
jq − clijcalq]ωakωqm

= −[cbqic
a
bj + cbjqc

a
bi + clijc

a
lq]ωakω

qm = 0,

where the last equality follows from the Jacobi identity expressed in terms of the
structure constants of the basisX1, . . . , Xn of g. This shows that R(Xc

i , X
c
j )Xc

k=0.
For R(Xc

i , X
c
j )Xv

k , we have

R(Xc
i , X

c
j )Xv

k =
[
Γl̄jk̄Γm̄il̄ − Γl̄ik̄Γm̄jl̄ − c

l
ijΓ

m̄
lk̄

]
Xv
m = [cljkc

m
il − clikcmjl − clijcmlk]Xv

m

= −[cljkc
m
li + clkic

m
lj + clijc

m
lk]Xv

m = 0.

This completes the proof for flatness. �

Remark 3.7. In [17], families of hypersymplectic structures were constructed
on the tangent bundle of connected, simply connected special symplectic Lie
groups. For hypersymplectic geometry, the natural Lie group structure on the
tangent bundle is not sufficient. Special symplectic Lie groups carry the addi-
tional structure needed to deform the natural Lie group structure of the tangent
bundle so that hypersymplectic structures become possible. Formally, a special
symplectic Lie group is a triple (G,ω,∇) such that (G,ω) is a symplectic Lie group
and ∇ is a left invariant flat torsion free connection on G such that ∇ω = 0. With
G connected and simply connected, the Lie group structure on TG is defined so
that its Lie algebra structure is given by

[(X1, Y1), (X2, Y2)] = ([X1, X2],∇X1
Y2 −∇X2

Y1)

for Xi, Yi ∈ g. From this, one sees that for G nonabelian, the deformed Lie group
structure on TG defined by ∇ never coincides with the natural Lie group structure
on TG (which is the Lie group structure assumed throughout this paper).
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4. Relation to the cotangent bundle
and the standard symplectic form

Let (G,ω) be a symplectic Lie group. Once again, let X1, . . . , Xn be a basis of
g, ωij := ω(Xi, Xj), (ωij) := (ωij)

−1, and write [Xi, Xj ] = ckijXk. It is a well
known fact that every symplectic Lie group admits a left invariant flat torsion free
connection (cf. [3]). On (G,ω), this connection (which we denote as ∇ω) is given
by

ω(∇ωXY,Z) = −ω(Y, [X,Z]), X, Y, Z ∈ g.

If the Christoffel symbols are defined by ∇ωXi
Xj = ΓkijXk, a direct calculation

shows that

Γmij = clikωljω
km.

Proposition 3.2 implies that the paracomplex structure on TG defined by ∇ω
cannot be left invariant.

It is another well known fact that any manifold which admits a flat torsion
free connection also admits an affine structure [2]. It follows as a special case of a
result of Bejan2 [4, 6] that the cotangent bundle of any affine manifold admits a flat
para-Kähler structure such that the para-Kähler form is the canonical symplectic
form on the cotangent bundle.

The above discussion shows that a symplectic Lie group is also an affine man-
ifold. Hence, its cotangent bundle admits a flat para-Kähler structure. Conse-
quently, it’s natural that we compare the flat para-Kähler structure on T ∗G with
the flat para-Kähler structure on TG given by Theorem 3.6. We will show that
the flat para-Kähler structures on TG and T ∗G are in fact equivalent. From this
equivalence, we gain something quite interesting: a Lie group structure on T ∗G for
which its flat para-Kähler structure (in particular, the standard symplectic form)
is left invariant.

Before establishing this equivalence, let us first identify T ∗G (as a manifold)
with G× g∗. For α ∈ g∗, let

αg := (lg−1)∗α ∈ T ∗gG.

Then every element of T ∗G is of the form αg for some α ∈ g∗ and some g ∈ G.
Hence, T ∗G is naturally identified with G× g∗ via

G× g∗
∼→ T ∗G, (g, α) 7→ αg.

From this point forth, we set T ∗G = G× g∗ (as a manifold). Define

ϕω : TG
∼→ T ∗G, (g,X) 7→ (g, [ω(X)) for all X ∈ g, g ∈ G

where [ω : g → g∗ is given by [ω(X) := ω(X, ·). We now endow T ∗G with a Lie
group structure by declaring ϕω to be a Lie group isomorphism. Explicitly, one

2An elementary proof of Bejan’s result for the special case of affine manifolds is given in Appendix

A for the convenience of the reader.
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finds that the group structure on T ∗G is given by

(4.0.1)
(g, α) · (h, β) = (gh, [ω ◦Adh−1 ◦ ]ω(α) + β),

(g, α)−1 = (g−1,−[ω ◦Adg ◦ ]ω(α)),

where ]ω = [−1
ω .

Proposition 4.1. Let Ω be the standard symplectic form on T ∗G and let ω̂
be the para-Kähler form on TG given by Proposition 3.3. Then ϕ∗ωΩ = ω̂. In
particular, Ω is a left invariant symplectic form on T ∗G when T ∗G is equipped
with the group law given by (4.0.1).

Proof. Let θ denote the Liouville one-form on T ∗G. Then Ω = dθ. Let (g, α) ∈
T ∗G and

(Xg, β) ∈ T(g,α)(T
∗G) ' TgG× g∗, X ∈ g.

One finds that

(4.0.2) θ(g,α)(Xg, β) = α(X).

Let θ′ = ϕ∗ωθ. For (g, Y ) ∈ TG and (Xg, Z) ∈ T(g,Y )(TG) ' TgG× g, we have

(4.0.3) θ′(g,Y )(Xg, Z) = ω(Y,X).

Let Ω′ := ϕ∗ωΩ = ϕ∗ωdθ. Using (4.0.3), we have

Ω′(Xc
i , X

c
j )
∣∣∣
(g,Y )

= (ϕ∗ωdθ)(Xc
i , X

c
j )
∣∣∣
(g,Y )

= (dθ′)(Xc
i , X

c
j )
∣∣∣
(g,Y )

= (Xc
i )(g,Y )(θ

′(Xc
j ))− (Xc

j )(g,Y )(θ
′(Xc

i ))− θ′(g,Y )([X
c
i , X

c
j ])

= −ω([Xi, Y ], Xj) + ω([Xj , Y ], Xi)− ω(Y, [Xi, Xj ])

= ω([Y,Xi], Xj) + ω([Xj , Y ], Xi) + ω([Xi, Xj ], Y )

= −dω(Xi, Xj , Y ) = 0,

Ω′(Xv
i , X

v
j )
∣∣∣
(g,Y )

= (ϕ∗ωdθ)(Xv
i , X

v
j )
∣∣∣
(g,Y )

= (dθ′)(Xv
i , X

v
j )
∣∣∣
(g,Y )

= (Xv
i )(g,Y )(θ

′(Xv
j ))− (Xv

j )(g,Y )(θ
′(Xv

i ))− θ′(g,Y )([X
v
i , X

v
j ])

= ω(Xi, 0)− ω(Xj , 0)− ω(Y, 0) = 0.

Ω′(Xc
i , X

v
j )
∣∣∣
(g,Y )

= (ϕ∗ωdθ)(Xc
i , X

v
j )
∣∣∣
(g,Y )

= (dθ′)(Xc
i , X

v
j )
∣∣∣
(g,Y )

= (Xc
i )(g,Y )(θ

′(Xv
j ))− (Xv

j )(g,Y )(θ
′(Xc

i ))− θ′(g,Y )([X
c
i , X

v
j ])

= −ω([Xi, Y ], 0)− ω(Xj , Xi)− ω(Y, 0) = ω(Xi, Xj).

From the definition of ω̂ in (3.2.1), we have Ω′ = ω̂. �
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Let

(4.0.4) X̄c
i := (ϕω)∗X

c
i , X̄v

i := (ϕω)∗X
v
i .

For (g, α) ∈ T ∗G, we have

(4.0.5) (X̄c
i )(g,α) = ((Xi)g,−[ω([Xi, ]ω(α)])), (X̄v

i )(g,α) = (0g, [ω(Xi)).

Equip T ∗G with the group law given by (4.0.1). Then {X̄c
i , X̄

v
j }i,j=1,...,n is a basis

of Lie(T ∗G). Let

K̄ : T (T ∗G)→ T (T ∗G)

denote the paracomplex structure on T ∗G induced by the affine structure of G.
From the proof of Theorem A.1, the −1 eigenbundle of K̄ is given by the vertical
distribution kerπ∗, where π : T ∗G → G is the natural projection. (4.0.5) implies
that {X̄v

i }i=1,...,n is a global frame for the vertical distribution kerπ∗. Since ω̂ =
ϕ∗ωΩ, we have

(4.0.6) Ω(X̄c
i , X̄

c
j ) = Ω(X̄v

i , X̄
v
j ) = 0, Ω(X̄c

i , X̄
v
j ) = ω̂(Xc

i , X
v
j ) = ω(Xi, Xj).

Since Ω is the para-Kähler form associated to K̄ and X̄v
i are sections of the −1

eigenbundle of K̄, we have

(4.0.7)
Ω(K̄X̄c

i , K̄X̄
v
j ) = −Ω(X̄c

i , X̄
v
j ),

Ω(K̄X̄c
i ,−X̄v

j ) = Ω(X̄c
i ,−X̄v

j ).

(4.0.6), (4.0.7), and the nondegeneracy of Ω implies

(4.0.8) K̄X̄c
i = X̄c

i .

Hence, {X̄c
i }i=1,...,n is a global frame for the +1 eigenbundle of K̄. This implies

(4.0.9) (ϕω)∗ ◦K = K̄ ◦ (ϕω)∗.

Now let η̄(·, ·) := Ω(K̄·, ·) denote the para-Kähler metric on T ∗G. (4.0.6) implies

(4.0.10) ϕ∗ω η̄ = η.

Putting everything together, we have proved the following:

Theorem 4.2. (K̄, η̄) is a left invariant flat para-Kähler structure for T ∗G,
where T ∗G is equipped with the group law (4.0.1), and Ω(·, ·) = η̄(K̄·, ·) is the

standard symplectic form on T ∗G. In addition, ϕω : (TG,K, η)
∼−→ (T ∗G, K̄, η̄) is

an isomorphism of para-Kähler manifolds which preserves the Lie group structures.

Remark 4.3. Theorem 4.2 shows that the existing flat para-Kähler structure
on T ∗G (which uses the standard symplectic form as its para-Kähler form − see
Appendix A) is left invariant when T ∗G is equipped with the group law (4.0.1). At
the same time, Theorem 4.2 also establishes an equivalence with the left invariant
flat para-Kähler structure on TG given by Theorem 3.6.

Note that the group law on T ∗G given by (4.0.1) does not, in general, coincide
with the standard group law given by

(4.0.11) (g, α) · (h, β) = (gh,Ad∗h−1(α) + β).
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Equation (4.0.11) is equivalent to the statement that [ω ◦ Adg ◦ ]ω = Ad∗g for all
g ∈ G, which does not hold in general for symplectic Lie groups. Indeed, one
does not have to look far to find a counterexample, where neither [ω ◦Adg ◦ ]ω nor
[ω◦Adg−1◦]ω coincide with Ad∗g. For a counterexample, consider the 2-dimensional
Lie group of affine transformations on R.

Aff(2) =

{(
a b
0 1

) ∣∣∣ a 6= 0, b ∈ R
}
.

The Lie algebra of Aff(2) (denoted aff(2)) is spanned by

e1 =

(
1 0
0 0

)
, e2 =

(
0 1
0 0

)
.

Equip Aff(2) with the left invariant nondegenerate 2-form ω defined by the con-
dition ω(e1, e2) = 1. Since dim Aff(2) = 2, it follows that ω is necessarily closed.
Hence, (Aff(2), ω) is a symplectic Lie group.

Let θ1, θ2 denote the dual basis to e1, e2 and let

g =

(
a b
0 1

)
∈ Aff(2).

By direct calculation, one finds

[ω ◦Adg(e1) = bθ1 + θ2,

[ω ◦Adg−1(e1) = − b
a
θ1 + θ2,

Ad∗g ◦ [ω(e1) =
b

a
θ1 +

1

a
θ2,

where we recall that Ad∗g(f)(x) := f(Adg−1(x)) for f ∈ aff(2)∗, x ∈ aff(2). It
follows immediately that

[ω ◦Adg ◦ ]ω 6= Ad∗g 6= [ω ◦Adg−1 ◦ ]ω.

Hence, the group law on T ∗Aff(2) given by (4.0.1) does not coincide with the
standard form of (4.0.11).

When one compares the group law on TG (2.3.1) and the form of its left invari-
ant vector fields (2.3.2), (2.3.3) to its counterparts on T ∗G given by (4.0.1) and
(4.0.5), one certainly seems simpler than the other. For this reason, one can argue
that TG rather than T ∗G is the more natural space to work with when uniting
the Lie group structure with the para-Kähler structure.

5. Some double field theory

5.1. Review of the generalized metric

As mentioned earlier, in double field theory, one works with a ‘double manifold’
which Vaisman [22] later identified to be a flat para-Kähler manifold. Let (M,K, η)
be a flat para-Kähler manifold. In addition to the neutral metric η, the double



SYMPLECTIC LIE GROUPS AND DOUBLED GEOMETRY 179

manifold is equipped with a symmetric tensor field g and an antisymmetric ten-
sor field B. On a flat para-Kähler manifold, one can choose flat paracomplex
coordinates (U, xi, x̃j) so that locally

η = dxi ⊗ dx̃i + dx̃i ⊗ dxi, K
∂

∂xi
=

∂

∂xi
, K

∂

∂x̃i
= − ∂

∂x̃i
.

In these ‘distinguished coordinates’ (using the terminology of [22]), g and B locally
take the form

g = gijdx
i ⊗ dxj , B =

1

2
Bijdx

i ∧ dxj , det(gij) 6= 0.

Hence, g is a (vector bundle) metric on the +1 eigenbundle of K (denoted L) and
B ∈ Γ(∧2L∗). Note that g can be taken to be Riemannian or pseudo-Riemannian.

From a physics standpoint, we are to think of g as the spacetime metric and
B as the Kalb-Ramond field B, the latter is the string analog of the Maxwell 1-
form for a point particle (cf. [20]). With the pair (g,B) of ‘background fields’ (to
use the physics terminology), one defines a second metric H(g,B) on the double
manifold (M,K, η). The metric H(g,B) is called the generalized metric associated
to (g,B). With respect to local distinguished coordinates (xi, x̃j), the (local)
matrix representation of H(g,B) is given by

(5.1.1) H(g,B) =

(
g −Bg−1B Bg−1

−g−1B g−1

)
,

where we have abused notation by setting g = (gij), B = (Bij), and identifying
H(g,B) with its local matrix representation. This is the matrix which appears
in the double field theory literature3 and encodes the Hamiltonian density for the
physics of the theory (see, e.g., [10]). By inspecting the local form given by (5.1.1),
one can show that the metricH(g,B) is Riemannian if and only if g is Riemannian.

Vaisman [22, 23] provided the following invariant definition of the generalized
metric.

Definition 5.1. Let (M,K, η) be a flat para-Kähler manifold. A metric H on
M is a generalized metric if it satisfies the following conditions:

1. ]H ◦ [η = ]η ◦ [H
2. H

∣∣∣
L̃

is nondegenerate

where L̃ is the −1 eigenbundle of K, [H(X) := H(X, ·), and ]H := [−1
H ; [η and ]η

are defined similarly.

One can show that there is a one-to-one correspondence between generalized
metrics H and pairs (g,B). Suppose then that the generalized metric H is associ-
ated to the pair (g,B). In other words, H = H(g,B) has the local form given by

3In the physics literature, the coordinates are usually ordered as (x̃i, x
j) which has the effect of

swapping the (1,1) and (2,2) blocks as well as the (1,2) and (2,1) blocks in (5.1.1).
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(5.1.1). We sketch how to recover H(g,B) from (g,B). Let4

S+ := {(X, [−B+g(X)) | X ∈ L} ⊂ L⊕ L∗,(5.1.2)

S− := {(X, [−B−g(X)) | X ∈ L} ⊂ L⊕ L∗.(5.1.3)

One can verify that

(5.1.4) S+ ⊕ S− = L⊕ L∗.
Define

(5.1.5) ψη : TM = L⊕ L̃ ∼−→ L⊕ L∗, (X,Y ) 7→ (X, [η(Y )).

Let

Ŝ+ := ψ−1
η S+ = {X + ]η ◦ [−B+g(X) | X ∈ L},(5.1.6)

Ŝ− := ψ−1
η S− = {X + ]η ◦ [−B−g(X) | X ∈ L}.(5.1.7)

From (5.1.4), we have

(5.1.8) TM = Ŝ+ ⊕ Ŝ−.
Vaisman showed [22, 23] that H = H(g,B) is equivalent to the conditions

(a) H(g,B)|Ŝ+
= η,

(b) H(g,B)|Ŝ−
= −η,

(c) H(g,B)(Ŝ+, Ŝ−) = 0, that is, Ŝ+ and Ŝ− are orthogonal with respect to
H(g,B).

Let Φ := ]H ◦ [η. By a short calculation, one can show [22, 23]

η(Ŝ+, Ŝ−) = 0, H(X,Y ) = η(Φ(X), Y ),

Φ|Ŝ+
= id and Φ|Ŝ−

= − id. In particular, Φ is an almost paracomplex structure

on M .
Motivated by [15], we adopt the following global definition for T-duality (cf. [10]).

Definition 5.2. Let (M,K, η) be a double manifold. A global T-duality trans-
formation is a bundle automorphism A : TM → TM such that A∗η = η. The
group of all global T-duality transformations is denoted as O(n, n)(M).

The following result relates Definition 5.2 to Vaisman’s definition of the generalized
metric.

Proposition 5.3. Let (M,K, η) be a double manifold and let µ be any metric
on M . Let Aµ := ]η ◦ [µ. The following statements are equivalent:

(i) Aµ ∈ O(n, n)(M),
(ii) ]η ◦ [µ = ]µ ◦ [η,
(iii) A2

µ = id.

In particular, if H is a generalized metric, then AH is a global T-duality transfor-
mation.

4In [22], Vaisman uses B ± g in the definitions of S± as opposed to −B ± g. The choice used in

[22] gives a matrix representation for H(g,B) whose signs in the off-diagonal blocks are opposite

that of the physics matrix given by (5.1.1).
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Proof. (i) ⇔ (ii). Let p ∈ M , X,Y ∈ TpM and let 〈·, ·〉 be the natural pairing
between TM and T ∗M . Then

(A∗µη)(X,Y ) = η(AµX,AµY ) = 〈[η ◦ AµX,AµY 〉
= 〈[µ(X),AµY 〉 = µ(AµY,X)

= 〈[µ ◦ AµY,X〉.

From this, we see that (A∗µη)(X,Y ) = η(X,Y ) if and only if [µ ◦ Aµ = [η which
in turn is equivalent to ]η ◦ [µ = ]µ ◦ [η.

(ii) ⇔ (iii). This follows immediately from the fact that A−1
µ = ]µ ◦ [η. �

In addition, we also have the following observation:

Proposition 5.4. Let (M,K, η) be a double manifold with pair (g,B) where
g is a Riemannian metric on the +1 eigenbundle L. Then A∗H(g,B) is also a
generalized metric for all A ∈ O(n, n)(M).

Proof. Set H := H(g,B). Note that

[A∗H = A∗ ◦ [H ◦ A, ]A∗H = A−1 ◦ ]H ◦ A∗−1.

Since A∗η = η, we also have

[η = A∗ ◦ [η ◦ A, ]η = A−1 ◦ ]η ◦ A∗−1.

For the first condition of Definition 5.1, we have

]A∗H ◦ [η = (A−1 ◦ ]H ◦ A∗−1) ◦ (A∗ ◦ [η ◦ A) = A−1 ◦ ]H ◦ [η ◦ A
= A−1 ◦ ]η ◦ [H ◦ A = (A−1 ◦ ]η ◦ A∗−1) ◦ (A∗ ◦ [H ◦ A)

= ]η ◦ [A∗H.

For the second condition of Definition 5.1, we use the fact that H is Riemannian
whenever g is positive definite. (This point can be proven by inspecting the local
matrix representation of H in (5.1.1)). Since H is Riemannian, it follows that A∗H
is also Riemannian. In particular, A∗H

∣∣∣
L̃

is nondegenerate which completes the

proof. �

5.2. Review of double metric connections

For a double manifold (M,K, η) equipped with fields (g,B), one has two metrics
on M : η and H(g,B) (which we denote simply as H). In double field theory, one
is interested in connections ∇ on M satisfying ∇η = ∇H = 0. These are the so
called double metric connections [22, 23]. We now give a brief review of their
construction. For X ∈ Γ(TM), let X+ and X− denote the projection of X onto

the vector bundles Ŝ+ →M and Ŝ− →M , respectively. Let ∇ be a double metric
connection on (M,K, η) with fields (g,B) and define

(5.2.1) ∇±XY := (∇XY )± for all X,Y ∈ Γ(TM).
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The condition that ∇η = ∇H = 0 coupled with the fact that Ŝ+ and Ŝ− are
orthogonal with respect to both H and η, imply

(5.2.2) ∇+
XY
− = ∇−XY

+ = 0.

Hence,

(5.2.3) ∇XY = ∇+
XY

+ +∇−XY
−.

Equation (5.2.3) implies

∇±H|Ŝ±
= ∇±η|Ŝ±

= 0.

This observation along with (5.2.3) and the fact thatH|Ŝ±
= ±η|Ŝ±

implies that ∇
is equivalent to a pair of connections ∇± on the vector bundles Ŝ± →M satisfying

∇±H|Ŝ±
= 0. We can express the connections ∇± on Ŝ± as a pair of connections

D± on the vector bundle L → M using the bundle isomorphisms ι± : L
∼→ Ŝ±

given by

(5.2.4) ι±(X) := ψ−1
η (X, [−B±g(X)) ∈ Ŝ± for all X ∈ L.

By direct calculation, one can show that

(5.2.5) ι∗±H|Ŝ±
= 2g.

Explicitly, D± are defined by

(5.2.6) ∇+
X(ι+σ) = ι+(D+

Xσ), ∇−X(ι−σ) = ι−(D−Xσ)

for X ∈ Γ(TM) and σ ∈ Γ(L). The above argument along with (5.2.5) and (5.2.6)
yields the correspondence given in [22, 23]:

Proposition 5.5. For a double manifold (M,K, η) with fields (g,B), there
is a one-to-one correspondence between double metric connections and pairs of
connections D± on the bundle L→M satisfying D±g = 0.

5.3. Generalized metrics and double metric connections for TG

Let (G,ω) be a symplectic Lie group and let (TG,K, η) be the associated left
invariant flat para-Kähler manfiold. Let X1, . . . , Xn be a basis of g. Since we
are ultimately working with a Lie group, it is much more natural to calculate the
form of the generalized metric for (TG,K, η) with respect to a basis of Lie(TG)
as opposed to local distinguished coordinates. For the data (g,B) defining a
generalized metric, we limit ourselves to the case where g and B are both left
invariant. Given the paracomplex structure TTG = H ⊕ V , this means that g is
a left invariant bundle metric on H and B ∈ Γ(∧2H∗) is a left invariant 2-form.
The result then is that H(g,B) is a left invariant metric on TG. We compute the
matrix representation of H(g,B) with respect to the global frame

(5.3.1) Xc
1 , . . . , X

c
n, X

v
1 , . . . , X

v
n.

Let

(5.3.2) α1, . . . , αn, β1, . . . , βn
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be the dual frame. As usual, we let ωij := ω(Xi, Xj) and (ωij) = (ωij)
−1. The

para-Kähler metric η is then given by

η = ωij(α
i ⊗ βj + βj ⊗ αi).

Let H be any metric on TG (regarded as a manifold). Then H takes the form

H = aijα
i ⊗ αj + rij(α

i ⊗ βj + βj ⊗ αi) + cijβ
i ⊗ βj .

Set A = (aij), R = (rij), and C = (cij). We now determine the conditions on A,
R, and C so that H is a generalized metric. The second condition of Definition
5.1 implies that C is invertible. With abuse of notation, we also set ω = (ωij). By
direct calculation, one finds that the first condition on Definition 5.1 places the
following restrictions on the aforementioned matrices:

−Aω−1RT +Rω−1A = 0,(5.3.3)

−Aω−1C +Rω−1R = ω,(5.3.4)

−RTω−1C + Cω−1R = 0,(5.3.5)

where C is invertible. Setting

g = (gij) = −ωC−1ω, B = (Bij) = −RC−1ω,

the general solution to (5.3.3)–(5.3.5) is then

(5.3.6) H = H(g,B) =

(
g −Bg−1B Bg−1ω
ωg−1B −ωg−1ω

)
,

where we have identified H with its matrix representation with respect to the
global frame (5.3.1). Hence, (5.3.6) is the matrix representation of the generalized
metric with respect to the global frame (5.3.1) for the double manifold (TG,K, η)
with fields (g,B), where g and B are actually the left invariant tensors

(5.3.7) g = gijα
i ⊗ αj , B =

1

2
Bijα

i ∧ αj .

Let T denote the group of all left invariant global T-duality transformations
for the double manifold (TG,K, η). Hence, A ∈ T is a left invariant bundle auto-
morphism A : TTG → TTG satisfying A∗η = η. By Proposition 5.4, A∗H(g,B)
is also a (left invariant) generalized metric when g is positive definite. Hence,
A∗H(g,B) = H(gA, BA) for some unique pair (gA, BA). We will call the pair
(gA, BA) the T-duality transform of (g,B) by A. For convenience, let us identify
A with its matrix representation with respect to the global frame (5.3.1) by

(5.3.8) A =

(
a b
c d

)
,

where a, b, c, d are n× n (real) matrices satisfying

(5.3.9) − cTωb+ aTωd = ω, −cTωa+ aTωc = −dTωb+ bTωd = 0.

The next result explicitly gives the T-duality transform of a pair (g,B) by an
element A ∈ T .
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Proposition 5.6. Let (TG,K, η) be equipped with the left invariant fields (g,B),
where g is positive definite. Let A ∈ T and let (5.3.8) be the matrix representation
of A with respect to the global frame (5.3.1). Then A∗H(g,B)=H(gA, BA) where

(5.3.10) gA = −ω
[
bT gb+ (Bb− ωd)T g−1(Bb− ωd)

]−1
ω,

BA =
[
aT gb+ (Ba− ωc)T g−1(Bb− ωd)

]
ω−1gA,(5.3.11)

where g, B, gA, and BA have been identified with their matrix representations with
respect to the frame Xc

1 , . . . , X
c
n on H.

Proof. Expressing everything in terms of their matrix representations and ap-
plying (5.3.6), we have

(5.3.12) ATH(g,B)A = H(gA, BA).

Comparing the (2, 2)-blocks of the left and right sides, we obtain (5.3.10). Likewise,
comparing the (2, 1)-blocks of both sides yields (5.3.11). �

Remark 5.7. From the point of view of physics, the statement A∗H(g,B) =
H(gA, BA) implies that the physics associated to the background fields (g,B) and
(gA, BA) are equivalent (cf. [10]).

Let us now consider left invariant double metric connections on the double
manifold (M = TG,K, η) for left invariant fields (g,B). Since η, g, and B are left

invariant, it follows that the total spaces Ŝ± given by (5.1.6)–(5.1.7), as well as
the bundle isomorphisms

ι± : L = H → Ŝ±

given by (5.2.4) are also left invariant. Hence, ∇ is a left invariant double metric
connection if and only if the associated projected connections ∇± on the vector

bundles Ŝ± → TG (see (5.2.1)) are left invariant. This in turn is equivalent to the
condition that the associated connections D± on the vector bundle L = H →M =
TG (see (5.2.6)) are also left invariant. Proposition 5.5 now implies the following
corollary.

Corollary 5.8. For the double manifold (TG,K, η) with left invariant fields
(g,B), there is a one-to-one correspondence between left invariant double metric
connections and pairs of left invariant connections D± on the bundle H → TG
satisfying D±g = 0.

We conclude this section by computing all left invariant double metric con-
nections for (TG,K, η) with respect to a fixed left invariant pair (g,B). For

A ∈ Lie(TG), let A± denote the projection onto Ŝ±.

Lemma 5.9. Let g and B be given by (5.3.7). Then

Xc+
i =

1

2
(δmi +Bijg

jm)ι+(Xc
m),(5.3.13)

Xc−
i =

1

2
(δmi −Bijgjm)ι−(Xc

m),(5.3.14)
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Xv+
i = −1

2
ωilg

lmι+(Xc
m),(5.3.15)

Xv−
i =

1

2
ωilg

lmι−(Xc
m),(5.3.16)

where δmi = 1 if i = m and zero otherwise.

Proof. From the definition of ι± : H → Ŝ± (5.2.4), we have

ι+(Xc
i ) := ψ−1

η (Xc
i , (−Bij + gij)α

j) = Xc
i + (−Bij + gij)ω

kjXv
k ,(5.3.17)

ι−(Xc
i ) := ψ−1

η (Xc
i , (−Bij − gij)αj) = Xc

i + (−Bij − gij)ωkjXv
k .(5.3.18)

Using (5.3.17) and (5.3.18), one verifies (5.3.13)–(5.3.16). �

Proposition 5.10. Let (g,B) be a left invariant pair for (TG,K, η) given by
(5.3.7) and let

{γk+
ij , γ

k−
ij , γ

k+
īj
, γk−

īj
| i, j, k = 1, . . . , n}

be any collection of real numbers satisfying

(5.3.19) γm±ki gmj + γm±kj gim = 0, γm±
k̄i

gmj + γm±
k̄j

gim = 0.

Define

Γm
ij =

1

2

[
γm+
ij + γm−

ij +Bjkg
kl(γm+

il − γm−
il )

]
,(5.3.20)

Γq̄
ij =

1

2
(γm+

ij +Bjkg
klγm+

il )(−Bmp + gmp)ωqp,

+
1

2
(γm−

ij −Bjkg
klγm−

il )(−Bmp − gmp)ωqp,(5.3.21)

Γm
īj =

1

2
[γm+

īj + γm−
īj +Bjkg

kl(γm+
īl − γm−

īl )],(5.3.22)

Γq̄

īj
=

1

2
(γm+

īj +Bjkg
klγm+

īl )(−Bmp + gmp)ωqp.

+
1

2
(γm−

īj −Bjkg
klγm−

īl )(−Bmp − gmp)ωqp,(5.3.23)

Γm
ij̄ = −1

2
ωjkg

kl(γm+
il − γm−

il ),(5.3.24)

Γq̄

ij̄
= −1

2
ωjkg

klγm+
il (−Bmp + gmp)ωqp +

1

2
ωjkg

klγm−
il (−Bmp − gmp)ωqp,(5.3.25)

Γm
īj̄ = −1

2
ωjkg

kl(γm+
īl − γm−

īl ),(5.3.26)

Γq̄

īj̄
= −1

2
ωjkg

klγm+
īl (−Bmp + gmp)ωqp +

1

2
ωjkg

klγm−
īl (−Bmp − gmp)ωqp.(5.3.27)

Then (5.3.20)–(5.3.27) define the Christoffel symbols of a left invariant double
metric connection with respect to the global frame (5.3.1). Moreover, every left
invariant double metric connection for the pair (g,B) is of this form.

Proof. By Corollary 5.8, there is a one-to-one correspondence between left in-
variant double metric connections for the pair (g,B) and pairs D± of left invariant
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g-metric connections on the vector bundle H → TG. Given a choice of frame
(5.3.1), any collection of numbers

{γk+
ij , γ

k−
ij , γ

k+
īj
, γk−

īj
| i, j, k = 1, . . . , n}

satisfying (5.3.19) uniquely defines a pair D± of left invariant g-metric connections
via

D±Xc
i
Xc
j = γm±ij Xc

m, D±Xv
i
Xc
j = γm±

īj
Xc
m.

Let ∇ be the left invariant double metric connection associated to D±. We only
calculate the Christoffel symbols Γmij and Γq̄ij for ∇. The other Christoffel symbols
are computed in an entirely similar manner. From Section 5.2, we have

(5.3.28)

∇Xc
i
Xc
j = ∇+

Xc
i
Xc+
j +∇−Xc

i
Xc−
j

=
1

2
(δlj +Bjkg

kl)∇+
Xc

i
ι+(Xc

l ) +
1

2
(δlj −Bjkgkl)∇−Xc

i
ι−(Xc

l )

=
1

2
(δlj +Bjkg

kl)ι+

(
D+
Xc

i
Xc
l

)
+

1

2
(δlj −Bjkgkl)ι−

(
D−Xc

i
Xc
l

)
=

1

2
(δlj +Bjkg

kl)γm+
il ι+(Xc

m) +
1

2
(δlj −Bjkgkl)γm−il ι−(Xc

m)

=
1

2
(δlj +Bjkg

kl)γm+
il (Xc

m + (−Bmp + gmp)ω
qpXv

q )

+
1

2
(δlj −Bjkgkl)γm−il (Xc

m + (−Bmp − gmp)ωqpXv
q )

=
1

2

[
γm+
ij + γm−ij +Bjkg

kl(γm+
il − γ

m−
il )

]
Xc
m

+
1

2
(γm+
ij +Bjkg

klγm+
il )(−Bmp + gmp)ω

qpXv
q

+
1

2
(γm−ij −Bjkg

klγm−il )(−Bmp − gmp)ωqpXv
q ,

where we have used Lemma 5.9 in the second equality and (5.3.17)–(5.3.18) in the
fifth equality. Comparing (5.3.28) to

∇Xc
i
Xc
j = ΓmijX

c
m + Γq̄ijX

v
q

gives (5.3.20)–(5.3.21). �

5.4. Associated metric algebroid

In [22], Vaisman showed that the tangent bundle of a double manifold admits a
structure similar to that of a Courant algebroid [13]. Vaisman called this structure
a metric algebroid.

Definition 5.11. A metric algebroid consists of the following data:

(a) a vector bundle E →M ,
(b) a bundle map ρ : E → TM (the anchor map),
(c) a bundle metric η on E,
(d) an R-bilinear product F : Γ(E)× Γ(E)→ Γ(E) (the metric product)

which satisfies the following axioms:
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(i) ρ(e)η(e1, e2) = η(eFe1, e2) + η(e1, eFe2) (η-compatibility axiom),
(ii) eFe = ∂(η(e, e)) (normalization axiom),

where ∂ : C∞(M)→ Γ(E) is defined by ∂ := 1
2 ]η ◦ ρ

∗ ◦ d.

In this section, we describe the metric algebroid structure for the tangent bundle
of the double manifold (TG,K, η). For the anchor map, we simply take ρ =
id: TTG→ TTG. Then the map ∂ : C∞(TG)→ Γ(TTG) is

∂ =
1

2
]η ◦ d.

Let X1, . . . , Xn be a basis of left invariant vector fields on G. Again, we write
[Xi, Xj ] = ckijXk, ωij = ω(Xi, Xj) and (ωij) = (ωij)

−1. Explicitly,

(5.4.1) ∂f =
1

2
ωij((Xv

i f)Xc
j − (Xc

i f)Xv
j ) ∈ Γ(TTG) for all f ∈ C∞(TG).

To construct a metric product F on Γ(TTG), let ∇0 again denote the Levi-
Civita connection of η. For vector fields X,Y ∈ Γ(TTG) (not necessarily left
invariant), define a skew-symmetric product X ∧∇0 Y ∈ Γ(TTG) by

(5.4.2) η(Z,X ∧∇0 Y) =
1

2
[η(X,∇0

ZY)− η(Y,∇0
ZX)] for all Z ∈ Γ(TTG).

For f ∈ C∞(TG), one can show that

(5.4.3) X ∧∇0 (fY) = f(X ∧∇0 Y) + η(X,Y)∂f.

Using Lemma 3.4, one finds

(5.4.4) Xc
i ∧∇0 Xc

j = Xv
i ∧∇0 Xv

j = 0, Xc
i ∧∇0 Xv

j = clkjωliω
kmXv

m.

For X,Y ∈ Γ(TTG), define a bracket on Γ(TTG) by

(5.4.5) [X,Y]∇0 := [X,Y]−X ∧∇0 Y.

In [22], [·, ·]∇0 is called the ∇0-bracket. For f ∈ C∞(TG), we have

(5.4.6) [X, fY]∇0 = f [X,Y]∇0 + (Xf)Y − η(X,Y)∂f.

By direct calculation, one finds
(5.4.7)

[Xc
i , X

c
j ]∇0 = cmijX

c
m, [Xc

i , X
v
j ]∇0 = (cmij − clkjωliωkm)Xv

m, [Xv
i , X

v
j ]∇0 = 0.

For X,Y ∈ Γ(TTG), consider the R-bilinear product F∇0 on Γ(TTG) defined by

(5.4.8) XF∇0Y = [X,Y]∇0 + ∂η(X,Y).

When X and Y are left invariant, we have XF∇0Y=[X,Y]∇0 . For f ∈C∞(TG),
X,Y ∈ Γ(TTG), one has

XF∇0(fY) = f(XF∇0Y) + (Xf)Y.

Using the definitions of [·, ·]∇0 and ∂, one can check that F∇0 is a metric
product. It then follows that TTG → TG is a metric algebroid with anchor
ρ = id, bundle metric η, and metric product F∇0 .



188 D. N. PHAM and F. YE

Appendix A. Flat para-Kähler manifolds from affine manifolds

We remind the reader that an affine manifold is a smooth n-dimensional manifoldQ
which can be covered by charts with the property that the transition maps between
overlapping charts are locally affine transformations of Rn. The aforementioned
charts are called affine charts. Hence, if (U, xi) and (V, yi) are overlapping charts,
then locally

yi = aijx
j + bi, aij , b

i ∈ R.

This is equivalent to the condition that ∂yi

∂xj be locally constant.
The following result may be well-known to experts. Bejan proves in [4] that

a flat connection ∇ on a manifold M yields a para-Kähler structure on T ∗M . A
closer examination of this result shows that if the flat connection is also torsion
free, then the para-Kähler structure is also flat. From [2], it is a well known fact
that the existence of a flat torsion free connection on a manifold is equivalent to
an affine structure on the manifold. For the reader’s convenience, we present an
elementary proof of Bejan’s result for the special case of affine manifolds.

Theorem A.1. Let Q be an affine manifold. Then T ∗Q admits a flat para-
Kähler structure (K, η) such that Ω(·, ·) := η(K·, ·) is the canonical symplectic
form on T ∗Q.

Proof. Let (U, xi) be an affine chart on Q and let (T ∗U, xi, x̃j) be the induced
coordinates on T ∗U ⊂ T ∗Q. Define KU : T (T ∗U)→ T (T ∗U) by

KU :=
∂

∂xi
⊗ dxi − ∂

∂x̃i
⊗ dx̃i.

Let (V, yi) be another affine chart on Q such that U ∩ V 6= ∅ and let (T ∗V, yi, ỹj)
be the induced coordinates on T ∗V . Define KV : T (T ∗V )→ T (T ∗V ) by

KV :=
∂

∂yi
⊗ dyi − ∂

∂ỹi
⊗ dỹi.

Note that

xi = xi(y), x̃i = ỹj
∂yj

∂xi
.

Since (U, xi) and (V, yi) are affine charts, ∂y
j

∂xi is locally constant. Hence, x̃j = x̃j(ỹ)
locally. So on T ∗U ∩ T ∗V , we have

KU =
∂

∂xi
⊗ dxi − ∂

∂x̃i
⊗ dx̃i =

∂yj

∂xi
∂xi

∂yk
∂

∂yj
⊗ dyk − ∂ỹj

∂x̃i

∂yk

∂xi
∂

∂ỹj
⊗ dỹk

= δjk
∂

∂yj
⊗ dyk − ∂xi

∂yj
∂yk

∂xi
∂

∂ỹj
⊗ dỹk =

∂

∂yj
⊗ dyj − δkj

∂

∂ỹj
⊗ dỹk

=
∂

∂yj
⊗ dyj − ∂

∂ỹj
⊗ dỹj = KV .
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Hence, the KU ’s glue together to form a global bundle map K : T (T ∗Q) →
T (T ∗Q). In other words, K is defined via

K|T (T∗U) = KU .

Since K2
U = id on T (T ∗U), we have that K2 = id. From the coordinate system

(T ∗U, xi, x̃i), it is clear that the +1 eigenbundle L of T (T ∗Q) has a local frame
given by

∂

∂x1
, . . . ,

∂

∂xn
,

and the −1 eigenbundle L̃ has a local frame given by

∂

∂x̃1
, . . . ,

∂

∂x̃n
.

This immediately implies that L and L̃ are involutive distributions. Hence, K is a
paracomplex structure and the local coordinate systems of the form (T ∗U, xi, x̃i)
are paracomplex coordinates, where (U, xi) are local affine coordinates on Q.

Now let Ω denote the canonical symplectic form on T ∗Q. With respect to the
paracomplex coordinates (T ∗U, xi, x̃i), Ω is locally given by

Ω = dxi ∧ dx̃i.

Let η(·, ·) := Ω(K·, ·). Then locally

η = dxi ⊗ dx̃i + dx̃i ⊗ dxi.

Clearly, η(K·,K·) = −η(·, ·) and Ω(·, ·) = η(K·, ·). Hence, (T ∗Q,K, η) is para-
Kähler. Moreover, since the components of η are locally constant, it follows that
η is also flat. �

From the proof of Theorem A.1, we see that if Q is an affine manifold, then T ∗Q
is also affine. This has the following immediate corollary.

Corollary A.2. Let Q be an affine manifold and let T ∗,k+1Q := T ∗(T ∗,kQ),
where T ∗,0Q := Q. Then T ∗,k+1Q admits a flat para-Kähler structure.
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Iaşi, Romania, 1990.

5. Chatzistavrakidis A., Jonke L., Scen Khoo F. and Szabo R., The algebroid structure of

double field theory, arXiv:1903.01765v2.

arXiv:1307.1629v2
arXiv:1903.01765v2


190 D. N. PHAM and F. YE

6. Cruceanu V., Fortuny P. and Gadea P. M., A survey on paracomplex geometry, Rocky

Mountain J. Math. 26(1) (1996), 83–115.
7. Domprowski P., On the geometry of the tangent bundle, J. Reine Angew. Math. 210 (1962),

73–88.

8. Grewcoe C. and Jonke L., Double field theory algebroid and curved L∞-algebras, J. Math.
Phys. 62 (2021), #052302.

9. Hitchin N., Lectures on generalized Geometry, arXiv:1008.0973v1.

10. Hohm O., Hull C. and Zwiebach B., Generalized metric formulation of double field theory,
J. High Energy Phys. 8 (2010), #008.

11. Hohm O., List D. and Zwiebach B., The spacetime of double field theory: review, remarks,

and outlook, Fortsch. Phys. 61 (2013), 926–966.
12. Hull C. and Zwiebach B., Double field theory, J. High Energy Phys. 09 (2009), #099.

13. Liu Z., Weinstein A. and Xu P., Manin Triples for Lie bialgebroids, J. Diff. Geom 45 (1997),
547–574.

14. Marle C., Calculus on Lie algebroids, Lie groupoids, and Poisson manifolds, Dissertationes

Math. 457 (2008), 1–57.
15. Marotta V. and R. Szabo R., Para-Hermitian geometry, dualities and generalized flux back-

grounds, Fortsch. Phys. 67(3) (2019), #1800093.

16. Mori H., Sasaki S. and Shiozawa K., Doubled aspects of Vaisman algebroid and gauge sym-
metry in double field theory, J. Math. Phys. 61 (2020), #013505.

17. Ni X. and Bai C., Special Symplectic Lie groups and hypersymplectic Lie groups,

Manuscripta Math. 133 (2010), 373–408.
18. Ovando G., Four dimensional symplectic Lie algebras, Contributions to Algebra and Geom-

etry 47(2) (2006), 419–434.

19. Pham D., On the tangent Lie group of a symplectic Lie group, Ric. Mat. 68 (2019), 699–704.
20. Polchinski J., String Theory, 1, Cambridge University Press, 2005.

21. Tanno S., Almost complex structures in bundles spaces over almost contact manifolds, J.
Math. Soc. Japan 17(2) (1965), 167–186.

22. Vaisman I., On the geometry of double field theory, J. Math. Phys. 53 (2012), #033509.

23. Vaisman I., Towards a double field theory on para-Hermitian manifolds, J. Math. Phys. 54
(2013), #123507.

24. Yano K. and Ishihara S., Tangent and Cotangent Bundles, Marcel Decker, Inc., New York

1973.
25. Zwiebach B., Double Field Theory, T-duality, and Courant Brackets, arXiv:1109.1782.

D. N. Pham, Queensborough C. College City University of New York 222-05, 56th Avenue Bay-

side, NY 11364, U.S.A,
e-mail : dnpham@qcc.cuny.edu

F. Ye, Queensborough C. College City University of New York 222-05, 56th Avenue Bayside, NY

11364, U.S.A,

e-mail : feye@qcc.cuny.edu

arXiv:1008.0973v1
arXiv:1109.1782

