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STRONG CONVERGENCE METHOD
FOR A MONOTONE INCLUSION PROBLEM
WITH ALTERNATING INERTIAL STEPS

C. C. OKEKE anxDp A. U. BELLO

ABSTRACT. This article proposes a strong convergence of the forward-backward
splitting method for a monotone inclusion problem with alternated inertial extrap-
olation steps in a real Hilbert space. The proposed method converges strongly under
some suitable and easy to verify assumptions. The advantage of our iterative scheme
is that the single-valued operator is Lipschitz continuous monotone rather than co-
coercive and Lipschitz constant does not require to be known. Finally, we give some
numerical experiments of the proposed algorithm to demonstrate the advantages of
our algorithm over the existing related ones.

1. INTRODUCTION

In this paper, our interest is to devise an alternating inertial algorithm to solve
the monotone inclusion problem (MIP) in real Hilbert spaces. Our problem is
described as follows:

(1.1) find 2" €M  such that 0 € (A+ B)z",

where H is a real Hilbert space with an inner product (-,-) and induced norm
Il-|l, A: H — H is a monotone mapping, and B: H — 2% is a maximal monotone
mapping. The solution set of (MIP) is denoted by €. It is known that many
problems can be converted into the model of (MIP), such as image processing
problems, convex minimization problems, split feasibility problems, equilibrium
problems, variational inequalities and DC programming problems, see, e.g., [1,
9, 10, 23, 24, 26, 29, 34|. Therefore, a large number of researchers have been
very interested in this problem and have developed many methods to solve such
problems. One of the most famous of these approaches is the forward-backward
algorithm (FBA), which generates an iterative sequence {x,,} in the following way:

(1.2) Tpy1 = T+ XB) 1T = N A)z,,

where stepsize A, > 0, I stands for identity mapping on #, the operator
(I — \pA) is referred to as forward operator, and the operator (I + \,B)~! is
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the so-called backward operator (also referred to as resolvent operator). The FBA
for monotone inclusion problems was first introduced by Lions and Mercier [16]
(also by Passty [22], independently). In the past few decades, the convergence
properties and the modified versions of this method have been extensively studied
in the literature, see, e.g., [2, 22, 20| and references therein. It should be men-
tioned that the FBA defined by (1.2) requires mapping A to be inverse strongly
monotone. This assumption is very strict and it is difficult to meet the practical
problems. In order to avoid this restriction, many scholars have made a lot of
efforts and achieved some important results.

1.1. Some efficient methods

In [32], Tseng proposed the splitting algorithm (also known as forward-backward-
forward method), which is a two-step iterative scheme. More precisely, the form
of the algorithm is as follows:

{yn =T+ MB) Y = A\pA)zn,

1.3
( ) Tn+1 = Yn — )\n(-Ayn - Al‘n),

where the step size {\,} can be automatically updated by Armijo-type search
methods. Whereas the mapping A is Lipschitz continuous monotone and the
mapping B is maximal monotone, the sequence {z,} formed by iterative process
(1.3) converges weakly to a solution of (1.1) in real Hilbert spaces. In 2018, Zhang
and Wang [35] combined the projection and contraction method, and (1.2), and
proposed another iterative scheme to overcome the strong assumption on mapping
A. To be more precise, the method is described as follows:

{yn = (I + )‘nB)il(I - >\7LA)xn7

(1.4)
Tn+l = Tp — ’Ynndna

where d,, = T, — Yn — An(Axn - -Ayn)7 M = %7 Y€ (0a2)7 {An} is a
control sequence, operator A is assumed to be Lipschitz continuous monotone,
and operator B is assumed to be maximal monotone. They established the weak
convergence of the iterative method (1.4) under some suitable conditions.

It is worth noting that the Tseng splitting method (1.3) and the Algorithm 1.4
are only weakly convergent in infinite-dimensional spaces. Examples in CT re-
construction and machine learning tell us that strong convergence is preferable to
weak convergence in an infinite-dimensional space. Therefore, a natural question
is how to modify method (1.2) such that it can achieve strong convergence in
infinite-dimensional spaces. In fact, in the past few decades, researchers have pro-
posed many modified forward-backward methods to achieve strong convergence
in real Hilbert spaces, see, e.g., [33, 11, 7, 27] and the references therein. It
should be pointed out that the algorithms mentioned in the above literatures also
require operator A to be inverse strongly monotone. In 2018, Gibali and Thong
[12] proposed two modifications of (1.2) based on Mann and viscosity ideas. They
established two strong convergence theorems of the suggested algorithms in an
infinite-dimensional Hilbert space. Moreover, Thong and Cholamjiak [31], and
Gibali et al. [14] presented several new algorithms by means of the viscosity-type
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method and iterative method (1.4), and established the strong convergence theo-
rems of the proposed algorithms in Hilbert spaces.

1.2. Some efficient methods with inertial steps

In recent years, the development of fast iterative algorithms has attracted enor-
mous interest, especially for the inertial method, which is based on discrete ver-
sion of a second-order dissipative dynamic system. Many researchers have con-
structed various fast iterative algorithms by using inertial technology, see, e.g.,
[17, 25, 13, 8, 28, 30] and references therein. One of the common features
of these algorithms is that the next iteration depends on the combination of the
previous two iterations. Note that these minor changes greatly improve the perfor-
mance of the algorithms. In 2015, Lorenz and Pock [17] introduced the following
intertial forward-backward algorithm (iFBA) for monotone inclusions:

Wp = Tp + en(xn - xn—l)a
Tpp1 = (I + 1. B)" I — N A)w,.

Note that the iFBA (1.5) still achieves weak convergence in real Hilbert spaces.
Their numerical experiments on image restoration show that iFBA converges faster
than some existing algorithms.

Recently, Tan Bing and Sun Young Cho [3] proposed the following inertial projec-
tion and contraction method for solving the MIP (1.1):

(1.5)

Algorithm 1.1.
The inertial Mann-type projection algorithm for solving (MIP)

Initialization:

Set § >0,0>0,1€(0,1), ue (0,1),v€(0,2), and let 2, z1 € H be arbitrary.
Iterative Steps:

Calculate x,,+1 as follows:

Step 1.

Given the iterates ,,—1 and x,, (n > 1). Set w,, = x,, + 0,,(x,, — ,—1), where

min{ S0} e, s,
(1.6) 0, = [ = &n—1]
0, otherwise.

n =

Step 2.

Compute y, = (I + A\B)"1(I — A\ A)w,, where )\, is chosen tobethelargest
A\ € {8,01,01%,...} satisfying the following

(17) )\<~Awn — Ayn, wn — yn> < /1*||wn - yn||2

If wy, = yn, then stop and y,, is asolution of (MIP). Otherwise, goto Step 3.

Step 3.
Compute z,, = wy, — YNpdy,, where

Wn — Yn
(1.8) dy, = wy, — Yn — )\n(-Awn - Ayn)v T = (1 B M)H”d”z;”
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Step 4.
Compute z,41 = (1 —ay — Br)wy + Bnzn. Set n:=n+ 1 and go back to Step 1.

Under some suitable assumptions, it has been shown that the sequence generated
by their algorithm converges strongly to the solution of (1.1), with a linesearch for
the choice of the single valued operator. Naturally, the following question should
come to mind.

Can we design a strong convergence iterative method with an alternated inertial
technique with a choice of step size that is independent of the Lipschitz constant
and does not involve any linesearch procedure?

Motivated by the monotonic property of the alternated inertial step and the im-
portance of strong convergence property, this article proposes a strong convergence
forward-backward splitting method with an alternated inertial technique for solv-
ing a monotone inclusion problem in a real Hilbert space. The proposed method
converges strongly under simple and easily verifiable assumptions. Moreover, this
method can be implemented easily since the singled-valued operator does not need
the knowlegde of the Lipschitz constant and does not involve any linesearch pro-
cedure. Our method to the best of our knowledge is the only strong convergence
forward-backward splitting method with alternated inertial procedure. Addition-
ally, numerical experiments to illustrate the computational performance of the
proposed method is given with an application to an image processing problem to
test the potential applicability of the method in comparision with some existing
methods in the literature.

2. PRELIMINARIES

In this section, we recall some basic notions and useful results in a real Hilbert space
‘H, which are needed for our convergence analysis. For any sequence {z,} C H,
wy(xn) = {2z € H : H{xn,} C {zn} such that =z, — 2z} denotes the weak
w-limit set of {z,}. A point z € H is called a fixed point of A if Az = z. The
operator A is said to be:

(i) a-inverse strongly monotone (ism) if there exists a > 0 such that
(Ar — Ay, x — y) > af Az — Ay|]? for all z,y, € H,
(ii) monotone if
(Ax — Ay, z —y) >0 for all z,y € H,
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that
Az — Ay|| < Lllz —y||  for all m,y € H,
if L =1, then A is called nonexpansive.
If A is a multivalued operator, i.e. A: H — 27, then A is called monotone if
(x—y,u—v)>0 forallz,y € H, uec Az), v e Aly),
and A is maximal monotone if the graph G(A) of A defined by
GA) :={(z,y) e HxH:y e Alx)}
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is not properly contained in the graph of any other monotone operator. It is
generally known that A is maximal monotone if and only if for (z,u) € H x H,
(x —y,u—wv) >0 for all (y,v) € G(A), implies u € A(zx). The resolvent operator
J ;\4 is associated with a multivalued operator A and A is the mapping J; j\4: H — 2H
defined by Ji(z) = (I+MA)~(z), z € H, A > 0, where I is the identity operator
on H. It is well known that if the operator A is monotone, then J j\“ is single-valued
and nonexpansive.

Recall that for a nonempty closed and convex subset C' of H, the metric pro-
jection denoted as Pg, is a map defined on ‘H onto C' which assigns to each x € H,
the unique point in C, denoted by Pcz, such that

l — Pox|| = inf{[lz —y[ - y € C}.
Lemma 2.1 ([21]). Let C be a closed convex subset of H. Given zZ € H and a
point z € C, then z = Po(Z) if and only if
(Z—2z,y—2)<0 for ally € C.
It is well known, for any y, 2, Z in a real Hilbert space H and for all 0,0, 5 € [0, 1]
with o 4+ 0 + 8 = 1, the following are satisfied
ly + 2% < llyll* + 2(z,y + 2),
(2.1) loy + 0z + 82| = ollyl* + 6l12]|* + Bz
— oty — 2| — 08Il - 2[|* — oBlly — 2>
Lemma 2.2 ([4]). Let H be a real Hilbert space, A: H — H be monotone and

Lipschitz continuous operator, and B: H — 2" be a mazimal monotone operator.
Then, the operator (A + B): H — 2" is mazimal monotone.

Lemma 2.3 ([18]). Let {7}, {en} C Ry, {nn} C (0,1), and {ky,} is a real
sequence such that
Ynt+1 < (1 - nn)'}/n + En + €n, n>1
Assume that > | e, < 0o. Then the following results hold:

(i) If kn < muL for L > 0, then {y,} is a bounded sequence.
(i1) If we have

o0

K
Z N = 00 and lim sup — < 0,
el n—oo In

then v, — 0 as n — oo.

Lemma 2.4 ([19]). Let {S,} be a sequence of real numbers that does not de-
crease at infinity. Also consider the sequence of integers {T(n)}n>n, defined by

7(n) =max{m e N: m <n,S,, < Spni1}.
Then {1(n)}n>n, 1S a decreasing sequence verifying nll)n;OT(n) = o0, and for all
n > ng, the following two estimates hold

S,,-(n) < ST(n)+1 and S, < ST(n)+1.
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3. MAIN RESULT

In this section, we present our method and discuss some of its features. We begin
with the following assumptions under which our strong convergence is obtained.

Assumptions 3.1. Let H be a real Hilbert space, we assume that the following

hold:

(a) B: H — 2™ is a mazimal monotone operator and A: H — H is a monotone
and Lipschitz continuous operator but the Lipschitz constant need not to be

known.
(b) The solution set 2 := (A + B)~1(0) is nonempty.

Assumptions 3.2. Suppose that {an}, {0}, and {B,} are sequences in (0,1),

and v € (0,2) satisfy the following conditions:
(a) inf,, 00 0 (1 — 60, — Br) > 0,
(b) lim,, o0 =0,
(¢) limy oo B =0 and Y " Bn = .

Algorithm 3.3.

Initialization:

Choose the sequences {ay}, {0,}, and {B,} such that the conditions from As-

sumptions 3.2 hold, and let A\ > 0, p € (0,1) and z1,z¢ € H.
Iterative Steps:

For x,,—1 and x, € H, choose a € [0,1) and «,, such that 0 < a,, < a,, where

1
min{—,a} if xp # Tp_1,
(3.1) Oy 1= n(|zn — zp_1| ! !
a, otherwise.
Step 1. Compute

T, n = even,
3.2 Wy, =
( ) {xn+an(xn _xn71)7 n:Odda

and
(3.3) Yo =I5 (I = ApA)wy, = (I + XB) "I — Ay A)wn,
where
o pllwn =yl
mmny——— 0, An s Awn A n
(3.4) Ayl = { [l Aw, — Ay, || } 7> Ay
Ans otherwise.

Step 2. Compute

dp, = Wy, — Yn — A (Aw,, — Byy,) for all n > 1.
Step 3. Compute
(3.5) Tnt1 = (1= 60p — Bn)xy + Onvn,
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where v,, = w, — YNnd, and
<wn — Yn, dn>
(3.6) T = dnll?®
0, d, =0.
Step 4.
Set n:=n+ 1, and go back to Step 1.

Remark 3.4. (a) The stepsize given by (3.4) is generated at each iteration by
some simple computations, which allow it to be easily implemented without prior
knowlegde of the Lipschitz constant of the operator A.

(b) Note that by (3.4), Apt+1 < Ay, for all n > 1. Also, observe in Algorithm 3.3
that if Aw,, # Ay, then

pl|wn — yn| > pllwn — Yol M

HAwn_AynH h L”wn_ynH L’
which implies that 0 < min{A;, £} < A, for all n > 1. This means that lim, . Ap
exists. Thus, there exists A > 0 such that lim,, .o A\, = A.
(¢) Obviously, from (3.1), we have

an||xn - -Tnfln2 < dn”l‘n - xn71||2 < ﬁ

Therefore, it follows that

o0

Z ||z — 2n_1]? < o0.

n=0

(d) The iterates generated by some existing studies in the literature for the

case when w,, in (3.2) is computed as w, = x,, + an (T, — n—1), do not have a
monotonic property with respect to a point in the solution. Consequently, it can
swing back and forth around the solution set. This could be avoided using the
new definition of w,, which is one of the interesting properties of the alternating
inertial method.

4. CONVERGENCE ANALYSIS

Lemma 4.1. Let {x,} be a sequence generated by Algorithm 3.3. Then for
each p* € Q, the following inequality holds

2—7

[v2ns1 — P*II* < lwangr — p*|1* — [v2nt1 — Wan1 .

Proof. Set n = 2n + 1 and choose p* €  := (A + B)~1(0), then we have
Yans1 = (I + A2n1B) 7 (I = Aons1A)wan 1,
Vant1 = Wap+1 — VM2n+1d2n41,

dont1 = Want1 — Yan+1 — A2nt1(Awant1 — Ayant1),
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and
<U/2n+1 - y2n+12, d2n+1>, d2n+1 7& 0,
on+1 = ||d2n+1H
0, dopy1 = 0.
So,
[vant1 — P*11? = llwan+1 — P* — Ym2nt1dont |
(4.1) = [|want1 — P*[|* = 290241 (Wans1 — P*, dont1)
+ V1 y 1 ldan g1 |1
Note that
(Won+1 — P*, dont1)
(4.2) = (Wan+1 — Yon+1,dont1) + (Yont1 — P dony1)

= (Want1 — Yon+1, dong1)
+ (Yont1 — P Wang1 — Yont1 — Aont1 (Awzng1 — AY2ni1))-
Since yont1 = (I + >\2n+18)71(1 — Aont1A)wapg1 then (I — A1 A)wansr €
(I + A2nt1B)y2nt1-
Using that B is maximal monotone, there exists b, € Bya,+1 such that
(I = Aant1A)Wont1 = Yont1 + A2ng10n,

which implies
1

= ——(Wan+t1 — Yont1 — Aopr1Awani1).
>\2n+1

p* € Q implies that 0 € (A + B)p*. Hence, we have
Ayzni1 +bn € (A+ B)yani1-

Since A + B is maximal monotone, we obtain

bn

(4.3) (Ayan+1 + bpy Y2nt1 —p") > 0.
Replacing b,, = ﬁtﬂ(wgnﬂ — Yon+1 — A2nt1Awan 1) in (4.3), we obtain
A2n41 .
< " Ayan g1 + (Won+41 — Yon+1 — Aopr1AWon41), Yons1 — P > >0,
)\2n+1 )\2n+1
1 *
)\7<w2”+1 — Y2n+1 — )\2n+lAw2n+l + A2n+1«4y2n+1,y2n+1 - D > > 0.
2n+1

This implies that

(Won+1 — Yont1 — Aonp1 AW 1 + Aopr1AY2n11, Yonyr — p°) > 0.
From (4.2), we obtain

(4~4) <w2n+1 —p*, d2n+1> > <w2n+1 — Yan+1, d2n+1>-
Substituting (4.4) in (4.1) we have

[v2n+1 —p*||
< wang1 — P*I1? = 29M2n41 (Wont1 — Yont1, dont1)

+ ¥’ 03ni1 ldansa ||
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= |lwant1 — P*|1* = 29M2n+1{(W2nt1 — Y2n+1, dont1)
(Won+1 — Yon+1, dont1)
MNon+1

e /A

4.5 *
( ) = ||w2n+1 - D ||2 - 2’W]2n+1<w2n+1 - an+1,d2n+1>

+ ¥ N2n+1(Want1 — Yont1, d2nt1)
< Jwantr — P12 = 72 = V)N2nt1 (Want1 — Yont1, donsi)-
Observe that

Nan41(Want1 = Yant 1, dont1) = Moy lldansa |

(4.6) 1
= |In2ns1dons1l]® = $H02n+1 — want1 ||

Hence, from (4.5) and (4.6), we obtain

* * 2—
@) ez = < e =977 = (57 ez — w0

Theorem 4.2. Let {x,} be a sequence generated by Algorithm 3.3 under the
Assumption 3.1 and Assumption 3.2. Then, {x,} converges strongly to p* € Q,
where

[p"|| = min{]|z] : = € Q}.

For simplicity, we divide the rest of the proof into claims.
Claim 1. We show that
(4.8)

22042 — p*||?

a
< (1= Bont1)||T20s1 — P*|1* + Bont1 [ﬂ;nf 22011 — @20 ]|?3D1(1 — Bony1)
n+

+ 202541 ||zon+1 — Vant1ll|T2nte — DY+ 2(p%, p* — zant2) |-

Proof. Notice that from (3.5), we have
Tpt1 = (1 =0, — Bn)xy + 00,
Tant2 = (1= O2nt1 — Bont1)Tont1 + O2nr1v2n41
= (1 = O2ny1)T2n11 + 0201102041 — B2nt1T2n11-
Let wont+1 = (1 — O2p41)Tont1 + O2n1102,41. Thus,
lp2n+1 —P*”2
= [I(1 = 2nt1)20 11 + 2nt102n41 — P7I|°
= (1= 02n11)?[w2n 1 — P + 03,41 [vana — p*II
+ 2(1 = O2n41) 02011 (T2n41 — D7, V2nt1 — P7)

< (1= O2n41)? w2011 = D*)1* + 03,01 [l2n 41 — P7[|°

+2(1 = O2n41)02n41|22n+1 — " ||||vant1 — 2|
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< (1= Oz 1) @2n11 — p*)1* + 03,11 [v2nt1 — P77
(4.9) +2(1 = O2n11)02n 11 | w201 — P°|?
+ (1= O2041)020 41 [v2n 11 — p* |2
= (1= Oang1) 22041 — P7I1> + O2ns1lv2ns1 — ¥
From (4.7) and the last inequality, we get
(4.10)  lpzns1 —p*[1* < (1 = O2pg1) 22011 — P7II° + O2nta [lwan g1 — ¥
On the other hand, we have
[wani1 —p*|1?
= [[@2n+1 + Q2nt1(T2n41 — T20) — P72
= [[@2n41 — P> + @b, 2041 — 22n
+ 20041 (T2n41 — Py Tont1 — Top)
(4.11) <wansr = p* |12 + a3 72041 — 2an?
+ 2azn11 /22041 — P |T2n41 — 220
<wansr — |12 + aznpa w2041 — 20 ?
+ 2000n 41| T2n41 — p*H 241 — x2n||
< |lz2n41 — P*)1* + 3D1azni1 |T2n41 — 220 |?,

where Dy = sup,,>1{l|7ant1 — P*||; [[T2n1 — Tan||}. Substitute (4.11) in (4.10), we
get

[p2nt1 = p*I* < (1= bangr)l[22ns1 = P7[° + O2nia[[22041 — 97|
(4.12) + 3D102n1102n41 | Z2nt1 — Ton|?
= [|z2n+1 — P*||> + 3D1020 4102041 |T2ns1 — T2n|*
Since @an+1 = (1 — O2p11)Tont1 + O2,01v2,41, we have
Ton+1 — P2n+1 = 92n+1($2n+1 - U2n+1)-
Therefore, it follows that
Ton+2 = Pan+1 — Pont1%an+1
= (1= Bant1)P2nt1 — Bant1(T2nt1 — P2nt1)
= (1 = Ban+1)P2n+1 — Bant102nt1(T2nt1 — V2nt1).
Therefore, we obtain
22042 — p*||®
= [[(1 = Bant1)P2n41 — Bont102n41 (B2ns1 — Vans1) — p*II
= [I(1 = Ben+1)(P2n+1 — P")
— (Bon+102n41 (2041 — von+1) + Bans1p") |
< (1= Bons1)?02n41 — 0°|

— 2(Bon+102n+1(T2n41 — V2n41) + Bont1D”, Tant2 — D7)
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< (1= Bons1)lp2nt1 — 0|
(4.13) + 2(Bon+102n+1(T2n+1 — Vont1), D" — Tont2)
+ 28241 (p", p* — Tan2)-
Now, substituting (4.12) in (4.13), we obtain
22042 — p*|?
= (1 = Bant)llz2n41 = P7II° + 3D102n 102011 (1 = Bons1) [ 22041 — 20
+ 2(B2n+1020+1(T2n41 = V2n+1), P — Tanta) + 262041 (0", P — T2nt2)
< (1= Bon+D)l[@2ns1 — P1* 4 3D102n4102n+1(1 — Bant1) | 22nt1 — 22n?
+ 252n+192n+1||$2n+1 — Vo1l ||$2n+1 —p*|| + 2ﬁ2n+1<p*ap* — Ton42)

. a
< (1= Bong1)llz2nt1 — p*I1> + Bontr ﬂan Z2n+1 — 220 ||?3D1 (1 — Bapi1)
2n-+1

+ 20241 ||T2nt1 — vont ||| T2n2 — 27| + 2(p%, p" — !E2n+2>} .

Claim 2: We show that the sequence {z,} is bounded. From the definition of
Tp41, We obtain

[€2n+2 — p*||

= ||(1 = 21 — Bon+t1)Tont1 + O2nt1V2n41 — ||

= |(1 = O2nt1 — Bont1)(T2n41 = P*) + O2ng1 (Vans1 — P7) + Banga (—p")|
< (1= b2nt1 = Bans1) l22n+p — P7[ + O2nial[vznis — P7[| 4 Bana [l
Now, observe that

(4.14)

|wont1 — p*[| = T2n+1 + Qont1(Tant1 — T20) — 7|
(4.15) < |@w2nt1 — PF|| + aontil|T2nt1 — Tan|
Q
= llzzns1 = p7ll + Bans1 (G wanss = w2a]).
ﬂQn-&-l

Since F*[|z2n+1 — Z2al| — 0,n — oo, this implies that for all n > 1, there exists
M > 0 such that g;'i:ingnH — Zan|| < My. Therefore, from equation (4.15), we
get

(4.16) [want1 — p*[| < 22041 — P || + Bany1 M.
Now, putting (4.16) together with (4.7), we have
(4.17) vent1 — p*[| < [wens1 — p*[| < [[T2n41 — P || + Ban+1 M.

Substituting (4.17) in (4.14), we have

(4.18)  [lwon+2 —p*[| < (1 = Bont1)lz2n41 — P || + Bon+1(O2n41 M1 + [[p7]).

Since lim S, = 0, this implies that the sequence {Ba2n+1}52, is bounded. Setting
n— oo

M := max{||p||, O2n+1M1} and using Lemma 2.3(i), we conclude that the sequence
{llzan+1 — P ||}5%, is bounded. Using similar argument in obtaining (4.18), it can
easily be seen that the corresponding sequence {||x2, — p*||}52, of the even terms
is bounded as well. Consequently, the sequence {z,,}22 is bounded.
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Claim 3: We show that
22042 — p*||*
< (1= Bong)llz2n — p*1* + [(1 = Bont1 + O2ns10204+1) Ban + Banta] 9717
+ 20901102011 | T2nt1 — Z2n* = (1= 020 — B2n)ban[v2n — 220

27
7 v — wan .

- 9277,

From the definition of weg, 1 and (2.2), we have
[want1 = p*||?
= [[@2nt1 + Q2ni1 (T2n1 — w20) — pF|?
= [|(1 + agns1)(T2n41 — P*) — Qzpi1 (x2n — p)II°
(4.19) = (1+ aznq1) w2041 — 0|2
— agpya|wan = pFII* + agn1 (14 azni1) |220 41 — 220
< (1+ agni1)[[22n1 — P |1? = aznial[w2n — p*|?
+ 2095 41| 2nt1 — z2n .

Using again (2.1) and the definition of zg,2, we have
(4.20)

| @2n42 — p*|I
= |(1 = Oaps1 — Bont1)Tant1 + O2nt 1020401 — P¥|1°
= ||(1 = b2n+1 — Bon+1)(@on+1 — D) + O2nt1(vant1 — P*) — Bany1(—p")

< (1= b2ng1 — Bons1)l|T2ns1 — 19*||2 + O2p 41 ||v2n+1 *P*HQ + ﬂ2n+1|\19*||2

I?

— (1= BOapy1 — Bans1)02ns1v2nt1 — Tani1 |

Substituting (4.7) in (4.20), we get
(4.21)

||Z‘2n+2 - IU*H2 < (1 - 92n+1 - ﬁ2n+1)||$2n+1 - p*H2 + 92n+1||w2n+1 —p*H2

2 _
vzt — wanst|I® + Bonga Ip* 1

- 92n+1

— (1= O2ns1 — Bont1)02n11 V2011 — Tana |-
Substituting (4.19) in (4.21), we obtain
2042 — p*||?
< (1= O2n41 — Bons1) 72041
= *[1? + 201 [(1 + azni1) |22 41 — P7I1° — @z |22, — 27
+ 2002011 | T2n41 — Ton ]
2—7

Hv2n+1 - 11]2n-‘,—1||2 + B2n+1||p*||2

- 92n+1

— (1 = 021 — Bont1)02n41|v2nt1 — Tant1|?
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< [(1 = 0201 = Bongr) + O2nr (14 a2ngn)] 2 — |2
— Oon102n41[|220 — P + Bana |l
(4.22) + 20201002041 H302n+1 - $2n||2

2 _
Y Jozng1 — wansa |

- 92n+1
— (1 = 0241 — Bont1)02n+1]|vant1 — Tant1 ||
Using similar arguments in showing (4.22), one obtains

2041 — p*||®
S (]- - 9277, - BQn)”x2n - p*”z + 02n||w2n - p*H2 + ﬁ?n”p*”z

9 _
- 92n( ) lv2n — wan||? = (1 = Oapn — Bon)Bon ||van — Ton||?
(423) = (1 — 0y, — BZn)HmQTL - p*”2 + 02n||-732n - p*H2 + ﬂQn”p*”Q
9 _
— 92n( ) lv2n — wan||? = (1 = Oap — Ban)Bon||van — Ton||?

< (1= Ban)llm2n — P*||* + Ba2nllp*[|* + (1 = 02y — Ban)||lv2n — z2n?
(2-7)

— Oap, llvan _w2n||2~

Substituting (4.23) in (4.22), we get
(4.24)
lw2n2 — p*|?

<1 = 0241 — O2ni1) + O2ng1 (1 + O2541)] [(1 — Ban)||m2n — p*|I* + Banllp*||?

2_
2= 3 — w0l

- (1 - 9277, - BQn)HZn”'UZn - m2n||2 - 0211

— O2n+100n41 T2 — D)7 + Bont1 [IP*]1* + 20204102041 ]| 22041 — T2 ||?

2 _
2-7) V2041 — Wan1?

- 02n+1

— (1= O2n11 — Bant1)02n41l[v2nt1 — Tania |
= [((1 = O2nt1—Bont1) + O2nt1 (1 + a2n 1)) (1 = B2n) —b2nt100n11] [[220 — 7|2
+ [((1 = bans1 = Bant1) + O2np1 (1 + a2ni1))Ban + Banta] 97|
+ 2024102041 [|T2n41 — T20 )
— (1 = 020 — Ban)b2n((1 = O2ng1 — Bont1) + 241 (1 + azng1)) [v2n — on?

= i — wi?

2
—2((1 = G241 — Bon+t1) + 021 (1 + a2n+l))92n(

(2—7)

- 92n+1 HU2n+1 - 1112n+1||2

— (1 = 021 — Bont1)02n+41lv2nt1 — Tanta ||
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Now observe that considering the given conditions of the sequences {8,}, {0.},
and {a,}, one can obtain

((1 = O2n41 — Boant1) + O2nt1 (1 + qont1))(1 — Ban) — O2ng10on41

(1 = Bong1 + O2nt102n41)(1 — Bon) — O2ni102n41

(4.25)
< (1= PBopns1 + Oonr12n41) — Oopnr100n41
= (1 - 52n+1),
and
(4.26) [(1 = b2n11 — Bant1) + O2ns1(1 + Bant1)] Ban + Bonsa

= (1 = Bont1 + O2nt102n41)Bon + Pon1-

From (4.25), (4.26), and dropping some of the non neqative terms in (4.24) now
it follows

[Z2n42 — p* ||

< (1=Bops )20 —p* P+ (1 = Ban+t1 + O2nt102041) Ban+Bont] |77
+ 2095+ 102041 | T2n+1 —T2n || — (1 — 02y — Ban)02n ||v2n — D20 ||?

2—ny

(4.27)

*92n ||'U2n*w2n||2-
Claim 4. We show that {z,,} converges strongly. We consider two cases to show
the convergence. Observe that from (4.27), it follows

(4.28)
(2-7)
v

(1 - 02n - 6271)9271”7]271 - x2n||2 + 6271 ||U2n - w2n||2

< (1= Bons)[[w2n = p*|1> = lz2n42 — p7[|

+ [(1 = Bont1+02n4+102041)Bon + Bons1] [IP° 17 + 20204102041 | 22041 — 220
< zon = p*I1” = 22012 — p*|1?

+[(1 = Bant1+02n 11020 11) Ban + Bon 1] [IP7 2 4+2020 11020 11 | T2n 11 — 220 .

Case 1. Suppose that there exists N' > 0 such that |z2,+1 — p*|| < ||z2n — p*||
for all n > 0. In this case, lim, o |22, — p*|| exists. Since lim,_, B, = 0 and

limy, 00 @ ||y, — Tn—1]] = 0, it now follows form (4.28) that
nll)nolo(]- - 02n - ﬁZn)92nHU2n - x2n||2 =0

and

(4.29) nlgrolo [lvan — wan|| = 0.

From the assumption that inf,,>1(1 — 6a,, — 02,,)02, > 0, we obtain

(4.30) nhﬁn;o lvan — x2n|| = 0.
Also from (4.29) and (4.30), we get

(4.31) nh—{jgo lwan — xan|| = 0.
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From Algorithm 3.3 and the definition of A, 1, we get
||d2n|| = ||w2n — Yon — )\2n(-’4w2n - By2n)”

Ao
< lwan = yon| + Aon [ Awan = Byaall < (14 222 ) [z = youl|
2n+1

So,
1 1
Tl ~ (13 2 |
|| 2n (1 + )'\MTTI) ||w2n - y2n||
Now
(Won — Yon, don) = (Wan — Yon, W2 — Yon — Aon (Awz, — Ay2n))
- ||w2n - y2n||2 - <w2n — Yon, )\271(-/4“}271 - Ay2n)>
Z ||w2n - y2n||2 - >\2nHAw2n - AyanHan - y2n||
A
> [[wzn = youll = 5 fwen = yoal®
2n+1
A
= (1= 122 ) wsn = yeull
2n+1
From the definition of v,,, we get
(4.32)
HA2n
030 — waall = Vsl | = 5220 onoan) [1 BEvvey P

Hence by (4.29), we get from (4.32) (noting that lim A, = X) that
n—oo

(4.3 Tim iz gan] = 0.

Also,

(434) T [lean — ool < i ([, — woull + vz — yeul] = 0.

From (4.27), (4.29), (4.30), and the fact that lim, - 8, = 0, it follows that
(4.35) nh_}rrgc |X2nt+1 — Z2n] = 0.

79

Now, we show that w,(x,) C Q. Suppose that z € w,(x,) is an arbitrary element.

Let the subsequence {za,, } of {z2,} be weakly convergent to a point z. Then,

follows that the subsequences {wa,, } and {y2,,} are also weakly convergent

it
to

z € H. Now, let (v,u) € G(A + B), this implies that u — Av € Bv. Also, from

(3.3), we obtain

1
)\2 (’w2n;c — Yon, — )\anAw2nk) € Bank
[
Using maximal monotonicity of B, we have
(4.36) <v — Yo, U — Av — ——(Wan,, — Yon, — )\anA’lUan)> > 0.

2ny
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Using (4.36) and the monotonicity of A, we obtain
(4.37)
1
<U - y2nk7> Z <U - yan7y4/l) + A

2ny,

(w2nk — Yon, — )‘2711« Aw?nk)>

1
= <'U - y2nkaAv - A’lUan> + <U — Yany (U}an - y2nk)>
)\QTLk
= <’U - yQTLk ) A'U - Aank> + <'U - y?nk ) Aank - Aank>

1
+ <U — Yony, T(w?nk - y2nk)>
nk

1
Z <U - ankvAy2nk - .A’LUan> + <’U - y2nk7 V(w%lk - y2nk>>
[

Recall that limg_yo0 A2, > 0, limg_ye0 [|Won, — Yon, || = 0, and by the Lipschitz
continuity .4, we obtain

lim || Ayan, — Away, || = 0.
k—o0

Using ||wan, — Yon, || = 0 as k — oo, which implies that ya,, — z as k — oo, we
obtain

(v —z,u) = lim (v — yap,,u) > 0.
k—o0

Hence,
(v—v,u—0)>0.
Also, by Lemma 2.2, A+ B is maximal monotone, thus we obtain that 0 € (A+B)z
which implies that z € Q. Since z is arbitrary, we conclude that w,,(z,) C
From Claim 1, we have

(4.38)
H552n+2 —p*||2

< (1= Bant1)|T2nt1 — P*)1* + Bant1 [

Qop+1

3 22011 — @20 *3D1(1 — Bapi1)
2n+1

+ 202n41llT2n+1 — vanta | Z2nt2 — P71l 4 2(p", p* — T2nq42) |-
Using similar argument to obtain (4.9), one gets
lpan =PI < (1 = O20) 220 — p*||* + ban|fw2n — p*|?
= (1= bn)llw2n — p*[* + banllzon —p*1* = [lw2n — 0"

Again, using a similar argument as in the proof of Claim 1 to obtain (4.13), one
obtains
(4.40)

[#ant1 = p*[1* < (1 = Ban)llwan — p*[1* + 2820020 )| 220 — vanl 22041 — p*||
+ 2820 (P, P — T2ny1)-
Substituting (4.39) in (4.40), we have
[22nt1 = p*[|* < (1 = Ban)lpan — p* 1> + Banl2l|w2n — vanll 22041 — 0¥l
+ 2(p*, p* — xan+1))]

(4.39)

(4.41)
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It remains only to show that

limsup(p*, p* — z2n11) < 0.

n—roo
In fact, since p* = Pq(0), by the characterization of the metric space projection
in Lemma 2.1, we get

(4.42) limsup(p*, p* — 2op11) = max (p*,p* —z) <O0.

n—oo zEww(xn)

Now from, (4.30), (4.41), (4.42), and Lemma 2.3, it follows that the sequence
{zan} converges strongly to p* = Pq(0).

Case 2: Suppose that there exists a subsequence {||zan,, — p*||}55_g C {||x2n —
p*|[}52, such that ||z2,,, — p*|| < ||x2n,,+1 — p*|| for all m > 1. For this case, we
define 7: N — N by

7(n) := max{k < n: [[z2x — p*|| < [|w2p41 — P7[[}-
Then, we have from Lemma 2.4 that 7(n) — 0o as n — oo and ||z, — p*|| <

|27 (m)+1 — P* |, so that we have from (4.27),
(4.43)

2—7
(1 - 927‘(71) - 627(71))627'(71)”’027(71) — L27(n) ||2 + QQT(n)T”UZT(n) — War(n) H2
< (1= Bormy11) 12r(ny — P*11? = 1227 (n) 12 — P72
+ [(1 = Barmy+1 + O2r () 11027 (m)11) Bor(n) + Bermy+1] 19117

+ 292T(n)+1a27(n)+1 H$2T(n)+1 — L27(n) ||2

Following the same lines of proof as in Case 1, we infer from (4.43) that

(4.44) T [vzr(n) = @27 |7 =0,
(445) nILHolo ||027'(n) — w?‘r(n) H2 = 0,
(446) lim Sup<p*ap* - 1:2T(TL)+1> - max <p*ap* - Z> < 07
n—o00 2€Ww (Tr(n))
and
%27 (ny41 — P*II° < (1 = Bar(n)) @27 (n) — P*II°
(447) + 527(71) [2Hx2‘r(n) — V27 (n) || ||‘T2‘r(n)+1 - p* ||

+ <p*7p* - x27’(n)—i—1>:| .
Since [|27(n) — P*|| < [|[Z7(m)+1 — P*||, we have from (4.47) that
(448) ||x27(n) - p*H§2”x2‘r(n) — V27 (n) || ||x27(n)+1 - p*H + 2<p*ap* - x2‘r(n)+1>-
Combininig (4.44), (4.46), and (4.48) yields
limsup || %2, () — p*|* <0,
n—oo

and hence,
lim ||x2‘r(n) _p*H2 =0.
n—oo
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From (4.47), we have
lim sup || 27 (n)41 —p*||* < limsup [|zg, () — p* -
n—oo n—oo
Thus
Jim |27 (n) 41 — p*=0.
Therefore, by Lemma 2.4, we obtain

0 < |lz2r(ny — p*Il < max {||z27() — 2*II, 220 — P*II} < |27 (n)41 — 2*I| = 0.
Consequently, the sequence {x2,} converges strongly to p* = Pq(0).

Now, we show the convergence of the sequence of odd terms {xs,,+1}. Note that
by Case 1, since lim,_, ||22, — p*|| exists and lim,,—, o [|Z2n,, — P*|| = 0, we get
that lim, 0 |22, — p*|| = 0. Therefore, p* is unique.

It follows from (4.35), (4.39), the condition on fa,1, and ag,41 that
Qon+1
B2n+1
Using similar arguments in obtaining (4.35), we have

Jim (1 — f2n41) [22n+1 — Z2n| = 0.

Jim |[zon 1 = vanp ] = 0.

To apply Lemma 2.3(ii), we use similar arguments as in proof of Case 1 to show
that
limsup(p*, p* — Zop11) = max (p*,p* —z) <O0.
n—»00 z€wy (Tn)

Hence, it follows from Lemma 2.3 that the sequence {x2,41} converges strongly
to p* = Pq(0), which is the minimum norm solution of the Inclusion Problem.

For second case, we suppose that there exists a subsequence {||22,,, —p*||}5°_, C
{l|lz2n — p*||}52 such that ||z2,,, — p*|| < ||z2n,,+1 — p*|| for all m > 1. Following
similar argument as in the proof of Case 2 above, it can be shown that the se-
quence of odd terms {zg,11} converges strongly to p* = P(0). Thus, the sequence
{zn}52 converges strongly to p* = Pn(0), and hence, the proof is complete. [

5. APPLICATIONS

5.1. Application to image processing problems

Using known information from the contaminated signal/image to estimate the
original and clean signal/image is called the signal processing/image restoration
problem. This kind of problem can usually be expressed as the following linear
inverse problem:
b=Cx+w,

where C, x, b, and w represent degradation operator, unknown real image, con-
taminated image, and noise function, respectively. Regularization methods have
aroused considerable interest in many researchers for dealing with such problems.
In particular, the [; regularization method considers finding the solution to the
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following problem:
. 1
min { = Cx = bl +5]x/11 }.

where v stands for the regularization parameter, and ||x||; represents the sum of the
absolute values of the components of x. Set h(x) = 3||Cx — b||? and g(x) = ||x||1,
then Vh(x) = C*(Cx — b) and thus it is a Lipschitz continuous with constant
L(h) = ||C*C||. The proximal map of g(x) = 7||x||; is expressed as prox, (x) =

(I +)X9g)~! and it can be calculated by the following:

prox,,(x) = prox,, ., (x) = <p1rox)\,y|i|1 (T1)s -, PTOX\, .|, (xn))

= (pla s 7p’rL)7

where pj, = sgn(xy) max{|zr| — Ay,0} for 1,2,...n. Set A= Vh and B = dg, then
we immediately get the following result by Theorem 4.2.

Corollary 5.1. Let the mappings A, and B be defined above. Suppose that
Q #£ 0, and Assumption 3.2 holds. Let {x,} be a sequence generated by

Algorithm 5.2.

Initialization:
Choose the sequences {ay,}, {6,}, and {8,} such that the conditions from As-
sumptions 3.2 hold and let A; > 0, p € (0,1), and 21, z¢ € H.
Iterative Steps:
For z,,_1 and z,, € H, choose « € [0,1) and «, such that 0 < «,, < &, where
1

(5.1) I e I LRt

a, otherwise.

Step 1. Compute

T, n = even,
5.2 =
( ) o {xn + Oén(wn - xn—l)a n= Odda
and
(5.3) Yn = prox, (I — A, Vh)wp,
where
min{ Hlwn = gl )\n} Vh(wy) # Vh(yn)
(5.4) Ant1 = [Vh(wn) = Vh(yn)|I’ ’ ’
An, otherwise.

Step 2. Compute

dp, = Wy, — Yn — A (VR(w,Vh(y,)) for all n > 1.
Step 3. Compute
(5.5) Tnt1 = (1= 60p — Bn)xy + Onvn,
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where v, = w, — YN d,.

Update

<wn — Yn, dn>

g o dn 7é Oa
(5.6) M = lldn?

0, d, = 0.
Step 4.

Set n:=n+ 1, and go back to Step 1.

Then, the iterative sequence {xz,, } presented above converges strongly to p* € Q,
where
[p*|| = min{|[z]| : z € Q}.

5.2. Application to split feasibility problems

Suppose that C and Q are nonempty closed convex subsets of real Hilbert spaces H;
and Ho, respectively. The split feasibility problem (SFP) is described as follows:

(5.7) find 2* € C such that Tz* € Q,

where T': H1 — H2 is a bounded linear operator. We also use T to represent the
solution set of (SFP) (5.7). Problem (5.7) appears in image reconstruction and
signal processing. From an optimization point of view, z* € T if and only if z* is
a solution of the following minimization problem with zero optimal value:
1
inh(z) := =||Tz — PoTx|?>.
min h(r) := [T — PoTe|

It should be noted that h is convex difference. Moreover, note that Vh(z) =
T*(I — Pg)Tx and it is ||T|*Lipschitz contiunuous monotone. Thus, z* solves
SFP (5.7) if and only if 2* solves the following variational inclusion problem:

find x € Hy1 such that 0 € Vh(x)+ ddc(x),

where d¢ is the indicator function of C. In Theorem (4.2), choosing A = Vh and
B = 0dc, the we obtain following result.

Corollary 5.3. Let the mappings A and B be defined above. Suppose that
T # (0 and the Assumption 3.2 hold. Let {x,} be a sequence generated by

Algorithm 5.4.

Initialization: Choose the sequences {a, }, {0, }, and {5, } such that the conditions
from Assumptions 3.2 hold and let Ay > 0, p € (0,1), and 21,2 € H.
Iterative Steps:
For x,,—1 and x,, € H, choose o € [0,1) and «,, such that 0 < o, < @, where
1
min{ ————— o, if o, # Tn_1,
(5.8) = {n2||xn — 1| } # Tnm1

«, otherwise.
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Step 1. Compute

T, n = even,
Tn + (T — Tpo1), n =odd,

(5.9) wy, = {

and
(5.10) Yn = Pe(I = Ay Vh)w,,

where

min IVA(wn) = Vh(yn)]’ Mafs Vh(wn) # Vhiya),

Ans otherwise.

(5.11) Ans1 =

Step 2. Compute
dp = Wy — Yn — A (VA(wy) — Vh(yn)) for all n > 1.
Step 3. Compute

(5.12) Tny1 = (1= 0n — Bn)Tpn + 0o,
where v, = w, — YNndy.
Update

<wn — Yn, dn>

g 1o dn 7é Oa
(5.13) N = lldnl[?

0, d, =0.
Step 4.

Set n:=n+ 1, and go back to Step 1.

Then the iterative sequence {z,,} presented above converges strongly to p* € T,
where
[lp*]] = min{||z]| : z € T}.

6. NUMERICAL EXAMPLE

In this section, we provide some numerical examples occurring in infinite dimen-
sional spaces to show the advantages of our algorithm and compare them with
some known strongly convergent algorithms, including Tan Bing and Sun Young
Cho Algorithm 5.4 and Duong Viet Thong and Prasit Cholamjiak of [31] (Algo-
rithm 3.1). For easy referencing, we term Algorithm 1.1, and Algorithm 3.1 of
[31] as SUN and THONG, respectively. Numerical experiments were carried out
on MATLAB R2015a version. All programs ran on a 64-bit OS PC with Intel(R)
Core(TM) i7-3540M CPU @ 1.00GHz 1.19 GHz and 3GB RAM. All figures were
plotted using the loglog plot command.

Example 6.1. Let H = L*([0,1]) be endowed with inner product

<x,y>=/0 s(y()dt and ||z ::(/O |x(t)|2dt)1/2 for all 7,y € Ly([0,1]).
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Now, define the operator A, B: L2([0,1]) — L2([0,1]) by
1 t+s t
2tse 2te
Axt:/ (ztf(i)cosxs>ds+7, x € Lo([0,1]),
() o () ex/eQi—l () oveZ — 1 2([ ])
Bzx(t) = max{0,z(t)}, tel0,1].
Then A is Lipschitz continuous and monotone, and B is maximal monotone on
Ls([0,1]) (see [15]). The integrals were approximated using the trapz and int

command on MATLAB over the interval [0, 1]. The results of the experiment are
displayed in Table 1 and Figures 1,2, and 3.

Table 1. Computational Results for Example 6.1.

Algorithms No. of Iterations y [lz101 — Z100]2 Time(secs)
Algorithm 3.1 1.0e 4+ 02 2.5e — 01 1.1671e — 04 71.4678
Thong 4.5432e — 04 74.2397
Sun 1.1566e — 04 75.6076
Algorithm 3.1 1.0e 4+ 02 1.0e — 01 1.3548¢e — 04 92.1468
Thong 4.7427e — 04 96.7780
Sun 2.2921e — 04 101.1242
Algorithm 3.1 1.0e 4+ 02 1.0e — 02 1.6913e — 04 109.0433
Thong 4.8065e — 04 119.2423
Sun 1.6927e — 04 124.0408

Table 2. Computational Results for Example 6.2.

Algorithms No. of Iterations y [lz101 — Z100]2 Time(secs)
Algorithm 3.1 1.0e + 02 2.5e — 01 3.2715e — 06 9.2404e — 02
Thong 5.3333e — 04 6.5388e — 02
Sun 6.1917e — 04 7.0700e — 02
Algorithm 3.1 1.0e + 02 1.0e — 01 5.5460e — 05 8.5640e — 02
Thong 5.0468e — 04 6.8222e — 02
Sun 1.8265e — 04 7.3701e — 02
Algorithm 3.1 1.0e + 02 1.0e — 02 1.7413e — 04 9.5250e — 02
Thong 4.8400e — 04 6.7798e — 02
Sun 2.1891e — 04 7.2760e — 02

Example 6.2. In this example, we explore the proposed methods to solve the
split feasibility problem (SFP) in infinite-dimensional Hilbert spaces. For any
x,y € L?([0,1]), we consider H1 = Hz = L*([0, 1]) embedded with the inner prod-

1
uct (z,y) : fol x(t)y(t)dt and the induced norm ||z|| := (fol |:E(t)\2dt) * . Consider

the following nonempty closed and convex subsets C and Q in L?([0, 1]),
1
C— {m e L2([0,1)) : / 2(t)dt < 1},
0
1
Q= {a: € L*([0,1]) : / |z(t) — sin(t)]?dt < 16}.
0
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Figure 1. Example 6.1 with v = 0.25.
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Figure 2. Example 6.1 with v = 0.1.
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Let T': LQ([O 1)) — L2([0 1]) be the Volterra integration operator, which is

given by (Tz)( fo s)ds for all t € [0,1], x € H. Then T is a bounded linear
operator (see [5 Exer(nse 20.16]) and its operator norm is ||T|| = 2. Moreover,
the adjoint T* of T is defined by (T*z ft s)ds. Note that a:( )=0isa

solution of SFP (5.7), and thus the bOluthIl set of the problems is nonempty. On
the other hand, it is known that projections on set C and Q have display formulas,
that is,

. 4(z—sin(+))
1-— 1 )+ =0, b>16,
Pe(z) = atooa=bnd Po(z) = sin(-) + Vo
z, a<l, x, b < 16,

where a := fo t)dt and b := fo |z (t) — sin(t)|dt.

Remark 6.3. From the results displayed in Tables 1 and 2, it is clear that
the fastness of the convergence of all the three algorithms heavily depends on
the value of v. For instance, as the value of v gets smaller, the time taken to
reach the specified tolerences or the number of iteration increases, likewise, the
slower it converges. In all cases, Algorithm 3.1 seems to perform better than its
counterparts. Finally, u is taken to be 0.5 throughout the experiment.

7. CONCLUSION

A strong convergence alternated inertial iterative method for solving monotone in-
clusion problems has been studied in this research. Incorporation of an alternated
inertial extrapolation step in the method has shown a remarkable performance in
terms of speed and CPU time of the proposed method, in comparison with some
existing iterative methods in the literature. The stepsize is chosen self adaptively
in such a way that prior information of the Lipschitz constant of the operator is
not needed during implementation. Numerical experiments presented have shown
that the method is easy to implement and the results indicate that the method is
efficient and robust.
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