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MATRIX DIFFERENCE EQUATIONS WITH JUMP

CONDITIONS AND HYPERBOLIC EIGENPARAMETER

Y. AYGAR and G. B. OZNUR

Abstract. Problems of difference equations with jump (discontinuity) conditions

have an important role for many branches of sciences. They can be used to model a
wide range of real-world applications such as heating, massing in physics, bursting

rhythm models in medicine, optimal control models in economics, and so on. In
this paper, we consider some spectral and scattering properties of matrix difference

equations with jump conditions and hyperbolic eigenparameter. Using the asymp-

totic behavior of Jost function, we find eigenvalues, spectral singularities, resolvent
operator, and spectrum of this problem. Also, we investigate scattering matrix and

get some properties of scattering matrix. Finally, we present an example about the

scattering matrix and the existence of eigenvalues in special cases.

1. Introduction

The difference equations with jump conditions lie in a special important position
in the theory of difference equations. Within this theory, scattering and spectral
analysis of these equations is an important tool to investigate the qualitative prop-
erties of eigenvalues, spectral singularities, scattering solutions of such equations.
These equations involve some discontinuities during many evolution processes. At
a certain moment, the state may change abruptly and takes a short time compared
to the whole duration. These sudden effects are recognized as instantaneous im-
pulses. The conditions involving impulsive effects are called impulsive conditions
or jump conditions. Such conditions are also called transmission conditions, point
interaction conditions, interface conditions or interior conditions in literature (see
[1, 13, 21, 22, 23]). It is well-known that the theory of difference equations with
jump points takes form under favor of the theory of the differential equations with
jump points or with impulses. Because of this, we refer to the monographs (see
[5, 4, 14, 19, 24]), for the mathematical theory of such equations. In recent years,
spectral and scattering analysis of difference equations with jump conditions has
received a lot of attention (see [2, 3, 7, 8, 9, 10, 11, 12, 15]), and most of the
published works have not been related to matrix form except [6]. In this study,

Received October 4, 2021; revised January 14, 2022.
2020 Mathematics Subject Classification. Primary 34B37, 34L25, 39A70.
Key words and phrases. Jump condition; scattering matrix; difference equation; difference oper-
ator; eigenvalue.



150 Y. AYGAR and G. B. OZNUR

we investigate spectral and scattering properties of a matrix difference operator
L generated by a matrix difference expression and with jump conditions. These
spectral and scattering properties contain Jost solution, scattering solutions, scat-
tering matrix, eigenvalues, spectral singularities, resolvent operator and spectrum.
Differently from [6], this work consists of hyperbolic eigenparameter and it pro-
vides a new perspective of the problem. Because analytical region of Jost solution
has changed as a result of hyperbolic eigenparameter and renewed the region of
the problem. This new approach provide wide applications in physics, economics,
and engineering.

Let us introduce the Hilbert space l2
(
N,Ch

)
such that

l2
(
N,Ch

)
:=
{
Y = {Yn}n∈N , Yn ∈ Ch, ‖Y ‖2 =

∑
m∈N
‖Yn‖2 <∞

}
,

where Ch is an h-dimensional (h < ∞) Euclidian space, ‖ · ‖ denotes the matrix
norm in Ch. Further, we denote by L the operator in l2

(
N,Ch

)
by the following

matrix expression

(1) (ly)n = Yn−1 +BnYn + Yn+1, n ∈ Nr {m0 − 1,m0,m0 + 1},
and the boundary condition

(2) Y0 = 0

with the jump conditions

(3) Ym0+1 = UYm0−1, Ym0+2 = V Ym0−2,

where Bn, n ∈ N are linear operators (matrices) acting in Ch, and m0 is an
arbitrary natural number. Throughout the paper, we assume that B := {Bn}n∈N
is a selfadjoint matrix satisfying

(4)
∑
m∈N

n‖Bn‖ <∞,

and U, V are selfadjoint diagonal matrices in Ch such that all eigenvalues of them
are different and nonzero. Since B is selfadjoint matrix, it is evident that if Yn(z)
is the solution of (1), then Y Tn (z) also will be a solution of (1), where T shows
transpose operator.

Related to the operator L, we consider the matrix difference equation

(5) Yn−1 +BnYn + Yn+1 = µYn, n ∈ Nr {m0 − 1,m0,m0 + 1},
with the boundary condition (2) and jump conditions (3), where µ = 2 cosh z is a
spectral parameter.

The remainder of the manuscript organized as follows: In the second Section,
we give some definitions and preliminaries to help us for other sections. In Sec-
tion 3, we present Jost solution, scattering solutions and scattering matrix of (5).
Then, we investigate the properties of them. In Section 4, we find the resolvent
operator of L and examine the properties of eigenvalues, spectral singularities and
continuous spectrum of L. Also, we present an asymptotic equation for Jost so-
lution. In Section 5, we are interested in an unperturbated discrete impulsive
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Sturm-Liouville equation with hyperbolic eigenparameter as a special example of
(1)–(3). We determine the eigenvalues and spectral singularities of this example.
Finally, we express some conclusions in Section 6.

2. Preliminaries

In this Section, our goal is to present some basic concepts and definitions concern-
ing the main problem.

Definition 2.1. Wronskian of any two solutions K = {Kn(z)} and M =
{Mn(z)} of (1) is defined as

(6) W
[
K,MT

]
(n) := MT

n−1Kn −MT
nKn−1.

In this paper, we consider two semi-strips

J =
{
z ∈ C : Re z < 0,−π

2
≤ Im z ≤ 3π

2

}
, J0 := J ∪ J1,

where J1 :=
{
z∈C : Rez=0, Imz ∈

[
−π2 ,

3π
2

]}
. Throughout the paper, we shortly

show the set J1 by
[
−π2 i, 3π2 i

]
. Assume that P (z) = {Pn(z)} and Q(z) = {Qn(z)}

are the fundamental solutions of (5) for z ∈ J0 and n = 0, 1, . . . ,m0−1, satisfying
the initial conditions:

P0(z) = 0, P1(z) = I,

Q0(z) = I, Q1(z) = 0.

On the other hand, it is well-known that a bounded solution of equation (5)
in C− := {z ∈ C : Re z ≤ 0} for µ = 2 cosh z exists. We will show this bounded
solution by E(z) = {En(z)} in this paper. For z ∈ C−, solution is represented by

En(z) = enz
[
I +

∞∑
m=1

Anmemz
]

n = m0 + 1,m0 + 2, . . .

where Anm is expressed in terms of {Bn} and E(z) is called the Jost solution of
the equation (5) in [17].
Jost solution is analytic with respect to z in C− := {z ∈ C : Re z < 0}, continuous
in C−, and for all z in C−, En(z) = En (z + 2π) . Furthermore, E(z) provides the
following asymptotic equalities for z ∈ C−,

(7)
En(z) = enz [I + o(1)] , n→∞,
En(z) = enz [I + o(1)] , Re z →∞.

Besides Jost solution, equation (5) has an unbounded solution Ên(z), which sat-
isfies the following asymptotic equation

(8) Ên(z) = e−nz [I + o(1)] , z ∈ C−, n→∞.
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3. Scattering solutions and scattering matrix

In this section, we are interested in equation (5) with the conditions (2) and (3).
We shortly call this boundary value problem with jump conditions by BVP.

Firstly, we define the following solution of BVP for z ∈ J0, by using P (z), Q(z),
and E(z):

(9) Fn(z) =

{
Pn(z)D1(z) +Qn(z)D2(z), n ∈ {0, 1, . . . ,m0 − 1}

En(z), n ∈ {m0 + 1,m0 + 2, . . . } ,
where D1 and D2 are z-dependent coefficients. We can write following equalities
by using jump conditions (3)

U−1Em0+1(z) = Pm0−1(z)D1(z) +Qm0−1(z)D2(z),(10)

V −1Em0+2(z) = Pm0−2(z)D1(z) +Qm0−2(z)D2(z).(11)

By means of (6), it is obvious that W
[
P (z), PT (z)

]
= 0, W

[
Q(z), QT (z)

]
= 0,

and W
[
P (z), QT (z)

]
= I for all z ∈ C−. Then by using (10) and (11), we get the

coefficients D1(z) and D2(z)

D1(z) = U−1V −1
[
V QTm0−2Em0+1(z)− UQTm0−1Em0+2(z)

]
,(12)

D2(z) = U−1V −1
[
UPTm0−1Em0+2(z)− V PTm0−1Em0+1(z)

]
,(13)

respectively, for z ∈ J0. The function Fn(z) is called the Jost solution of BVP and
by using the boundary condition (2), we obtain the Jost function of BVP by

F0(z) := F (z) = D2(z).

The Jost function F is analytic in C− and continuous in C−.

Theorem 3.1. For all z ∈
[
−π2 i, 3π2 i

]
r {0, πi}, detF (z) 6= 0, where F (z) is

the Jost function of BVP given in the last equation.

Proof. We think the following solution G(z) = {Gn(z)} of (5) to get the proof
of Theorem 3.1

Gn(z) =

{
Pn(z), n ∈ {0, 1, . . . ,m0 − 1}

En(z)D3(z) + En(−z)D4(z), n ∈ {m0 + 1,m0 + 2, . . . }

for z ∈
[
−π2 i, 3π2 i

]
r {0, πi}. Using the jump conditions (3), we write

Em0+1(z)D3(z) + Em0+1(−z)D4(z) = UPm0−1(z),(14)

Em0+2(z)D3(z) + Em0+2(−z)D4(z) = V Pm0−2(z).(15)

By (6), we get easily that

W
[
E(z), ET (z)

]
= 0, W

[
E(−z), ET (z)

]
= −2 sinh z.

Then using these wronskian equalities in (14) and (15), we obtain

D3(z) = − 1

2 sinh z

[
UETm0+2(−z)Pm0−1(z)− V ETm0+1(−z)Pm0−2(z)

]
,(16)
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D4(z) =
1

2 sinh z

[
UETm0+2(z)Pm0−1(z)− V ETm0+1(z)Pm0−2(z)

]
(17)

for z ∈
[
−π2 i, 3π2 i

]
r {0, πi}. By using (13), (16), and (17), it is clear to show the

following relations between coefficients for all z ∈
[
−π2 i, 3π2 i

]
r {0, πi}

(18) DT
4 (z) = DT

3 (−z) =
1

2 sinh z
UV D2(z).

To complete the proof of Theorem 3.1, we assume that there exists a point z0
in
[
−π2 i, 3π2 i

]
r {0, πi} such that detF (z0) = 0. From (18), it is evident that

detD4 (z0) = detD3 (z0) = 0. Then the solution G is equal to zero identically.
It gives a trivial solution of BVP, but it is a contradiction. Finally, we obtain
detF (z) 6= 0 for all z ∈

[
−π2 i, 3π2 i

]
r {0, πi}. �

Theorem 3.1 says that the inverse of the function F exists and the following
definition is meaningful.

Definition 3.2. For z ∈
[
−π2 i, 3π2 i

]
r {0, πi}, the matrix function

S(z) = F−1(z)F (−z)

exists and it is called the scattering matrix of BVP.

Theorem 3.3. The matrix function S(z) is an uniter matrix and for all

z ∈
[
− π

2 i, 3π2 i
]
r {0, πi}, it satisfies S(−z) = S−1(z) = S∗(z), where * denotes

the adjoint operator.

Proof. Using Definition 3.2, we find

S (−z) = F−1 (−z)F (z), z ∈
[
− π

2
i,

3π

2
i
]
r {0, πi}.

Last equation helps to get

S (z)S (−z) = S (−z)S (z) = I, z ∈
[
− π

2
i,

3π

2
i
]
r {0, πi},

and it gives S (−z) = S−1(z). Let consider the solutions Fn(z), Fn (−z) and Gn(z)
in order to obtain S∗(z) = S (−z). Therefore, we write

(19)
Gn(z) = Fn(z)γ + Fn (−z) ζ,

Gn+1(z) = Fn+1(z)γ + Fn+1 (−z) ζ,

where γ, ζ are matrices not depending on n. By using (19), we easily get

γ = W−1 [F (z), F ∗(z)]
{
F ∗n(z)Gn+1(z)− F ∗n+1(z)Gn(z)

}
,

ζ = W−1 [F ∗(−z), F (−z)]
{
F ∗n(−z)Gn+1(z)− F ∗n+1(−z)Gn(z)

}
.

Because of the characteristic features of equations with jump conditions, we find

W−1 [F (z), F ∗(z)] = −W−1 [F (−z), F ∗(−z)] .

Letting n = 0 in the equation (19), we obtain

(20) F (z)F ∗(z) = F (−z), F ∗(−z).
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Using Definition 3.2 and (20), we complete the proof of S∗(z) = S (−z) . Finally,
it is clear that ‖S‖ = I and SS∗ = S∗S = I, these equations prove that S is
uniter. �

Let us give the following Lemma to investigate the relationship between the
wronskians of the scattering solutions of BVP

Lemma 3.4. For all z ∈
[
−π2 i, 3π2 i

]
r {0, πi}, the following wronskian holds

W [F (z), GT (z)](n) =

−D2(z), n ∈ {0, 1, . . . ,m0 − 1}

UV D2(z), n ∈ {m0 + 1,m0 + 2, . . . } .

Proof. Using (6), we find

W
[
F (z), GT (z)

]
(n) = GT0 (z)F1(z)−GT1 (z)F0(z) for n = 0, 1, . . . ,m0 − 1.

Since P0(z) = 0, P1(z) = I, Q0(z) = I and Q1(z) = 0, we obtain

W [F (z), GT (z)](n) = −D2(z), n = 0, 1, . . . ,m0 − 1.

Similarly, for n = m0 + 1,m0 + 2, . . . , we get W [F (z), GT (z)](n) = 2 sinh zDT
4 (z).

Then by using (18), we find

W [F (z), GT (z)](n) = UV D2(z), n = m0 + 1,m0 + 2, . . .

It completes the proof. �

4. Resolvent operator, eigenvalues, spectral singularities
and continuous spectrum of L

Now, we define another solution of BVP

Hn(z) =

{
Pn(z), n ∈ {0, 1, . . . ,m0 − 1}
En(z)D5(z) + Ên(z)D6(z), n ∈ {m0 + 1,m0 + 2, . . . }

for z ∈ J0. Using the jump conditions (3), we get

Em0+1(z)D5(z) + Êm0+1(z)D6(z) = UPm0−1(z),

Em0+2(z)D5(z) + Êm0+2(z)D6(z) = UPm0−2(z).

It can be easily calculated from (6),

W
[
E(z), ET (z)

]
0, W

[
Ê(z), ÊT (z)

]
= 0,

W
[
Ê(z), ET (z)

]
= −2 sinh z, W

[
E(z), ÊT (z)

]
= 2 sinh z.

For z ∈ J0, the coefficients D5(z) and D6(z) are obtained as

D5(z) = − 1

2 sinh z

[
UÊm0+2(z)Pm0−1(z)− V Êm0+1(z)Pm0−2(z)

]
and

D6(z) =
1

2 sinh z

[
UETm0+2(z)Pm0−1(z)− V ETm0+1(z)Pm0−2(z)

]
.
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Note that

(21) DT
6 (z) =

1

2 sinh z
UV D2(z), z ∈ J0.

For z ∈ J0, the wronskian of the solutions F (z) and H(z) is found as

(22) W [F (z), HT (z)](n) =

−D2(z), n ∈ {0, 1, . . . ,m0 − 1}

UV D2(z), n ∈ {m0 + 1,m0 + 2, . . . } .

Theorem 4.1. For all z ∈ J0 and k, n 6= m0, the resolvent operator of L is
defined by

(Rµ (L)ψ)n =

∞∑
k=0

Gn,k(z)ψ(k), ψ := {ψk} ∈ l2
(
N,Ch

)
,

where

Gn,k =

Fn(z)A−1(z)HT
k (z), k < n

Hn(z)
[
A−1(z)

]T
FTk (z), k > n,

is the Green function of L for k, n 6= m0, and A := W
[
F (z), HT (z)

]
.

Proof. We need to solve the following equation

(23) 5 (4Yn) + CnYn − µYn = ψn

to obtain the Green function, where Cn = 2In + Bn. Since F (z) and G(z) are
linearly independent fundamental solutions of the equation (5), we can write the
general solution of (23)

Yn(z) = LnFn(z) + TnHn(z),

where {Ln}n∈N := L and {Tn}n∈N := T are selfadjoint diagonal matrices in Ch.
To get the coefficients L and T , we use the method of variation of parameters and
obtain them as

Ln = L0 +

n∑
k=1

HT
k (z)ψk(z)

A(z)
, Tn = ν +

∞∑
k=n+1

FTk (z)ψk(z)

AT (z)
,

where L0 and ν are selfadjoint diagonal matrices in Ch. Since ψ(z) ∈ l2
(
N,Ch

)
,

ν must be equal to zero. If we use the boundary condition and Theorem 3.1, we
also find that L0 is equal to zero. Finally, we obtain Green function and resolvent
operator of L. �

Theorem 4.1 and (22) show that in order to investigate the quantitative proper-
ties of L, it is sufficient to find the quantitative properties of zeros of the function
detF (z). Therefore, we define the sets of eigenvalues and spectral singularities of
BVP by σd and σss as

σd (L) = {µ = 2 cosh z : z ∈ J, detF (z) = 0} ,

σss (L) =
{
µ = 2 cosh z : z ∈

[
− π

2
,

3π

2

]
r {0, π}, detF (z) = 0

}
, respectively.
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Theorem 4.2. Under the condition (4), the function F (z) satisfies the follow-
ing asymptotic equation for z ∈ J0
(24) F (z) = U−1V −1 (U − V ) [I + o(1)] , |z| → ∞.

Proof. Since the polynomial function Pn(z) is of (n− 1) . degree according to
µ, we clearly find that

(25) PTn (z)e(n−1)z = [I + o(1)] , |z| → ∞, z ∈ J0.
Since F (z) = D2(z), the following equation is written by using (13)

J(z) = U−1V −1[UPTm0−1(z)e(m0−2)ze−(m0−2)zEm0+2(z)e−(m0+2)ze(m0+2)z

− V PTm0−2(z)e(m0−3)ze−(m0−3)zEm0+1(z)e−(m0+1)ze(m0+1)z].(26)

By the help of (7), (25) and (26), we obtain the following asymptotic equation

F (z) = e4zU−1V −1 (U − V ) [I + o(1)] , |z| → ∞, z ∈ J0. �

Theorem 4.3. Under the condition (4), σc (L) = [−2, 2], where σc (L) denotes
the continuous spectrum of L.

Proof. We first introduce the difference operators L0 and L1 generated by the
following difference expressions in l2

(
N,Ch

)
together with (2) and (3)

(L0y)n = Yn−1 + Yn+1, n ∈ Nr {m0 − 1,m0 + 1},
(L1y)n = BnYn, n ∈ Nr {m0},

respectively. It is evident that L0 is a selfadjoint operator with σc (L0) = [−2, 2]
in l2

(
N,Ch

)
[20]. On the other hand, under the assumption (4), L1 is a com-

pact operator [20]. By using the Weyl theorem of a compact perturbation [16],
the continuous spectrum of the operator L and the continuous spectrum of the
selfadjoint operator are the same. So, it completes the proof. �

5. Unperturbated equation with jump conditions

In this section, we handle an unperturbated discrete impulsive Sturm-Liouville
equation which is the special case of main problem. We find Jost function and
investigate spectral singularities and eigenvalues of this example. It gives a new
perspective to understand our main results.

Example 5.1. Let us consider the following unperturbated discrete Sturm-
Liouville problem with jump conditions

(27)


Yn−1 + Yn+1 = 2 cosh zYn, n ∈ Nr {2, 3, 4},
Y0 = 0,

Y4 = UY2, Y5 = V Y1,

where m0 = 3, U and V are selfadjoint diagonal matrices defined as U := [αij ]nxn
and V := [βij ]nxn in Ch. Differently from BVP, throughout the example, we

assume that the matrix B is a zero matrix in Ch.
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Then the solution En(z) turns into enz and the fundamental solutions Pn(z)
and Qn(z) of the problem (27) have the following values for n = 0, 1, 2:

P0(z) = 0, P1(z) = I, P2(z) = µI,

Q0(z) = I, Q1(z) = 0, Q2(z) = −I.

From (13), we get the Jost solution of (27) as follows:

F (z) = U−1V −1e4z
[
Ue2z + U − V

]
.

In order to investigate the eigenvalues and spectral singularities of the problem
(27), it is sufficient to find the zeros of the function detF (z). Since all eigenvalues
of U and V are different from zero, detF (z) = 0 if and only if

det



α11e2z + α11 − β11 0 0 . . . 0

0 α22e2z + α22 − β22 0 . . . 0

. . . . . . .

. . . . . . .

0 0 0 . . . αnne2z + αnn − βnn


=0.

So it is clear that

(28)

n∏
j=1

(
αjje

2z + αjj − βjj
)

= 0.

The equation (28) shows that for any j integer in {1, 2, . . . , n}, detF (z) = 0
whenever αjje

2z + αjj − βjj = 0. By using last equation, we write

e2z =
βjj − αjj
αjj

:= Rj , z = ln
√
Rj .

Now, we analyze two special cases to give information about the eigenvalues and
spectral singularities of (27).

Case 1.: Let αjj > βjj for all j integer in {1, 2, . . . , n}.
(i) For αjj > 0, we get Rj < 0. Since z is not defined, the problem (27)

does not have any eigenvalue and spectral singularity.

(ii) Assume αjj < 0 and 1 <
βjj

αjj
< 2. Then, we find that 0 < Rj <

1. Hence the spectral singularity of (27) does not exist but (27) has
eigenvalues.

Case 2.: Let αjj < βjj for all j integers in {1, 2, . . . , n}.

(i) Let αjj > 0 and 1 <
βjj
αjj

< 2. Similarly to the Case 1 (ii), the problem

(27) does not have any spectral singularity but it has eigenvalues.
(ii) For αjj < 0, we obtain that Rj < 0. Similar to Case 1 (i), there is no

spectral singularity and eigenvalue of (27).
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6. Conclusion

This paper is the first and important work that studies the scattering solutions of
a matrix difference equation with jump conditions and hyperbolic eigenparameter.
These solutions help to obtain the scattering matrix of BVP. These solutions and
this matrix inform us about the scattering data of this study. Furthermore, we find
the resolvent operator, continuous spectrum, and discrete spectrum of this BVP.
Finally, we handle an unperturbated equation as an example and apply our main
results on it. This study prepares a groundwork for many researchers working on
scattering theory.
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