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FRAGMENTS IN SYMMETRIC CONFIGURATIONS

WITH BLOCK SIZE 3

G. ERSKINE, T. S. GRIGGS and J. ŠIRÁŇ

Abstract. We begin the study of collections of three blocks which can occur in a

symmetric configuration with block size 3, v3. Formulae are derived for the number
of their occurrences and it is shown that the triangle, i.e. abf, ace, bcd, is a basis.

It is also shown that symmetric configurations without triangles exist if and only

if v = 15 or v ≥ 17. Such configurations containing “many” triangles are also
discussed and a complete analysis of the triangle content of those with a cyclic

automorphism is given.

1. Introduction

In this paper, we concerned with symmetric configurations with block size 3. First
we recall the definitions. A configuration (vr, bk) is a finite incidence structure
with v points and b blocks, with the property that there exist positive integers k
and r such that:

(i) each block contains exactly k points,
(ii) each point is contained in exactly r blocks, and
(iii) any pair of distinct points is contained in at most one block.
If v = b (and hence necessarily r = k), the configuration is called symmetric and

is usually denoted by vk. We are interested in the case where k = 3. The blocks
are also called triples. A configuration is said to be decomposable or disconnected
if it is the union of two configurations on distinct point sets. We are primarily
interested in indecomposable (connected) configurations, and so unless otherwise
noted, this is assumed throughout the paper.

It is natural to associate two graphs with a symmetric configuration v3. The
first is the Levi graph or point-block incidence graph, obtained by considering the
v points and v blocks of a configuration as vertices, including an edge from a point
to every block containing it. It follows that the Levi graph is a cubic (3-regular)
bipartite graph of girth at least six. The second graph is the incidence graph,
obtained by considering only the points as vertices and joining two points by an
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edge if and only if they appear together in some block. Thus the incidence graph
is regular of valency 6 and order v.

The above definition of configuration is the classical one, going back to the
nineteenth century and the work of mathematicians such as Kantor [8] and Mar-
tinetti [9]. It is the meaning of the term in the section of the Handbook of Com-
binatorial Designs by Gropp [6]. However, in the last century the term came to
be used more widely to mean any (small) collection of blocks which may appear
in a combinatorial structure. This is the sense in which the term is used, for ex-
ample, in chapter 13 of Triple Systems by Colbourn & Rosa [1]. For the present
paper this double usage of the term is particularly unfortunate as we wish to study
the occurrence of (20th century) configurations in (19th century) configurations.
Therefore, for this reason we define any collection of blocks or triples which may
appear in a symmetric configuration v3 as a fragment.

We begin by developing formulae for the number of occurrences of one-, two-
and three-block fragments in symmetric configurations v3. A one-block fragment
is of course just a single triple and there are v of these, by definition. There
are two two-block fragments: A1, a pair of disjoint triples, and A2, a pair of
intersecting triples. Here, and below, we follow the terminology used in [1]. It
is elementary to derive the corresponding formulae. Trivially a2 = 3v, and so
a1 = v(v − 1)/2 − 3v = v(v − 7)/2. Both of these formulae are called constant
meaning that they depend only on v, and so do not vary over all configurations
v3, irrespective of the structure of the individual configurations. Other fragments
are called variable.

There are five three-block fragments. Omitting set brackets and commas for
simplicity, these are B1, abc, def, ghi (3-partial parallel class or 3-PPC); B2, abc,
def, dgh (hut); B3, abc, ade, afg (3-star); B4, abc, cde, efg (3-path); B5, abf, ace,
bcd (triangle), all illustrated in Figure 1.

B1 B2 B3 B4 B5

Figure 1. The possible three-block fragments.

Let the number of occurrences of fragment Bi be bi, 1 ≤ i ≤ 5. The number of
triangles in a symmetric configuration v3 is equal to the number of 6-cycles in its
Levi graph and is therefore variable. Let b5 = t. Trivially b3 = v. To determine b4,
consider a pair of intersecting triples and the eight three-block fragments formed by
this pair of triples and the third block through any of the four points other than the
point of intersection. Then 3v×8 = 6t+2b4 from which b4 = 3(4v−t). For b2, again
consider a pair of intersecting triples and a third block through any other point.
Then 3v(v−5)×3 = 3t+ 4b4 + 6b3 + 3b2 from which b2 = 3(v(v−11) + t). Finally
for b1, consider a pair of disjoint triples and a third block through any other point.
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Then v(v−7)(v−6)×3/2 = b4+4b2+9b1 from which b1 = (v3−21v2+122v−6t)/6.
For ease of reference we collect these formulae together in a table.

b1 = (v3 − 21v2 + 122v − 6t)/6,
b2 = 3(v(v − 11) + t),
b3 = v,
b4 = 3(4v − t),
b5 = t.

From the above, 0 ≤ t ≤ 4v. It is natural to ask whether symmetric config-
urations v3 with values of t at either end of the spectrum exist and how they
may be constructed. At the lower end, configurations with no triangles exist for
v = 15 and all v ≥ 17. This is proved in Section 2. At the upper end, the unique
configuration 73, which is the Fano plane, contains 28 triangles and is the only
configuration attaining the upper bound. Configurations with many triangles are
studied in Section 3. Section 4 deals with cyclic configurations, i.e., those with a
cyclic automorphism. Finally in Section 5, we discuss some further investigations
suggested by the work in this paper. Computer results on the distribution of the
values of t for all configurations v3 for 7 ≤ v ≤ 16 are given in Table 1 in the
Appendix at the end of the paper.

2. Configurations with no triangles

As stated above, the number of triangles in a symmetric configuration v3 is equal
to the number of 6-cycles in its Levi graph. Therefore, in order to construct
configurations with no triangles, it is both necessary and sufficient to construct
cubic bipartite graphs with girth equal to 8 (or greater than or equal to 8). We
do this recursively, using the following result.

Proposition 2.1. Let G be a cubic bipartite graph of order 2v, of girth 8
containing also a 10-cycle. Then there exists a cubic bipartite graph G∗ of order
2v + 10, also of girth 8 and containing a 10-cycle.

Proof. In the graph G, denote the vertices of the 10-cycle by v0, v1, . . . , v9. Let
the third vertex to which the vertex vi is adjacent be wi, 0 ≤ i ≤ 9. The vertices
wi are distinct. Further the only two such vertices which can be adjacent are
{wi, wi+5}, 0 ≤ i ≤ 4. Delete the five edges {v2i−1, v2i}, 1 ≤ i ≤ 5, subscripts
modulo 10, to form a graph G′. Now construct a graph H consisting of a 10-cycle
u0, u3, u4, u7, u8, u1, u2, u5, u6, u9, where in addition each vertex ui is adjacent to
a vertex vi. Identify the vertices vi in the two graphs G′ and H to form the
graph G∗. Clearly the graph is cubic, bipartite (as represented by the black/white
colouring of the vertices as shown in Figure 2), of order 2v + 10 and contains a
10-cycle. It remains to prove that it has girth 8.

Let C be a cycle of G∗. If C contains only edges of G′ or only edges of H,
then C has length at least 8. If not, then C must contain at least three edges
from H including two edges {um, vm}, and {un, vn}, 0 ≤ m,n ≤ 9. We need to
show that it now contains at least five edges from G′. If C contains only one edge
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Figure 2. Graphs from the proof of Proposition 2.1.

from G′, it would have to be {v2i, v2i+1} for some i such that 0 ≤ i ≤ 4. But
then C would actually contain seven edges from H and so have length 8. Clearly
C cannot contain only two edges from G′. If it contains just three edges then
they would have to be {vi, wi}, {wi, wi+5} and {wi+5, vi+5} for some i such that
0 ≤ i ≤ 4, and then C would contain five edges from H and so again have length
8. The remaining possibility is that C contains just four edges from G′, in such
case vertices vm and vn are in the same partition and their distance in H is at
least 4. �

We can now prove the main result of this section.

Theorem 2.2. There exists a symmetric configuration v3 with no triangles if
and only if v = 15 or v ≥ 17.

Proof. The smallest cubic graph of girth 8 has order 30 and is Tutte’s 8-cage.
Thus there are no configurations v3 with no triangles for 7 ≤ v ≤ 14. The graph



CONFIGURATION FRAGMENTS 105

is bipartite, unique, containing a 10-cycle, and is the Levi graph of the Cremona-
Richmond configuration or generalised quadrangle GQ(2, 2). It has an elegant
construction as follows. Let S be a set of cardinality 6. Define the points of
the configuration to be the set of unordered pairs of elements of S (i.e., subsets
of cardinality 2) and the lines to be the partitions of S into disjoint pairs. An
exhaustive computer search shows that there is no cubic bipartite graph of order
32 and girth 8, a fact confirmed on page 734 of [10].

From Proposition 2.1, in order to complete the proof of the theorem, it suffices
to exhibit cubic bipartite graphs of girth 8, also containing a 10-cycle of orders
34, 36, 38, and 42. There is a unique graph of order 34 and girth 8 and three
graphs of order 36 and girth 8, again see page 734 of [10]. We have determined
that all these four graphs are bipartite and contain a 10-cycle. The corresponding
configurations are given below.

012 034 056 178 19a 2bc 2de 37b 39d 48e 4af 58c 5df 6ab 6eg 7fg 9cg

012 034 056 178 19a 2bc 2de 37b 39d 48c 4af 58g 5ae 6ch 6df 7eh 9gh bfg

012 034 056 178 19a 2bc 2de 37b 39d 48c 4fg 58e 59f 6ch 6dg 7fh abg aeh

012 034 056 178 19a 2bc 2de 37b 39d 48e 4af 57g 5df 68c 69h acg bfh egh

Configurations corresponding to bipartite graphs of orders 38 and 42 of girth 8
and containing a 10-cycle are also given below.

012 034 056 178 19a 2bc 2de 37b 39d 48c 4af 57e 5ag 68h 69i bfh cgi

dgh efi

012 034 056 178 19a 2bc 2de 37b 39d 48c 4af 57e 5gh 68i 6fj 9gk ahi

bfg cjk dhj eik

This completes the proof of the theorem. �

3. Configurations with many triangles

For any symmetric configuration v3, say C, we let t(C) denote the number of
triangles in C. For any v ≥ 7, we let T (v) denote the maximum value of t(C) for
any configuration v3.

Theorem 3.1. For any v ≥ 8, T (v) ≤ 3v.

Proof. As noted above, the number of triangles in a configuration is precisely
the number of 6-cycles in its Levi graph. We therefore count the largest possible
number of 6-cycles in a cubic bipartite graph of girth 6. To do this it is most
convenient to count the number of 6-cycles through any given edge.

Referring to Figure 3, the number of 6-cycles through the edge ab is equal to the
number of edges between those vertices at distance 2 from ab, i.e., the 8 vertices
between the dotted lines. There is a maximum of 8 such edges; but if all 8 are
present, then the graph is the Heawood graph, which is the Levi graph of the
unique configuration 73.
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So suppose that the maximum number of 6-cycles through any vertex is 7, as in
the figure. Then the 14 vertices at maximum distance 2 from ab form a Heawood
graph with a single edge deleted. Since the Heawood graph is edge-transitive, we
may assume without loss of generality that the missing edge is uv as in the figure.
Then the subgraph H induced by these 14 vertices is joined to the rest of the
graph by edges ux and vy. Now H contains exactly 20 6-cycles, since a Heawood
graph has 28 and removing the edge uv reduces it by 8. Thus the average number
of 6-cycles through any edge in H is 6. Moreover, since u and v are at distance 5
in H, there are no 6-cycles through either edge ux or vy.

The graph may contain multiple edges lying in 7 6-cycles, so there may be more
than one of these induced subgraphs isomorphic to H, joined to the remainder of
the graph by edges which are in no 6-cycle. The remainder of the edges in the
graph not in any of these induced subgraphs must lie in a maximum of 6 6-cycles,
and this includes a non-zero number of edges not in any 6-cycle at all. Thus if there
is at least one edge lying in 7 6-cycles, the average number of 6-cycles through all
the edges in the graph is strictly less than 6. Since there are 3v edges in the Levi
graph and each 6-cycle goes through 6 edges, it follows that there are strictly fewer
than 3v 6-cycles in the Levi graph, and hence triangles in the configuration.

The remaining possibility to achieve equality in the bound is that there are
precisely 6 6-cycles through each edge in the Levi graph. This situation is attained
by the unique configuration 83. �

a b

u v

x y

Figure 3. An edge ab contained in 7 6-cycles.

We note that the proof of Theorem 3.1 implies that equality exists in the bound
if and only if every edge in the Levi graph lies in exactly 6 6-cycles. Such a
graph is called edge-girth-regular and these objects were studied in [7]. The only
known edge-girth-regular graph of degree 3, girth 6, and with every edge lying in
6 girth cycles is the Möbius-Kantor graph, which is the Levi graph of the unique
configuration 83. It is an open question whether there exist further configurations
where equality is achieved in the bound of Theorem 3.1.
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Theorem 3.2.

3 ≥ lim sup
v→∞

T (v)

v
≥ lim inf

v→∞

T (v)

v
≥ 20

7
.

Proof. The upper bound for the lim sup follows immediately from Theorem 3.1.
To demonstrate the lower bound, we construct an infinite family of configura-
tions on 7n points, n ≥ 2, with exactly 20n triangles. To do this, we take n
copies H1, H2, . . . ,Hn of the edge-deleted Heawood graph H from the proof of
Theorem 3.1 and connect them via their joining edges in a cyclic manner. The
construction is illustrated in Figure 4 for the case n = 3. Since the joining edges
do not lie in any 6-cycles, the resulting graph is the Levi graph of a configuration
with 7n points and 20n triangles as required. To complete the proof, we need to
show that for any ε > 0, there is some v0 such that for any v ≥ v0, we can construct
a configuration C on v points with t(C)/v ≥ 20/7 − ε. It is easily seen that we
can do this by constructing a graph with a large number n of copies of H plus one
edge-deleted Levi graph of a configuration on 7, 8, 9, 10, 11, 12, or 13 points, and
join them cyclically as before. We can choose n large enough so that the number
of triangles in the resulting configuration v3 is arbitrarily close to 20v/7. �

H1

H2 H3

Figure 4. The Levi graph of a configuration on 21 points with 60 triangles.

We note that the graph depicted in Figure 4 has appeared before in the litera-
ture. For example, in previous works of the present authors, it arises in connection
with colouring problems [2] and embeddings [3].
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4. Cyclic configurations

A symmetric configuration v3 is cyclic if it admits an automorphism of order v.
Such a configuration can be realised on the set {0, 1, . . . , v − 1} as a single orbit
under the mapping i 7→ i + 1 (mod v) of a starter block {0, a, a + b}, a, b ∈
{1, 2, . . . , v− 2}, a+ b ≤ v− 1. The orbit can be described as a cyclically ordered
triple 〈a, b, c〉 where a + b + c = v. However in order to generate a configuration,
certain requirements need to be met: 1 ≤ a, b, c ≤ v − 3, a 6= b 6= c 6= a and if
v is even, a, b, c 6= v/2. Further, for the configuration to be connected we must
have gcd(a, b, c) = 1. We are able to give a complete analysis of the occurrence of
triangles in these configurations.

Theorem 4.1. Let C be a cyclic symmetric configuration v3. Then the number
of triangles contained in C is (i) 4v if v = 7, (ii) 3v if v = 8, (iii) 7v/3 if v = 9,
and (iv) v, 4v/3 or 2v if v ≥ 10.

Proof. The configurations 73 and 83 are cyclic and unique up to isomorphism.
It is easily determined that the number of triangles they contain are 28 and 24,
respectively. Of the three non-isomorphic configurations 93, only one is cyclic and
again it is easily determined that the number of triangles is 21.

Now let v ≥ 10. The incidence graph is a Cayley graph Cay (Zv, S) where
the connection set S = {±a,±b,±c}. Triangles in the configuration occur as 3-
cycles in the incidence graph. We count these, by identifying edges which sum
to zero, noting that (x, y, z), (y, z, x), (z, x, y), (−x,−z,−y), (−z,−y,−x) and
(−y,−x,−z), all count the same triangles. First consider the two sets of edges
(a, b, c) and (a, c, b). The first of them corresponds to blocks of the configuration
and the second one to v triangles in the configuration.

There are two further situations where triangles occur. The first of them is
such one where, without loss of generality, either b = 2a or c = 2a, i.e., the
cyclically ordered triple 〈a, b, c〉 is either 〈a, 2a, v−3a〉 or 〈a, v−3a, 2a〉. (Note that
b = v−2a and c = v−2a are not possible.) In this case there are further v triangles
corresponding to edges (a, a,−2a) in the incidence graph. Potentially an orbit
of this form may generate further triangles from 3-cycles as follows; (2a, 2a, 3a),
(3a, 3a, a) and (3a, 3a, 2a). If gcd(a, v) = 1, the first two can only appear when
v = 7 and the third when v = 8. This accounts for the “extra” triangles in these
configurations noted above. If gcd(a, v) > 1, the configurations are disconnected.

The second situation can only occur when v ≡ 0 (mod 3) and without loss of
generality, when a = v/3 or a = 2v/3. There are v/3 triangles 〈v/3, v/3, v/3〉 in
the configuration corresponding to edges (v/3, v/3, v/3) in the incidence graph.
It remains to consider whether both of these two situations can occur simultane-
ously. There are six possibilities: (v/3, v/6, v/2), (v/3, v/2, v/6), (v/3, 2v/9, 4v/9),
(v/3, 4v/9, 2v/9), (2v/3, v/9, 2v/9), and (2v/3, 2v/9, v/9). The first two can only
occur when v = 6s, s > 1 and the configurations are disconnected. The other four
occur when v = 9s, s ≥ 1. When s = 1, again this accounts for the “extra” tri-
angles in the cyclic 93 configuration. When s > 1, the configurations are discon-
nected. �
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5. Conclusion

In this paper, we have begun the study of so-called fragments in symmetric config-
urations with block size 3. This follows from similar work with respect to Steiner
triple systems which was published nearly 30 years ago [4]. An entire chapter of [1]
is devoted to this and many other aspects of this work due to various authors. We
are of the opinion that there is still much which can be done in this area relating
configurations, and below we indicate some possible avenues for future research.

As we have shown, the smallest fragment which can be avoided in an infinite
number of symmetric configurations is the triangle. Such a configuration on 15
points, the Cremona-Richmond configuration, was already known and we have
shown that there exist such configurations v3 for all v ≥ 17. We have also con-
sidered symmetric configurations containing “many” triangles. A further aspect
of this work is that of decomposition. It is relevant to ask about symmetric con-
figurations whose blocks can be decomposed into triangles (with one or two extra
blocks if v is not divisible by 3). Indeed the whole question of the decomposition
of configurations v3 into any given fragment appears to be open.

The work in this paper may also be extended to non-symmetric configurations
(vr, b3). Elementary calculations give b = rv/3, a2 = r(r − 1)v/2, and a1 =
rv(rv− 9r+ 6) for the numbers of blocks, intersecting triples, and disjoint triples,
respectively, thus an additional parameter r, the replication number, is introduced
into the equations. Even further, configurations (vr, b3)λ where any pair of distinct
points is contained in at most λ blocks, can be considered. Those configurations
with λ = 2 are called spatial. Symmetric spatial configurations are the subject
of a paper by Gropp [5], and even though this class of configurations is quite
restrictive, results would still be of interest. Two further two-block fragments, A3,
abc, abd and A4, abc, abc (repeated triple) may also occur, so, unlike the case
where λ = 1, two-block fragments would not be constant.

However, perhaps the most obvious investigation would be to extend the study
of fragments in symmetric configurations v3 to those with four blocks. There are
16 four-block fragments which are illustrated on page 210 of [1] together with
their standard labelling. One of these C7, abc, ade, afg, ahi (4-star) cannot occur.
Nevertheless a complete analysis of the number of occurrences of the remaining 15
fragments would seem to be a lengthy and perhaps tedious although interesting
undertaking. But a subproject could be to consider only those symmetric config-
urations which have no triangles, i.e., those whose Levi graph has girth at least 8.
This would eliminate C6, C8, C11, C12, C14, C15, and C16 from the configuration
leaving just 8 fragments to consider which is a much more feasible investigation.
Within this scenario an 8-cycle in the Levi graph corresponds to a square, i.e.,
fragment C10, abx, bcy, cdz, daw. Thus the construction of cubic bipartite graphs
of girth greater than or equal to 10 would give configurations v3 avoiding C10 and
all fragments containing triangles. A result analogous to Proposition 2.1 would go
a long way to establish this. There is still much to investigate and we hope that
the reader will be inspired to consider some of these ideas.
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Appendix

Table 1. Numbers of triangles t in configurations v3.

v t Count
7 28 1
8 24 1
9 18 1
9 20 1
9 21 1

10 17 2
10 18 3
10 19 2
10 20 3
11 15 1
11 16 10
11 17 7
11 18 7
11 19 3
11 20 1
11 21 1
11 22 1
12 12 1
12 13 8
12 14 22
12 15 48
12 16 60
12 17 41
12 18 24
12 19 14
12 20 5
12 21 3
12 22 1
12 24 2
13 9 1
13 10 2
13 11 12
13 12 67
13 13 190
13 14 371
13 15 418

v t Count
13 16 409
13 17 265
13 18 156
13 19 74
13 20 37
13 21 14
13 22 9
13 23 4
13 24 3
13 25 1
13 26 1
13 28 1
13 32 1
14 6 1
14 8 5
14 9 24
14 10 145
14 11 521
14 12 1512
14 13 2901
14 14 4086
14 15 4121
14 16 3247
14 17 2236
14 18 1304
14 19 640
14 20 335
14 21 159
14 22 69
14 23 33
14 24 36
14 25 5
14 26 2
14 27 4
14 28 6
14 31 2

v t Count
14 32 3
14 40 1
15 0 1
15 4 3
15 6 12
15 7 40
15 8 254
15 9 1129
15 10 4252
15 11 11877
15 12 24510
15 13 38017
15 14 44834
15 15 41585
15 16 32177
15 17 20914
15 18 12585
15 19 6517
15 20 3341
15 21 1617
15 22 851
15 23 404
15 24 206
15 25 62
15 26 54
15 27 39
15 28 23
15 29 6
15 30 12
15 31 9
15 32 6
15 33 1
15 38 2
15 40 1
16 3 1
16 4 5

v t Count
16 5 40
16 6 277
16 7 1699
16 8 8325
16 9 31782
16 10 92432
16 11 206506
16 12 357339
16 13 480580
16 14 517343
16 15 458294
16 16 344331
16 17 225866
16 18 133408
16 19 72369
16 20 37472
16 21 18591
16 22 9255
16 23 4570
16 24 2123
16 25 871
16 26 650
16 27 310
16 28 169
16 29 101
16 30 82
16 31 43
16 32 18
16 33 5
16 34 1
16 35 1
16 36 12
16 37 4
16 38 1
16 39 1
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J. Širáň, Open University, Milton Keynes, UK and Slovak University of Technology, Bratislava,

Slovakia,

e-mail : jozef.siran@open.ac.uk


