
Acta Math. Univ. Comenianae
Vol. XCII, 2 (2023), pp. 165–178

165

STRONG CONVERGENCE THEOREMS USING THREE-STEP

MEAN ITERATION FOR ZAMFIRESCU MAPPINGS

IN BANACH SPACES

A. KONDO

Abstract. This paper addresses the approximation problem for fixed points of

Zamfirescu mappings (Z-mapping) [Arch. Math. 23(1) (1972), 292–298]. We use

a three-step mean iteration that combines Noor’s iteration as well as mean-valued
iteration, and we prove a general theorem that extends Berinde’s strong convergence

theorem [Acta Math. Univ. Comenianae 73(1) (2004), 119–126]. Our results are

obtained in arbitrary real Banach space setting. Furthermore, an application to a
variational inequality problem is presented in a framework of real Hilbert spaces.

1. Introduction

Let X be a complete metric space with a metric d. A mapping T : X → X is
called a contraction if there exists a ∈ (0, 1) such that

(1.1) d (Tx, Ty) ≤ ad (x, y)

for all x, y ∈ X. One of the most famous fixed point theorem is known as the
Banach contraction principle:

Theorem 1.1 ([4]). Let X be a complete metric space and let T : X → X be a
contraction. Then, T has a unique fixed point p, and a sequence {xn} defined by

(1.2) xn+1 = Txn for all n ∈ N

converges to the fixed point p for any initial point x1 ∈ X.

In Theorem 1.1, N stands for the set of natural numbers. This theorem has been
extended in various directions; see, for example, [2, 6, 15, 31, 37, 39, 40]. In
1968, Kannan [14] defined a mapping that satisfies the following condition: there
exists b ∈

(
0, 12
)

such that

(1.3) d (Tx, Ty) ≤ b (d (x, Tx) + d (y, Ty))
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for all x, y ∈ X. In 1972, Chatterjea [9] introduced a type of mappings defined by
the following condition: there exists c ∈

(
0, 12
)

such that

(1.4) d (Tx, Ty) ≤ c (d (x, Ty) + d (Tx, y))

for all x, y ∈ X. Kannan [14] and Chatterjea [9] proved the same conclusion
as expressed by Theorem 1.1. It is remarkable that Kannan mappings (1.3) and
Chatterjea mappings (1.4) are not necessarily continuous; see, for instance, Berinde
[8]. In 1972, Zamfirescu [43] unified these conditions (1.1), (1.3), and (1.4) and
defined a class of mappings:

Definition 1.1 ([43]). Let X be a metric space. A mapping T : X → X
is called a Zamfirescu mapping, or simply Z-mapping, if there exist a ∈ (0, 1)
and b, c ∈

(
0, 12
)

such that for any x, y ∈ X, at least one of the following three
conditions holds:

(Z1) d (Tx, Ty) ≤ ad (x, y) ;

(Z2) d (Tx, Ty) ≤ b (d (x, Tx) + d (y, Ty)) ;

(Z3) d (Tx, Ty) ≤ c (d (x, Ty) + d (Tx, y)) .

This class of Z-mappings simultaneously contains contraction mappings (1.1),
Kannan mappings (1.3), and Chatterjea mappings (1.4). Zamfirescu demonstrated
the following theorem, which generalizes Theorem 1.1:

Theorem 1.2 ([43]). Let X be a complete metric space and let T : X → X be
a Z-mapping. Then, there exists a unique fixed point p of T . Furthermore, T is a
Picard mapping; in other words, Tnx→ p for every x ∈ X.

The iteration procedure (1.2), which also appears in Theorem 1.2, is called
the Picard iteration. In the literature of fixed point theory on Banach or Hilbert
spaces, many other approximation methods have been established. The following
iteration is called the Mann’s type [26]:

x1 = x ∈ C is given,(1.5)

xn+1 = λnxn + (1− λn)Txn

for all n ∈ N, where λn ∈ [0, 1] under certain conditions. Sequences generated by
this rule (1.5) converge weakly to a fixed point of T ; see, for example, Reich [32].
If λn = 0, then the Mann iteration (1.5) coincides with the Picard iteration (1.2).
In 1974, Ishikawa [13] proposed a more general two-step iteration procedure:

x1 = x ∈ C is given,(1.6)

yn = Anxn + (1−An)Txn, and

xn+1 = λnxn + (1− λn)Tyn

for all n ∈ N, where λn, An ∈ [0, 1] under certain conditions. If An = 1, then the
Ishikawa iteration (1.6) is equivalent to the Mann’s iteration (1.5). In a uniformly
convex Banach space, Rhoades [34] obtained a strong convergence of a sequence
defined by (1.6) for a Z-mapping T ; see [34, Theorem 8]. Berinde [5] then later
proved the following theorem in an arbitrary real Banach space setting.
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Theorem 1.3 ([5]). Let C be a nonempty, closed, and convex subset of a real
Banach space E and let T be a Z-mapping from C into itself. Let {λn} be a
sequence of real numbers in the interval [0, 1] such that

∑∞
n=1 (1− λn) = ∞. Let

{An} be a sequence of real numbers in [0, 1]. Define a sequence {xn} in C as
follows:

x1 = x ∈ C is given,

yn = Anxn + (1−An)Txn,

xn+1 = λnxn + (1− λn)Tyn

for all n ∈ N. Then, {xn} converges strongly to a unique fixed point p of T .

For related results, see also Rhoades [33] and Berinde [7]. The Ishikawa itera-
tion has been further extended to a three-step version. Noor [29] introduced the
following algorithm:

x1 = x ∈ C is given,(1.7)

vn = ζnxn + (1− ζn)Txn,

yn = Anxn + (1−An)Tvn, and

xn+1 = λnxn + (1− λn)Tyn

for all n ∈ N. Obviously, if ζn = 1 in (1.7), it coincides with the Ishikawa iteration.
For other variations of three-step iteration, see also Dashputre and Diwan [11],
Phuengrattana and Suantai [30], Chugh et al. [10], and Kondo [21, 22].

On the other hand, the following type of mean-valued iteration is often used to
approximate fixed points:

(1.8) xn+1 = λnxn + (1− λn)
1

n

n∑
i=1

T ixn

for all n ∈ N; see Shimizu and Takahashi [35] and Atsushiba and Takahashi [1].
This type of mean iteration has its roots in Baillon [3]. For more recent works
concerning the mean iteration method, see [12, 16, 18, 20] and the papers cited
therein. According to Maruyama et al. [27] and Kondo and Takahashi [23, 24,
25], the following iteration is effective for some classes of nonlinear mappings:

(1.9) xn+1 = λnxn + µnTxn + νnT
2xn

for all n ∈ N. For this type of iteration, see also Kondo [17, 19] and Singh et al.
[36].

This paper addresses the fixed point approximation problem for Zamfirescu
mapping (Z-mapping) in arbitrary real Banach spaces. Berinde’s theorem (Theo-
rem 1.3) and the Noor’s iteration are extended by incorporating the mean iteration
(1.8) and the “2-iteration” (1.9). After preparing some lemmas in Section 2, we
demonstrate a theorem that jointly employs these iterations in Section 3. Berinde’s
theorem (Theorem 1.3) is derived from our theorem. Our main theorem applies to
classes of mappings, such as contraction mappings (1.1), Kannan mappings (1.3),
and Chatterjea mappings (1.4). Furthermore, we apply a result to a variational



168 A. KONDO

inequality problem (VIP) and present an approximation method for finding a so-
lution to the VIP in Section 4. Such an attempt implies that our result can be
applied to optimization problems because, as is well-known, VIPs directly connect
with optimization problems.

2. Lemmas

In this section, three lemmas are prepared.

Lemma 2.1. Let C be a nonempty subset of a normed linear space E and let
T : C → C be a Z-mapping. Then, there exists ρ ∈ (0, 1) such that

(1)
∥∥THx− p∥∥ ≤ ρ ‖x− p‖ and

(2)

∥∥∥∥ 1

n

n+h−1∑
i=h

T ix− p
∥∥∥∥ ≤ ρ ‖x− p‖

for any x ∈ C and a fixed point p of T , where H,n, h ∈ N.

Proof. Note that a fixed point of a Z-mapping T is unique (if it exists). First,
we prove (1). Let x ∈ C and let p ∈ C be a unique fixed point of T . As T is
a Z-mapping, at least one of the conditions (Z1), (Z2), or (Z3) in Definition 1.1
holds. If (Z1) holds, then it follows from p = Tp that

(2.1) ‖Tx− p‖ = ‖Tx− Tp‖ ≤ a ‖x− p‖ ,

where a ∈ (0, 1). If (Z2) holds true, then

‖Tx− p‖ = ‖Tx− Tp‖ ≤ b (‖x− Tx‖+ ‖p− Tp‖)
= b ‖x− Tx‖ ≤ b ‖x− p‖+ b ‖p− Tx‖ ,

where b ∈
(
0, 12
)
. This implies that

(1− b) ‖Tx− p‖ ≤ b ‖x− p‖ ,

and hence, we have

(2.2) ‖Tx− p‖ ≤ b

1− b
‖x− p‖ .

If (Z3) holds, then there exists c ∈
(
0, 12
)

such that

‖Tx− p‖ = ‖Tx− Tp‖
≤ c (‖x− Tp‖+ ‖Tx− p‖)
= c (‖x− p‖+ ‖Tx− p‖) .

This expression yields

(2.3) ‖Tx− p‖ ≤ c

1− c
‖x− p‖ .

Define ρ = max
{
a, b

1−b ,
c

1−c

}
. As a ∈ (0, 1) and b, c ∈

(
0, 12
)
, we have ρ ∈ (0, 1).
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From (2.1)–(2.3), we obtain ‖Tx− p‖ ≤ ρ ‖x− p‖ for any x ∈ C and a fixed point
p of T . As ρ ∈ (0, 1), we can express the desired result as follows:∥∥THx− p∥∥ ≤ ρ ∥∥TH−1x− p∥∥ ≤ · · · ≤ ρH ‖x− p‖ ≤ ρ ‖x− p‖ .

Next, we prove (2). From (1), it holds that∥∥∥∥ 1

n

n+h−1∑
i=h

T ix− p
∥∥∥∥ =

1

n

∥∥∥∥ n+h−1∑
i=h

T ix− np
∥∥∥∥ =

1

n

∥∥∥∥ n+h−1∑
i=h

(
T ix− p

) ∥∥∥∥
≤ 1

n

n+h−1∑
i=h

∥∥T ix− p∥∥
=

1

n

(∥∥Thx− p∥∥+
∥∥Th+1x− p

∥∥+ · · ·+
∥∥Tn+h−1x− p∥∥)

≤ 1

n
(ρ ‖x− p‖+ ρ ‖x− p‖+ · · ·+ ρ ‖x− p‖)

= ρ ‖x− p‖ .

This completes the proof. �

It is clear that (1) in Lemma 2.1 holds true in a setting of a metric space. The
next lemma is a slightly generalized version of an inequality used in Berinde [5].

Lemma 2.2. Let A, a, α, ρ ∈ [0, 1] and let λ, µ, ν, ξ ∈ [0, 1] with λ+µ+ν+ξ = 1.
Then,

λ+µρA+µρ2 (1−A)+νρa+νρ2 (1− a)+ξρα+ξρ2 (1− α) ≤ 1−(1− ρ) (1− λ) .

Proof. Easy calculation yields

λ+ µρA+ µρ2 (1−A) + νρa+ νρ2 (1− a) + ξρα+ ξρ2 (1− α)

= λ+ µρ (A+ ρ(1−A)) + νρ (a+ ρ(1− a)) + ξρ (α+ ρ (1− α))

= λ+ µρ ((1− ρ)A+ ρ) + νρ ((1− ρ) a+ ρ) + ξρ ((1− ρ)α+ ρ) .

Since µρ (1− ρ) ≥ 0, νρ (1− ρ) , ξρ (1− ρ) ≥ 0, substituting A = a = α = 1, we
obtain the desired result as follows:

λ+ µρA+ µρ2 (1−A) + νρa+ νρ2 (1− a) + ξρα+ ξρ2 (1− α)

≤ λ+ µρ+ νρ+ ξρ

= λ− 1 + 1 + ρ (1− λ)

= 1− (1− λ) (1− ρ) . �

Although the next lemma is well-known in the literature, we provide a proof
for completeness.

Lemma 2.3. Let {λn} be a sequence of real numbers in the interval [0, 1]
such that

∑∞
n=1 (1− λn) = ∞. Let Λ > 0 be a positive real number such that

Λ (1− λn) < 1 for all n ∈ N. Then,
∞∏
n=1

(1− Λ (1− λn)) = 0.
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Proof. Define Pn =
∏n
i=1 (1− Λ (1− λi)). As Λ (1− λi) < 1, it holds that

Pn > 0. Our goal is to show that Pn → 0. In the inequality log (1− x) ≤ −x (for
all x < 1), letting x = Λ (1− λi) (< 1) yields

logPn =

n∑
i=1

log (1− Λ (1− λi)) ≤ −Λ

n∑
i=1

(1− λi) .

This result implies that

0 < Pn ≤ exp

(
− Λ

n∑
i=1

(1− λi)
)
.

From
∑∞
i=1 (1− λi) =∞ and Λ > 0, we obtain Pn → 0 as n tends to infinity. This

outcome completes the proof. �

3. Primary results

In this section, we prove a strong convergence theorem, which extends a three-
step iteration (1.7) by incorporating the mean iteration (1.8) and the “2-iteration”
(1.9). The result generalizes Theorem 1.3 and complements Theorem 1.2, which
is related to the Picard iteration.

Theorem 3.1. Let C be a nonempty, closed, and convex subset of a real Banach
space E and let T be a Z-mapping from C into itself. Let {λn}, {µn}, {νn}, {ξn},
{An}, {Bn}, {Cn}, {Dn}, {an}, {bn}, {cn}, {dn}, {αn}, {βn}, {γn}, {δn}, {ζn},
{ηn}, {θn}, {ιn} be sequences of real numbers in the interval [0, 1] such that

λn + µn + νn + ξn = 1, An +Bn + Cn +Dn = 1,

an + bn + cn + dn = 1, αn + βn + γn + δn = 1, and

ζn + ηn + θn + ιn = 1

for all n ∈ N. Assume that
∑∞
n=1 (1− λn) =∞. Define a sequence {xn} in C as

follows:

x1 = x ∈ C is given,

vn = ζnxn + ηnT
H1xn + θnT

H2xn + ιn
1

n

n+h−1∑
i=h

T ixn,

wn = αnxn + βnT
M1vn + γnT

M2vn + δn
1

n

n+m−1∑
i=m

T ivn,

zn = anxn + bnT
L1vn + cnT

L2vn + dn
1

n

n+l−1∑
i=l

T ivn,

yn = Anxn +BnT
K1vn + CnT

K2vn +Dn
1

n

n+k−1∑
i=k

T ivn,

xn+1 = λnxn + µnT
J1yn + νnT

J2zn + ξn
1

n

n+j−1∑
i=j

T iwn
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for all n ∈ N, where J1,K1, L1,M1, H1, J2,K2, L2,M2, H2, j, k, l,m, h ∈ N. Then,
{xn} converges strongly to a unique fixed point p of T .

Proof. As C is closed in a Banach space, it is complete. Thus, from Theorem 1.2,
T has a unique fixed point p ∈ C. Define

ρ = max

{
a,

b

1− b
,

c

1− c

}
∈ (0, 1) ,

where a ∈ (0, 1) and b, c ∈
(
0, 12
)

are those in Definition 1.1. As T is a Z-mapping,
we can verify that

(3.1) ‖vn − p‖ ≤ ‖xn − p‖

for all n ∈ N. Since ρ ∈ (0, 1), it holds from Lemma 2.1 that

‖vn − p‖ =

∥∥∥∥ζnxn + ηnT
H1xn + θnT

H2xn + ιn
1

n

n+h−1∑
i=h

T ixn − p
∥∥∥∥

≤ ζn ‖xn − p‖+ ηn
∥∥TH1xn − p

∥∥+ θn
∥∥TH2xn − p

∥∥
+ ιn

∥∥∥∥ 1

n

n+h−1∑
i=h

T ixn − p
∥∥∥∥

≤ ζn ‖xn − p‖+ ηnρ ‖xn − p‖+ θnρ ‖xn − p‖+ ιnρ ‖xn − p‖
≤ ζn ‖xn − p‖+ ηn ‖xn − p‖+ θn ‖xn − p‖+ ιn ‖xn − p‖
= ‖xn − p‖

as claimed. Furthermore, using Lemma 2.1 and (3.1), we can show that

(3.2) ‖yn − p‖ ≤ An ‖xn − p‖+ (1−An) ρ ‖xn − p‖

for all n ∈ N as follows:

‖yn − p‖ =

∥∥∥∥Anxn +BnT
K1vn + CnT

K2vn +Dn
1

n

n+k−1∑
i=k

T ivn − p
∥∥∥∥

≤ An ‖xn − p‖+Bn
∥∥TK1vn − p

∥∥+ Cn
∥∥TK2vn − p

∥∥
+Dn

∥∥∥∥ 1

n

n+k−1∑
i=k

T ivn − p
∥∥∥∥

≤ An ‖xn − p‖+Bnρ ‖vn − p‖+ Cnρ ‖vn − p‖+Dnρ ‖vn − p‖
= An ‖xn − p‖+ (1−An) ρ ‖vn − p‖
≤ An ‖xn − p‖+ (1−An) ρ ‖xn − p‖ .

Similarly, we can demonstrate that

‖zn − p‖ ≤ an ‖xn − p‖+ (1− an) ρ ‖xn − p‖ and(3.3)

‖wn − p‖ ≤ αn ‖xn − p‖+ (1− αn) ρ ‖xn − p‖(3.4)
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for all n ∈ N. From Lemma 2.1 and (3.2)–(3.4), the following holds:

‖xn+1 − p‖ =

∥∥∥∥λnxn + µnT
J1yn + νnT

J2zn + ξn
1

n

n+j−1∑
i=j

T iwn − p
∥∥∥∥

≤ λn ‖xn − p‖+ µn
∥∥T J1yn − p∥∥+ νn

∥∥T J2zn − p∥∥
+ ξn

∥∥∥∥ 1

n

n+j−1∑
i=j

T iwn − p
∥∥∥∥

≤ λn ‖xn − p‖+ µnρ ‖yn − p‖+ νnρ ‖zn − p‖+ ξnρ ‖wn − p‖
≤ λn ‖xn − p‖+ µnρ (An ‖xn − p‖+ (1−An) ρ ‖xn − p‖)

+ νnρ (an ‖xn − p‖+ (1− an) ρ ‖xn − p‖)
+ ξnρ (αn ‖xn − p‖+ (1− αn) ρ ‖xn − p‖)

= {λn + µnρAn + µnρ
2 (1−An) + νnρan + νnρ

2 (1− an)

+ ξnραn + ξnρ
2 (1− αn)} ‖xn − p‖ .

Using Lemma 2.2, we obtain

‖xn+1 − p‖ ≤ (1− (1− ρ) (1− λn)) ‖xn − p‖
≤ · · ·

≤
n∏
i=1

(1− (1− ρ) (1− λi)) ‖x1 − p‖ .

Because 1− ρ > 0, (1− ρ) (1− λi) < 1, and
∑∞
i=1 (1− λi) =∞, from Lemma 2.3,

we obtain
∏n
i=1 (1− (1− ρ) (1− λi)) → 0 in the limit as n → ∞. This result

indicates that xn → p, which completes the proof. �

Remark. Theorem 3.1 generates Theorem 1.3. Indeed, let ηn = θn = ιn = 0
in Theorem 3.1. Then, ζn = 1, and we have vn = xn. Furthermore, let νn =
ξn = 0. Then, zn and wn do not affect xn+1. Finally, putting Cn = Dn = 0 and
J1 = K1 = 1, we obtain Theorem 1.3.

Theorem 3.1 also generates the following corollary, which combines the Ishikawa
iteration (1.6) and the mean iteration (1.8).

Corollary 3.1. Let C be a nonempty, closed, and convex subset of a real Ba-
nach space E and let T be a Z-mapping from C into itself. Let {λn} be a sequence
of real numbers in the interval [0, 1] such that

∑∞
n=1 (1− λn) =∞. Let {αn} be a

sequence of real numbers in [0, 1]. Define a sequence {xn} in C as follows:

x1 = x ∈ C is given,(3.5)

yn = αnxn + (1− αn)
1

n

n∑
i=1

T ixn,

xn+1 = λnxn + (1− λn)
1

n

n∑
i=1

T iyn
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for all n ∈ N. Then, {xn} converges strongly to a unique fixed point p of T .

Proof. Let ηn = θn = ιn = 0 in Theorem 3.1. By this operation, we have
vn = xn. Next, set µn = νn = 0. Then, yn and zn do not affect xn+1. Furthermore,
substitute βn = γn = 0 and j = m = 1. Finally, replacing the notation wn by yn,
we obtain the desired result. �

If αn = 1 in Corollary 3.1, the iteration procedure (3.5) coincides with the mean
iteration (1.8) in Introduction. Also, (3.5) in Corollary 3.1 can be replaced by

x1 = x ∈ C is given,

yn = Anxn + (1−An)
1

n

n∑
i=1

T ixn,

xn+1 = λnxn + (1− λn)Tyn,

and other various versions. Further, we can derive the following corollary.

Corollary 3.2. Let C be a nonempty, closed, and convex subset of a real Ba-
nach space E and let T be a Z-mapping from C into itself. Let {λn}, {µn}, {νn},
{An}, {Bn}, {Cn} be sequences of real numbers in the interval [0, 1] such that
λn + µn + νn = 1 and An + Bn + Cn = 1. Assume that

∑∞
n=1 (1− λn) = ∞.

Define a sequence {xn} in C as follows:

x1 = x ∈ C is given,

yn = Anxn +BnTxn + CnT
2xn,

xn+1 = λnxn + µnTyn + νnT
2yn

for all n ∈ N. Then, {xn} converges strongly to a unique fixed point p of T .

Proof. First, substitute ηn = θn = ιn = 0 in Theorem 3.1. Then, vn = xn.
Furthermore, let ξn = Dn = dn = 0, An = an, Bn = bn, Cn = cn, K1 = L1, and
K2 = L2. This yields yn = zn. Finally, putting J1 = K1 = 1 and J2 = K2 = 2,
we obtain the desired result. �

If An = 1 in Corollary 3.2, the “2-iteration” (1.9) is obtained. The Noor’s type
(1.7) three-step iteration is also derived from Theorem 3.1.

Corollary 3.3. Let C be a nonempty, closed, and convex subset of a real Ba-
nach space E and let T be a Z-mapping from C into itself. Let {λn}, {An}, {ζn} be
sequences of real numbers in the interval [0, 1]. Assume that

∑∞
n=1 (1− λn) =∞.

Define a sequence {xn} in C as follows:

x1 = x ∈ C is given,

vn = ζnxn + (1− ζn)Txn,

yn = Anxn + (1−An)Tvn,

xn+1 = λnxn + (1− λn)Tyn

for all n ∈ N. Then, {xn} converges strongly to a unique fixed point p of T .
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Proof. Let νn = ξn = Cn = Dn = θn = ιn = 0 and J1 = K1 = H1 = 1 in
Theorem 3.1. Then, the desired result follows. �

4. Application

In this section, we present a strong convergence theorem that approximates a
solution to a variational inequality problem (VIP) as an application of a result in
the previous section. Let C be a nonempty subset of a real Hilbert space H. For a
mapping A : C → H, the set of solutions to a variational inequality problem (VIP)
is denoted by

V I (C,A) = {x ∈ C : 〈y − x, Ax〉 ≥ 0 for all y ∈ C} .
For VIPs, the following types of mappings have been used in the literature. A
mapping A : C → H is called K-Lipschitz continuous if there exists K > 0 such
that

(4.1) ‖Ax−Ay‖ ≤ K ‖x− y‖
for all x, y ∈ C. If K < 1, A is a contraction mapping. A mapping A : C → H is
said to be monotone if

(4.2) 0 ≤ 〈x− y, Ax−Ay〉
for all x, y ∈ C. A mapping A : C → H is called strongly monotone if

(4.3) 0 < 〈x− y, Ax−Ay〉
for x, y ∈ C such that x 6= y. A mapping A : C → H is called η-strongly monotone
if there exists η > 0 such that

(4.4) η ‖x− y‖2 ≤ 〈x− y, Ax−Ay〉
for all x, y ∈ C. An η-strongly monotone mapping is strongly monotone.

For a mapping T : C → H, the set of fixed points is denoted by

F (T ) = {x ∈ C : x = Tx} .
To solve VIPs by applying the fixed point theory, the following two lemmas are
crucial.

Lemma 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H, let PC be the metric projection from H onto C, and let A be a mapping
from C into H. Then, it holds that V I (C,A) = F (PC (I − µA)) for all µ > 0.

Proof. It follows that

x ∈ F (PC (I − µA))⇐⇒ x = PC (x− µAx)

⇐⇒ 〈(x− µAx)− x, x− y〉 ≥ 0 for all y ∈ C
⇐⇒ 〈Ax, x− y〉 ≤ 0 for all y ∈ C
⇐⇒ x ∈ V I (C,A) .

Thus, we obtain the desired result. �
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Lemma 4.2. Let A : C → H be an η-strongly monotone and K-Lipschitz con-
tinuous mapping, where C is a nonempty subset of H and 0 < η ≤ K. Then, for
µ ∈

(
0, 2η

K2

)
, I − µA is a contraction mapping from C into H.

Proof. Let x, y ∈ C. As A is η-strongly monotone and K-Lipschitz continuous,
it holds that

‖(I − µA)x− (I − µA) y‖2

= ‖x− y − µ (Ax−Ay)‖2

= ‖x− y‖2 − 2µ 〈x− y, Ax−Ay〉+ µ2 ‖Ax−Ay‖2

≤ ‖x− y‖2 − 2µη ‖x− y‖2 + µ2K2 ‖x− y‖2

=
{

1− µ
(
2η − µK2

)}
‖x− y‖2 .

Using the conditions 0 < µ < 2η/K2 and 0 < η ≤ K, we have

0 ≤ 1− µ
(
2η − µk2

)
< 1.

This implies that I − µA is a contraction mapping. �

As the metric projection is nonexpansive, the self-mapping PC (I − µA) on C is
a contraction mapping under the conditions in Lemma 4.2. Consequently, the set
V I (C,A) (= F (PC (I − µA))) consists of only one element and Picard iteration
effectively works to approximate the unique element of V I (C,A).

Beyond the Picard iteration, more general types of iteration schemes introduced
in Section 3 are applicable to approximate the solution to a VIP. We present a
three-step iteration as an application of Corollary 3.3.

Theorem 4.1. Let C be a nonempty, closed, and convex subset of a real Hilbert
space H and let PC be the metric projection from H onto C. Let A : C → H be
an η-strongly monotone and K-Lipschitz continuous mapping, where 0 < η ≤ K.
For µ ∈

(
0, 2η

K2

)
, define T = PC (I − µA), where I is the identity mapping defined

on C. Let {λn}, {An}, {ζn} be sequences of real numbers in the interval [0, 1].
Assume that

∑∞
n=1 (1− λn) =∞. Define a sequence {xn} in C as follows:

x1 = x ∈ C is given,(4.5)

vn = ζnxn + (1− ζn)Txn,

yn = Anxn + (1−An)Tvn,

xn+1 = λnxn + (1− λn)Tyn

for all n ∈ N. Then, {xn} converges strongly to a unique element of V I(C,A).

Proof. From Lemma 4.2, T (= PC (I − µA)) is a contraction mapping from C
into itself. Hence, T is a Z-mapping and it has a unique fixed point x∗ ∈ F (T ).
From Lemma 4.1, x∗ ∈ F (T ) = V I(C,A). As

∑∞
n=1 (1− λn) = ∞ is assumed,

from Corollary 3.3, the sequence {xn} defined by (4.5) converges strongly to x∗ ∈
F (T ) = V I(C,A). This completes the proof. �
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Setting ζn = An = 1 and λn = 0 in (4.5), Picard iteration is deduced. Therefore,
the iteration (4.5) is more general than Picard iteration. For related researches
concerning VIPs, see also Yamada [42], Xu and Kim [41], Muangchoo [28], and
Truong et al. [38].
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