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STRONG CONVERGENCE METHOD

FOR A MONOTONE INCLUSION PROBLEM

WITH ALTERNATING INERTIAL STEPS

C. C. OKEKE and A. U. BELLO

Abstract. This article proposes a strong convergence of the forward-backward
splitting method for a monotone inclusion problem with alternated inertial extrap-
olation steps in a real Hilbert space. The proposed method converges strongly under
some suitable and easy to verify assumptions. The advantage of our iterative scheme
is that the single-valued operator is Lipschitz continuous monotone rather than co-
coercive and Lipschitz constant does not require to be known. Finally, we give some
numerical experiments of the proposed algorithm to demonstrate the advantages of
our algorithm over the existing related ones.

1. Introduction

In this paper, our interest is to devise an alternating inertial algorithm to solve
the monotone inclusion problem (MIP) in real Hilbert spaces. Our problem is
described as follows:

(1.1) find x∗ ∈ H such that 0 ∈ (A+ B)x∗,

where H is a real Hilbert space with an inner product 〈·, ·〉 and induced norm
‖ · ‖, A : H → H is a monotone mapping, and B : H → 2H is a maximal monotone
mapping. The solution set of (MIP) is denoted by Ω. It is known that many
problems can be converted into the model of (MIP), such as image processing
problems, convex minimization problems, split feasibility problems, equilibrium
problems, variational inequalities and DC programming problems, see, e.g., [1,
9, 10, 23, 24, 26, 29, 34]. Therefore, a large number of researchers have been
very interested in this problem and have developed many methods to solve such
problems. One of the most famous of these approaches is the forward-backward
algorithm (FBA), which generates an iterative sequence {xn} in the following way:

(1.2) xn+1 = (I + λnB)−1(I − λnA)xn,

where stepsize λn > 0, I stands for identity mapping on H, the operator
(I − λnA) is referred to as forward operator, and the operator (I + λnB)−1 is
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the so-called backward operator (also referred to as resolvent operator). The FBA
for monotone inclusion problems was first introduced by Lions and Mercier [16]
(also by Passty [22], independently). In the past few decades, the convergence
properties and the modified versions of this method have been extensively studied
in the literature, see, e.g., [2, 22, 20] and references therein. It should be men-
tioned that the FBA defined by (1.2) requires mapping A to be inverse strongly
monotone. This assumption is very strict and it is difficult to meet the practical
problems. In order to avoid this restriction, many scholars have made a lot of
efforts and achieved some important results.

1.1. Some efficient methods

In [32], Tseng proposed the splitting algorithm (also known as forward-backward-
forward method), which is a two-step iterative scheme. More precisely, the form
of the algorithm is as follows:{

yn = (I + λnB)−1(I − λnA)xn,

xn+1 = yn − λn(Ayn −Axn),
(1.3)

where the step size {λn} can be automatically updated by Armijo-type search
methods. Whereas the mapping A is Lipschitz continuous monotone and the
mapping B is maximal monotone, the sequence {xn} formed by iterative process
(1.3) converges weakly to a solution of (1.1) in real Hilbert spaces. In 2018, Zhang
and Wang [35] combined the projection and contraction method, and (1.2), and
proposed another iterative scheme to overcome the strong assumption on mapping
A. To be more precise, the method is described as follows:{

yn = (I + λnB)−1(I − λnA)xn,

xn+1 = xn − γηndn,
(1.4)

where dn = xn − yn − λn(Axn − Ayn), ηn = 〈xn−yn,dn〉
‖dn‖2 , γ ∈ (0, 2), {λn} is a

control sequence, operator A is assumed to be Lipschitz continuous monotone,
and operator B is assumed to be maximal monotone. They established the weak
convergence of the iterative method (1.4) under some suitable conditions.

It is worth noting that the Tseng splitting method (1.3) and the Algorithm 1.4
are only weakly convergent in infinite-dimensional spaces. Examples in CT re-
construction and machine learning tell us that strong convergence is preferable to
weak convergence in an infinite-dimensional space. Therefore, a natural question
is how to modify method (1.2) such that it can achieve strong convergence in
infinite-dimensional spaces. In fact, in the past few decades, researchers have pro-
posed many modified forward-backward methods to achieve strong convergence
in real Hilbert spaces, see, e.g., [33, 11, 7, 27] and the references therein. It
should be pointed out that the algorithms mentioned in the above literatures also
require operator A to be inverse strongly monotone. In 2018, Gibali and Thong
[12] proposed two modifications of (1.2) based on Mann and viscosity ideas. They
established two strong convergence theorems of the suggested algorithms in an
infinite-dimensional Hilbert space. Moreover, Thong and Cholamjiak [31], and
Gibali et al. [14] presented several new algorithms by means of the viscosity-type
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method and iterative method (1.4), and established the strong convergence theo-
rems of the proposed algorithms in Hilbert spaces.

1.2. Some efficient methods with inertial steps

In recent years, the development of fast iterative algorithms has attracted enor-
mous interest, especially for the inertial method, which is based on discrete ver-
sion of a second-order dissipative dynamic system. Many researchers have con-
structed various fast iterative algorithms by using inertial technology, see, e.g.,
[17, 25, 13, 8, 28, 30] and references therein. One of the common features
of these algorithms is that the next iteration depends on the combination of the
previous two iterations. Note that these minor changes greatly improve the perfor-
mance of the algorithms. In 2015, Lorenz and Pock [17] introduced the following
intertial forward-backward algorithm (iFBA) for monotone inclusions:{

wn = xn + θn(xn − xn−1),

xn+1 = (I + λnB)−1(I − λnA)wn.
(1.5)

Note that the iFBA (1.5) still achieves weak convergence in real Hilbert spaces.
Their numerical experiments on image restoration show that iFBA converges faster
than some existing algorithms.
Recently, Tan Bing and Sun Young Cho [3] proposed the following inertial projec-
tion and contraction method for solving the MIP (1.1):

Algorithm 1.1.
The inertial Mann-type projection algorithm for solving (MIP)

Initialization:
Set δ > 0, θ > 0, l ∈ (0, 1), µ ∈ (0, 1), γ ∈ (0, 2), and let x0, x1 ∈ H be arbitrary.
Iterative Steps:
Calculate xn+1 as follows:
Step 1.
Given the iterates xn−1 and xn (n ≥ 1). Set wn = xn + θn(xn − xn−1), where

θn =

min
{ εn
‖xn − xn−1‖

, θ
}

if xn 6= xn−1,

θ, otherwise.
(1.6)

Step 2.

Compute yn = (I + λnB)−1(I − λnA)wn, where λn is chosen to be the largest
λ ∈ {δ, δl, δl2, . . . } satisfying the following

λ〈Awn −Ayn, wn − yn〉 ≤ µ‖wn − yn‖2.(1.7)

If wn = yn, then stop and yn is a solution of (MIP). Otherwise, go to Step 3.
Step 3.
Compute zn = wn − γηndn, where

dn := wn − yn − λn(Awn −Ayn), ηn := (1− µ)
‖wn − yn‖
‖dn‖2

.(1.8)
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Step 4.
Compute xn+1 = (1−αn−βn)wn +βnzn. Set n := n+ 1 and go back to Step 1.

Under some suitable assumptions, it has been shown that the sequence generated
by their algorithm converges strongly to the solution of (1.1), with a linesearch for
the choice of the single valued operator. Naturally, the following question should
come to mind.
Can we design a strong convergence iterative method with an alternated inertial
technique with a choice of step size that is independent of the Lipschitz constant
and does not involve any linesearch procedure?

Motivated by the monotonic property of the alternated inertial step and the im-
portance of strong convergence property, this article proposes a strong convergence
forward-backward splitting method with an alternated inertial technique for solv-
ing a monotone inclusion problem in a real Hilbert space. The proposed method
converges strongly under simple and easily verifiable assumptions. Moreover, this
method can be implemented easily since the singled-valued operator does not need
the knowlegde of the Lipschitz constant and does not involve any linesearch pro-
cedure. Our method to the best of our knowledge is the only strong convergence
forward-backward splitting method with alternated inertial procedure. Addition-
ally, numerical experiments to illustrate the computational performance of the
proposed method is given with an application to an image processing problem to
test the potential applicability of the method in comparision with some existing
methods in the literature.

2. Preliminaries

In this section, we recall some basic notions and useful results in a real Hilbert space
H, which are needed for our convergence analysis. For any sequence {xn} ⊂ H,
ωω(xn) := {z ∈ H : ∃{xnk} ⊂ {xn} such that xnk ⇀ z} denotes the weak
ω-limit set of {xn}. A point x ∈ H is called a fixed point of A if Ax = x. The
operator A is said to be:

(i) α-inverse strongly monotone (ism) if there exists α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2 for all x, y,∈ H,
(ii) monotone if

〈Ax−Ay, x− y〉 ≥ 0 for all x, y ∈ H,
(iii) L-Lipschitz continuous if there exists a constant L > 0 such that

‖Ax−Ay‖ ≤ L‖x− y‖ for all x, y ∈ H,
if L = 1, then A is called nonexpansive.

If A is a multivalued operator, i.e. A : H → 2H, then A is called monotone if

〈x− y, u− v〉 ≥ 0 for all x, y ∈ H, u ∈ A(x), v ∈ A(y),

and A is maximal monotone if the graph G(A) of A defined by

G(A) := {(x, y) ∈ H ×H : y ∈ A(x)}
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is not properly contained in the graph of any other monotone operator. It is
generally known that A is maximal monotone if and only if for (x, u) ∈ H × H,
〈x− y, u− v〉 ≥ 0 for all (y, v) ∈ G(A), implies u ∈ A(x). The resolvent operator
JAλ is associated with a multivalued operator A and λ is the mapping JAλ : H → 2H

defined by JAλ (x) = (I+λA)−1(x), x ∈ H, λ > 0, where I is the identity operator
on H. It is well known that if the operator A is monotone, then JAλ is single-valued
and nonexpansive.

Recall that for a nonempty closed and convex subset C of H, the metric pro-
jection denoted as PC , is a map defined on H onto C which assigns to each x ∈ H,
the unique point in C, denoted by PCx, such that

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

Lemma 2.1 ([21]). Let C be a closed convex subset of H. Given z̄ ∈ H and a
point z ∈ C, then z = PC(z̄) if and only if

〈z̄ − z, y − z〉 ≤ 0 for all y ∈ C.

It is well known, for any y, z, z̄ in a real Hilbert spaceH and for all σ, θ, β ∈ [0, 1]
with σ + θ + β = 1, the following are satisfied

‖y + z̄‖2 ≤ ‖y‖2 + 2〈z̄, y + z̄〉,
‖σy + θz + βz̄‖2 = σ‖y‖2 + θ‖z‖2 + β‖z̄‖2(2.1)

− σθ‖y − z‖2 − θβ‖z − z̄‖2 − σβ‖y − z̄‖2.

Lemma 2.2 ([4]). Let H be a real Hilbert space, A : H → H be monotone and
Lipschitz continuous operator, and B : H → 2H be a maximal monotone operator.
Then, the operator (A+ B) : H → 2H is maximal monotone.

Lemma 2.3 ([18]). Let {γn}, {εn} ⊂ R+, {ηn} ⊂ (0, 1), and {κn} is a real
sequence such that

γn+1 ≤ (1− ηn)γn + κn + εn, n ≥ 1.

Assume that
∑∞
n=1 εn <∞. Then the following results hold:

(i) If κn ≤ ηnL for L > 0, then {γn} is a bounded sequence.
(ii) If we have

∞∑
n=1

ηn =∞ and lim sup
n→∞

κn
ηn
≤ 0,

then γn → 0 as n→∞.

Lemma 2.4 ([19]). Let {Sn} be a sequence of real numbers that does not de-
crease at infinity. Also consider the sequence of integers {τ(n)}n≥n0

defined by

τ(n) = max{m ∈ N : m ≤ n, Sm ≤ Sm+1}.
Then {τ(n)}n≥n0 is a decreasing sequence verifying lim

n→∞
τ(n) = ∞, and for all

n ≥ n0, the following two estimates hold

Sτ(n) ≤ Sτ(n)+1 and Sn ≤ Sτ(n)+1.
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3. Main result

In this section, we present our method and discuss some of its features. We begin
with the following assumptions under which our strong convergence is obtained.

Assumptions 3.1. Let H be a real Hilbert space, we assume that the following
hold:

(a) B : H → 2H is a maximal monotone operator and A : H → H is a monotone
and Lipschitz continuous operator but the Lipschitz constant need not to be
known.

(b) The solution set Ω := (A+ B)−1(0) is nonempty.

Assumptions 3.2. Suppose that {αn}, {θn}, and {βn} are sequences in (0, 1),
and γ ∈ (0, 2) satisfy the following conditions:

(a) infn→∞ θn(1− θn − βn) > 0,
(b) limn→∞

αn
βn

= 0,

(c) limn→∞ βn = 0 and
∑∞
n=0 βn =∞.

Algorithm 3.3.

Initialization:
Choose the sequences {αn}, {θn}, and {βn} such that the conditions from As-
sumptions 3.2 hold, and let λ1 > 0, µ ∈ (0, 1) and x1, x0 ∈ H.
Iterative Steps:
For xn−1 and xn ∈ H, choose α ∈ [0, 1) and αn such that 0 ≤ αn ≤ ᾱn, where

(3.1) ᾱn :=

min
{ 1

n2‖xn − xn−1‖
, α
}

if xn 6= xn−1,

α, otherwise.

Step 1. Compute

(3.2) wn =

{
xn, n = even,

xn + αn(xn − xn−1), n = odd,

and

(3.3) yn = JBλn(I − λnA)wn = (I + λnB)−1(I − λnA)wn,

where

(3.4) λn+1 =

min
{ µ‖wn − yn‖
‖Awn −Ayn‖

, λn

}
, Awn 6= Ayn

λn, otherwise.

Step 2. Compute

dn = wn − yn − λn(Awn − Byn) for all n ≥ 1.

Step 3. Compute

(3.5) xn+1 = (1− θn − βn)xn + θnvn,
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where vn = wn − γηndn and

(3.6) ηn =


〈wn − yn, dn〉
‖dn‖2

, dn 6= 0,

0, dn = 0.

Step 4.
Set n := n+ 1, and go back to Step 1.

Remark 3.4. (a) The stepsize given by (3.4) is generated at each iteration by
some simple computations, which allow it to be easily implemented without prior
knowlegde of the Lipschitz constant of the operator A.

(b) Note that by (3.4), λn+1 ≤ λn for all n ≥ 1. Also, observe in Algorithm 3.3
that if Awn 6= Ayn, then

µ‖wn − yn‖
‖Awn −Ayn‖

≥ µ‖wn − yn‖
L‖wn − yn‖

=
µ

L
,

which implies that 0 < min{λ1,
µ
L} ≤ λn for all n ≥ 1. This means that limn→∞ λn

exists. Thus, there exists λ > 0 such that limn→∞ λn = λ.
(c) Obviously, from (3.1), we have

αn‖xn − xn−1‖2 ≤ ᾱn‖xn − xn−1‖2 ≤
1

n2
.

Therefore, it follows that
∞∑
n=0

αn‖xn − xn−1‖2 <∞.

(d) The iterates generated by some existing studies in the literature for the
case when wn in (3.2) is computed as wn = xn + αn(xn − xn−1), do not have a
monotonic property with respect to a point in the solution. Consequently, it can
swing back and forth around the solution set. This could be avoided using the
new definition of wn, which is one of the interesting properties of the alternating
inertial method.

4. Convergence analysis

Lemma 4.1. Let {xn} be a sequence generated by Algorithm 3.3. Then for
each p∗ ∈ Ω, the following inequality holds

‖v2n+1 − p∗‖2 ≤ ‖w2n+1 − p∗‖2 −
2− γ
γ
‖v2n+1 − w2n+1‖2.

Proof. Set n = 2n+ 1 and choose p∗ ∈ Ω := (A+ B)−1(0), then we have

y2n+1 = (I + λ2n+1B)−1(I − λ2n+1A)w2n+1,

v2n+1 = w2n+1 − γη2n+1d2n+1,

d2n+1 = w2n+1 − y2n+1 − λ2n+1(Aw2n+1 −Ay2n+1),
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and

η2n+1 =


〈w2n+1 − y2n+1, d2n+1〉

‖d2n+1‖2
, d2n+1 6= 0,

0, d2n+1 = 0.

So,

(4.1)

‖v2n+1 − p∗‖2 = ‖w2n+1 − p∗ − γη2n+1d2n+1‖2

= ‖w2n+1 − p∗‖2 − 2γη2n+1〈w2n+1 − p∗, d2n+1〉
+ γ2η2

2n+1‖d2n+1‖2.
Note that

(4.2)

〈w2n+1 − p∗, d2n+1〉
= 〈w2n+1 − y2n+1, d2n+1〉+ 〈y2n+1 − p∗, d2n+1〉
= 〈w2n+1 − y2n+1, d2n+1〉

+ 〈y2n+1 − p∗, w2n+1 − y2n+1 − λ2n+1(Aw2n+1 −Ay2n+1)〉.
Since y2n+1 = (I + λ2n+1B)−1(I − λ2n+1A)w2n+1 then (I − λ2n+1A)w2n+1 ∈
(I + λ2n+1B)y2n+1.
Using that B is maximal monotone, there exists bn ∈ By2n+1 such that

(I − λ2n+1A)w2n+1 = y2n+1 + λ2n+1bn,

which implies

bn =
1

λ2n+1
(w2n+1 − y2n+1 − λ2n+1Aw2n+1).

p∗ ∈ Ω implies that 0 ∈ (A+ B)p∗. Hence, we have

Ay2n+1 + bn ∈ (A+ B)y2n+1.

Since A+ B is maximal monotone, we obtain

(4.3) 〈Ay2n+1 + bn, y2n+1 − p∗〉 ≥ 0.

Replacing bn = 1
λ2n+1

(w2n+1 − y2n+1 − λ2n+1Aw2n+1) in (4.3), we obtain〈λ2n+1

λ2n+1
Ay2n+1 +

1

λ2n+1
(w2n+1 − y2n+1 − λ2n+1Aw2n+1), y2n+1 − p∗

〉
≥ 0,

1

λ2n+1
〈w2n+1 − y2n+1 − λ2n+1Aw2n+1 + λ2n+1Ay2n+1, y2n+1 − p∗〉 ≥ 0.

This implies that

〈w2n+1 − y2n+1 − λ2n+1Aw2n+1 + λ2n+1Ay2n+1, y2n+1 − p∗〉 ≥ 0.

From (4.2), we obtain

(4.4) 〈w2n+1 − p∗, d2n+1〉 ≥ 〈w2n+1 − y2n+1, d2n+1〉.
Substituting (4.4) in (4.1) we have

‖v2n+1 − p∗‖
≤ ‖w2n+1 − p∗‖2 − 2γη2n+1〈w2n+1 − y2n+1, d2n+1〉

+ γ2η2
2n+1‖d2n+1‖2
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(4.5)

= ‖w2n+1 − p∗‖2 − 2γη2n+1〈w2n+1 − y2n+1, d2n+1〉

+ γ2η2
2n+1

〈w2n+1 − y2n+1, d2n+1〉
η2n+1

= ‖w2n+1 − p∗‖2 − 2γη2n+1〈w2n+1 − y2n+1, d2n+1〉
+ γ2η2n+1〈w2n+1 − y2n+1, d2n+1〉
≤ ‖w2n+1 − p∗‖2 − γ(2− γ)η2n+1〈w2n+1 − y2n+1, d2n+1〉.

Observe that

(4.6)

η2n+1〈w2n+1 − y2n+1, d2n+1〉 = η2
2n+1‖d2n+1‖2

= ‖η2n+1d2n+1‖2 =
1

γ2
‖v2n+1 − w2n+1‖2.

Hence, from (4.5) and (4.6), we obtain

�(4.7) ‖v2n+1 − p∗‖2 ≤ ‖w2n+1 − p∗‖2 −
(2− γ

γ

)
‖v2n+1 − w2n+1‖2.

Theorem 4.2. Let {xn} be a sequence generated by Algorithm 3.3 under the
Assumption 3.1 and Assumption 3.2. Then, {xn} converges strongly to p∗ ∈ Ω,
where

‖p∗‖ = min{‖z‖ : z ∈ Ω}.

For simplicity, we divide the rest of the proof into claims.
Claim 1. We show that
(4.8)
‖x2n+2 − p∗‖2

≤ (1− β2n+1)‖x2n+1 − p∗‖2 + β2n+1

[α2n+1

β2n+1
‖x2n+1 − x2n‖23D1(1− β2n+1)

+ 2θ2n+1‖x2n+1 − v2n+1‖‖x2n+2 − p∗‖+ 2〈p∗, p∗ − x2n+2〉
]
.

Proof. Notice that from (3.5), we have

xn+1 = (1− θn − βn)xn + θnvn

x2n+2 = (1− θ2n+1 − β2n+1)x2n+1 + θ2n+1v2n+1

= (1− θ2n+1)x2n+1 + θ2n+1v2n+1 − β2n+1x2n+1.

Let ϕ2n+1 = (1− θ2n+1)x2n+1 + θ2n+1v2n+1. Thus,

‖ϕ2n+1 − p∗‖2

= ‖(1− θ2n+1)x2n+1 + θ2n+1v2n+1 − p∗‖2

= (1− θ2n+1)2‖x2n+1 − p∗‖2 + θ2
2n+1‖v2n+1 − p∗‖2

+ 2(1− θ2n+1)θ2n+1〈x2n+1 − p∗, v2n+1 − p∗〉

≤ (1− θ2n+1)2‖x2n+1 − p∗‖2 + θ2
2n+1‖v2n+1 − p∗‖2

+ 2(1− θ2n+1)θ2n+1‖x2n+1 − p∗‖‖v2n+1 − p∗‖
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(4.9)

≤ (1− θ2n+1)2‖x2n+1 − p∗‖2 + θ2
2n+1‖v2n+1 − p∗‖2

+ 2(1− θ2n+1)θ2n+1‖x2n+1 − p∗‖2

+ (1− θ2n+1)θ2n+1‖v2n+1 − p∗‖2

= (1− θ2n+1)‖x2n+1 − p∗‖2 + θ2n+1‖v2n+1 − p∗‖2.
From (4.7) and the last inequality, we get

(4.10) ‖ϕ2n+1 − p∗‖2 ≤ (1− θ2n+1)‖x2n+1 − p∗‖2 + θ2n+1‖w2n+1 − p∗‖2.
On the other hand, we have

(4.11)

‖w2n+1 − p∗‖2

= ‖x2n+1 + α2n+1(x2n+1 − x2n)− p∗‖2

= ‖x2n+1 − p∗‖2 + α2
2n+1‖x2n+1 − x2n‖2

+ 2α2n+1〈x2n+1 − p∗, x2n+1 − x2n〉
≤ ‖x2n+1 − p∗‖2 + α2

2n+1‖x2n+1 − x2n‖2

+ 2α2n+1‖x2n+1 − p∗‖‖x2n+1 − x2n‖
≤ ‖x2n+1 − p∗‖2 + α2n+1‖x2n+1 − x2n‖2

+ 2α2n+1‖x2n+1 − p∗‖‖x2n+1 − x2n‖
≤ ‖x2n+1 − p∗‖2 + 3D1α2n+1‖x2n+1 − x2n‖2,

where D1 = supn≥1{‖x2n+1 − p∗‖, ‖x2n+1 − x2n‖}. Substitute (4.11) in (4.10), we
get

(4.12)

‖ϕ2n+1 − p∗‖2 ≤ (1− θ2n+1)‖x2n+1 − p∗‖2 + θ2n+1‖x2n+1 − p∗‖2

+ 3D1α2n+1θ2n+1‖x2n+1 − x2n‖2

= ‖x2n+1 − p∗‖2 + 3D1α2n+1θ2n+1‖x2n+1 − x2n‖2.
Since ϕ2n+1 = (1− θ2n+1)x2n+1 + θ2n+1v2n+1, we have

x2n+1 − ϕ2n+1 = θ2n+1(x2n+1 − v2n+1).

Therefore, it follows that

x2n+2 = ϕ2n+1 − β2n+1x2n+1

= (1− β2n+1)ϕ2n+1 − β2n+1(x2n+1 − ϕ2n+1)

= (1− β2n+1)ϕ2n+1 − β2n+1θ2n+1(x2n+1 − v2n+1).

Therefore, we obtain

‖x2n+2 − p∗‖2

= ‖(1− β2n+1)ϕ2n+1 − β2n+1θ2n+1(x2n+1 − v2n+1)− p∗‖2

= ‖(1− β2n+1)(ϕ2n+1 − p∗)
− (β2n+1θ2n+1(x2n+1 − v2n+1) + β2n+1p

∗)‖2

≤ (1− β2n+1)2‖ϕ2n+1 − p∗‖2

− 2〈β2n+1θ2n+1(x2n+1 − v2n+1) + β2n+1p
∗, x2n+2 − p∗〉
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(4.13)

≤ (1− β2n+1)‖ϕ2n+1 − p∗‖2

+ 2〈β2n+1θ2n+1(x2n+1 − v2n+1), p∗ − x2n+2〉
+ 2β2n+1〈p∗, p∗ − x2n+2〉.

Now, substituting (4.12) in (4.13), we obtain

‖x2n+2 − p∗‖2

= ‖(1− β2n+1)‖x2n+1 − p∗‖2 + 3D1α2n+1θ2n+1(1− β2n+1)‖x2n+1 − x2n‖2

+ 2〈β2n+1θ2n+1(x2n+1 − v2n+1), p∗ − x2n+2〉+ 2β2n+1〈p∗, p∗ − x2n+2〉
≤ (1− β2n+1)‖x2n+1 − p∗‖2 + 3D1α2n+1θ2n+1(1− β2n+1)‖x2n+1 − x2n‖2

+ 2β2n+1θ2n+1‖x2n+1 − v2n+1‖‖x2n+1 − p∗‖+ 2β2n+1〈p∗, p∗ − x2n+2〉

≤ (1− β2n+1)‖x2n+1 − p∗‖2 + β2n+1

[α2n+1

β2n+1
‖x2n+1 − x2n‖23D1(1− β2n+1)

+ 2θ2n+1‖x2n+1 − v2n+1‖‖x2n+2 − p∗‖+ 2〈p∗, p∗ − x2n+2〉
]
.

Claim 2: We show that the sequence {xn} is bounded. From the definition of
xn+1, we obtain

(4.14)

‖x2n+2 − p∗‖
= ‖(1− θ2n+1 − β2n+1)x2n+1 + θ2n+1v2n+1 − p∗‖
= ‖(1− θ2n+1 − β2n+1)(x2n+1 − p∗) + θ2n+1(v2n+1 − p∗) + β2n+1(−p∗)‖
≤ (1− θ2n+1 − β2n+1)‖x2n+p − p∗‖+ θ2n+1‖v2n+1 − p∗‖+ β2n+1‖p∗‖.

Now, observe that

(4.15)

‖w2n+1 − p∗‖ = ‖x2n+1 + α2n+1(x2n+1 − x2n)− p∗‖
≤ ‖x2n+1 − p∗‖+ α2n+1‖x2n+1 − x2n‖

= ‖x2n+1 − p∗‖+ β2n+1

(α2n+1

β2n+1
‖x2n+1 − x2n‖

)
.

Since αn
βn
‖x2n+1 − x2n‖ → 0, n → ∞, this implies that for all n ≥ 1, there exists

M1 > 0 such that α2n+1

β2n+1
‖x2n+1 − x2n‖ ≤M1. Therefore, from equation (4.15), we

get

(4.16) ‖w2n+1 − p∗‖ ≤ ‖x2n+1 − p∗‖+ β2n+1M1.

Now, putting (4.16) together with (4.7), we have

(4.17) ‖v2n+1 − p∗‖ ≤ ‖w2n+1 − p∗‖ ≤ ‖x2n+1 − p∗‖+ β2n+1M1.

Substituting (4.17) in (4.14), we have

(4.18) ‖x2n+2 − p∗‖ ≤ (1− β2n+1)‖x2n+1 − p∗‖+ β2n+1(θ2n+1M1 + ‖p∗‖).
Since lim

n→∞
βn = 0, this implies that the sequence {β2n+1}∞n=0 is bounded. Setting

M := max{‖p‖, θ2n+1M1} and using Lemma 2.3(i), we conclude that the sequence
{‖x2n+1− p∗‖}∞n=0 is bounded. Using similar argument in obtaining (4.18), it can
easily be seen that the corresponding sequence {‖x2n− p∗‖}∞n=0 of the even terms
is bounded as well. Consequently, the sequence {xn}∞n=0 is bounded.
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Claim 3: We show that

‖x2n+2 − p∗‖2

≤ (1− β2n+1)‖x2n − p∗‖2 + [(1− β2n+1 + θ2n+1α2n+1)β2n + β2n+1] ‖p∗‖2

+ 2θ2n+1α2n+1‖x2n+1 − x2n‖2 − (1− θ2n − β2n)θ2n‖v2n − x2n‖2

− θ2n
2− γ
γ
‖v2n − w2n‖2.

From the definition of w2n+1 and (2.2), we have

(4.19)

‖w2n+1 − p∗‖2

= ‖x2n+1 + α2n+1(x2n+1 − x2n)− p∗‖2

= ‖(1 + α2n+1)(x2n+1 − p∗)− α2n+1(x2n − p)‖2

= (1 + α2n+1)‖x2n+1 − p∗‖2

− α2n+1‖x2n − p∗‖2 + α2n+1(1 + α2n+1)‖x2n+1 − x2n‖2

≤ (1 + α2n+1)‖x2n+1 − p∗‖2 − α2n+1‖x2n − p∗‖2

+ 2α2n+1‖x2n+1 − x2n‖2.
Using again (2.1) and the definition of x2n+2, we have
(4.20)
‖x2n+2 − p∗‖2

= ‖(1− θ2n+1 − β2n+1)x2n+1 + θ2n+1v2n+1 − p∗‖2

= ‖(1− θ2n+1 − β2n+1)(x2n+1 − p∗) + θ2n+1(v2n+1 − p∗)− β2n+1(−p∗)‖2

≤ (1− θ2n+1 − β2n+1)‖x2n+1 − p∗‖2 + θ2n+1‖v2n+1 − p∗‖2 + β2n+1‖p∗‖2

− (1− θ2n+1 − β2n+1)θ2n+1‖v2n+1 − x2n+1‖2.
Substituting (4.7) in (4.20), we get
(4.21)
‖x2n+2 − p∗‖2 ≤ (1− θ2n+1 − β2n+1)‖x2n+1 − p∗‖2 + θ2n+1‖w2n+1 − p∗‖2

− θ2n+1
2− γ
γ
‖v2n+1 − w2n+1‖2 + β2n+1‖p∗‖2

− (1− θ2n+1 − β2n+1)θ2n+1‖v2n+1 − x2n+1‖2.
Substituting (4.19) in (4.21), we obtain

‖x2n+2 − p∗‖2

≤ (1− θ2n+1 − β2n+1)‖x2n+1

− p∗‖2 + θ2n+1[(1 + α2n+1)‖x2n+1 − p∗‖2 − α2n+1‖x2n − p∗‖
+ 2α2n+1‖x2n+1 − x2n‖2]

− θ2n+1
2− γ
γ
‖v2n+1 − w2n+1‖2 + β2n+1‖p∗‖2

− (1− θ2n+1 − β2n+1)θ2n+1‖v2n+1 − x2n+1‖2
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(4.22)

≤ [(1− θ2n+1 − β2n+1) + θ2n+1(1 + α2n+1)] ‖x2n+1 − p∗‖2

− θ2n+1α2n+1‖x2n − p∗‖2 + β2n+1‖p∗‖2

+ 2θ2n+1α2n+1‖x2n+1 − x2n‖2

− θ2n+1
2− γ
γ
‖v2n+1 − w2n+1‖2

− (1− θ2n+1 − β2n+1)θ2n+1‖v2n+1 − x2n+1‖2.
Using similar arguments in showing (4.22), one obtains

(4.23)

‖x2n+1 − p∗‖2

≤ (1− θ2n − β2n)‖x2n − p∗‖2 + θ2n‖w2n − p∗‖2 + β2n‖p∗‖2

− θ2n
(2− γ)

γ
‖v2n − w2n‖2 − (1− θ2n − β2n)θ2n‖v2n − x2n‖2

= (1− θ2n − β2n)‖x2n − p∗‖2 + θ2n‖x2n − p∗‖2 + β2n‖p∗‖2

− θ2n
(2− γ)

γ
‖v2n − w2n‖2 − (1− θ2n − β2n)θ2n‖v2n − x2n‖2

≤ (1− β2n)‖x2n − p∗‖2 + β2n‖p∗‖2 + (1− θ2n − β2n)‖v2n − x2n‖2

− θ2n
(2− γ)

γ
‖v2n − w2n‖2.

Substituting (4.23) in (4.22), we get
(4.24)
‖x2n+2 − p∗‖2

≤ [(1− θ2n+1 − θ2n+1) + θ2n+1(1 + θ2n+1)]
[
(1− β2n)‖x2n − p∗‖2 + β2n‖p∗‖2

− (1− θ2n − β2n)θ2n‖v2n − x2n‖2 − θ2n
(2− γ)

γ
‖v2n − w2n‖2

]
− θ2n+1α2n+1‖x2n − p∗‖2 + β2n+1‖p∗‖2 + 2θ2n+1α2n+1‖x2n+1 − x2n‖2

− θ2n+1
(2− γ)

γ
‖v2n+1 − w2n+1‖2

− (1− θ2n+1 − β2n+1)θ2n+1‖v2n+1 − x2n+1‖2

= [((1− θ2n+1−β2n+1) + θ2n+1(1 + α2n+1))(1− β2n)−θ2n+1α2n+1] ‖x2n − p∗‖2

+ [((1− θ2n+1 − β2n+1) + θ2n+1(1 + α2n+1))β2n + β2n+1] ‖p∗‖2

+ 2θ2n+1α2n+1‖x2n+1 − x2n‖2

− (1− θ2n − β2n)θ2n((1− θ2n+1 − β2n+1) + θ2n+1(1 + α2n+1))‖v2n − x2n‖2

− 2((1− θ2n+1 − β2n+1) + θ2n+1(1 + α2n+1))θ2n
(2− γ)

γ
‖v2n − w2n‖2

− θ2n+1
(2− γ)

γ
‖v2n+1 − w2n+1‖2

− (1− θ2n+1 − β2n+1)θ2n+1‖v2n+1 − x2n+1‖2.
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Now observe that considering the given conditions of the sequences {βn}, {θn},
and {αn}, one can obtain

(4.25)

((1− θ2n+1 − β2n+1) + θ2n+1(1 + α2n+1))(1− β2n)− θ2n+1α2n+1

= (1− β2n+1 + θ2n+1α2n+1)(1− β2n)− θ2n+1α2n+1

≤ (1− β2n+1 + θ2n+1α2n+1)− θ2n+1α2n+1

= (1− β2n+1),

and

(4.26)
[(1− θ2n+1 − β2n+1) + θ2n+1(1 + β2n+1)]β2n + β2n+1

= (1− β2n+1 + θ2n+1α2n+1)β2n + β2n+1.

From (4.25), (4.26), and dropping some of the non neqative terms in (4.24) now
it follows

(4.27)

‖x2n+2 − p∗‖2

≤ (1−β2n+1)‖x2n−p∗‖2+[(1− β2n+1 + θ2n+1α2n+1)β2n+β2n+1] ‖p∗‖2

+ 2θ2n+1α2n+1‖x2n+1−x2n‖2−(1− θ2n − β2n)θ2n‖v2n−x2n‖2

−θ2n
2− γ
γ
‖v2n−w2n‖2.

Claim 4. We show that {xn} converges strongly. We consider two cases to show
the convergence. Observe that from (4.27), it follows
(4.28)

(1− θ2n − β2n)θ2n‖v2n − x2n‖2 + θ2n
(2− γ)

γ
‖v2n − w2n‖2

≤ (1− β2n+1)‖x2n − p∗‖2 − ‖x2n+2 − p∗‖2

+ [(1− β2n+1+θ2n+1α2n+1)β2n + β2n+1] ‖p∗‖2+2θ2n+1α2n+1‖x2n+1 − x2n‖2

≤ ‖x2n − p∗‖2 − ‖x2n+2 − p∗‖2

+ [(1− β2n+1+θ2n+1α2n+1)β2n + β2n+1] ‖p∗‖2+2θ2n+1α2n+1‖x2n+1 − x2n‖2.
Case 1. Suppose that there exists N ≥ 0 such that ‖x2n+1 − p∗‖ ≤ ‖x2n − p∗‖
for all n ≥ 0. In this case, limn→∞ ‖x2n − p∗‖ exists. Since limn→∞ βn = 0 and
limn→∞ αn‖xn − xn−1‖ = 0, it now follows form (4.28) that

lim
n→∞

(1− θ2n − β2n)θ2n‖v2n − x2n‖2 = 0

and

lim
n→∞

‖v2n − w2n‖ = 0.(4.29)

From the assumption that infn≥1(1− θ2n − θ2n)θ2n > 0, we obtain

lim
n→∞

‖v2n − x2n‖ = 0.(4.30)

Also from (4.29) and (4.30), we get

lim
n→∞

‖w2n − x2n‖ = 0.(4.31)
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From Algorithm 3.3 and the definition of λn+1, we get

‖d2n‖ = ‖w2n − y2n − λ2n(Aw2n − By2n)‖

≤ ‖w2n − y2n‖+ λ2n‖Aw2n − By2n‖ ≤
(

1 +
µλ2n

λ2n+1

)
‖w2n − y2n‖.

So,
1

‖d2n‖
≥ 1(

1 + µλ2n

λ2n+1

)
‖w2n − y2n‖

.

Now

〈w2n − y2n, d2n〉 = 〈w2n − y2n, w2n − y2n − λ2n(Aw2n −Ay2n)〉

= ‖w2n − y2n‖2 − 〈w2n − y2n, λ2n(Aw2n −Ay2n)〉

≥ ‖w2n − y2n‖2 − λ2n‖Aw2n −Ay2n‖‖w2n − y2n‖

≥ ‖w2n − y2n‖ −
µλ2n

λ2n+1
‖w2n − y2n‖2

=
(

1− µλ2n

λ2n+1

)
‖w2n − y2n‖.

From the definition of vn, we get
(4.32)

‖v2n − w2n‖ = γη2n‖d2n‖ = γ
〈w2n − y2n, d2n〉

‖d2n‖
≥ γ

[1− µλ2n

λ2n+1

1 + µλ2n

λ2n+1

]
‖w2n − y2n‖.

Hence by (4.29), we get from (4.32) (noting that lim
n→∞

λn = λ) that

lim
n→∞

‖w2n − y2n‖ = 0.(4.33)

Also,

lim
n→∞

‖x2n − y2n‖ ≤ lim
n→∞

[‖x2n − w2n‖+ ‖w2n − y2n‖] = 0.(4.34)

From (4.27), (4.29), (4.30), and the fact that limn→∞ βn = 0, it follows that

lim
n→∞

‖x2n+1 − x2n‖ = 0.(4.35)

Now, we show that ωω(xn) ⊂ Ω. Suppose that z ∈ ωω(xn) is an arbitrary element.
Let the subsequence {x2nk} of {x2n} be weakly convergent to a point z. Then, it
follows that the subsequences {w2nk} and {y2nk} are also weakly convergent to
z ∈ H. Now, let (v, u) ∈ G(A + B), this implies that u − Av ∈ Bv. Also, from
(3.3), we obtain

1

λ2nk

(w2nk − y2nk − λ2nkAw2nk) ∈ By2nk .

Using maximal monotonicity of B, we have

(4.36)
〈
v − y2nk , u−Av −

1

λ2nk

(w2nk − y2nk − λ2nkAw2nk)
〉
≥ 0.
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Using (4.36) and the monotonicity of A, we obtain
(4.37)

〈v − y2nk , 〉 ≥
〈
v − y2nk ,Av +

1

λ2nk

(w2nk − y2nk − λ2nkAw2nk)
〉

= 〈v − y2nk ,Av −Aw2nk〉+
〈
v − y2nk ,

1

λ2nk

(w2nk − y2nk)
〉

= 〈v − y2nk ,Av −Ay2nk〉+ 〈v − y2nk ,Ay2nk −Aw2nk〉

+
〈
v − y2nk ,

1

λ2nk

(w2nk − y2nk)
〉

≥ 〈v − y2nk ,Ay2nk −Aw2nk〉+
〈
v − y2nk ,

1

λ2nk

(w2nk − y2nk)
〉
.

Recall that limk→∞ λ2nk > 0, limk→∞ ‖w2nk − y2nk‖ = 0, and by the Lipschitz
continuity A, we obtain

lim
k→∞

‖Ay2nk −Aw2nk‖ = 0.

Using ‖w2nk − y2nk‖ → 0 as k → ∞, which implies that y2nk → z as k → ∞, we
obtain

〈v − z, u〉 = lim
k→∞

〈v − y2nk , u〉 ≥ 0.

Hence,
〈v − v, u− 0〉 ≥ 0.

Also, by Lemma 2.2, A+B is maximal monotone, thus we obtain that 0 ∈ (A+B)z
which implies that z ∈ Ω. Since z is arbitrary, we conclude that ωω(xn) ⊂ Ω.

From Claim 1, we have
(4.38)
‖x2n+2 − p∗‖2

≤ (1− β2n+1)‖x2n+1 − p∗‖2 + β2n+1

[α2n+1

β2n+1
‖x2n+1 − x2n‖23D1(1− β2n+1)

+ 2θ2n+1‖x2n+1 − v2n+1‖‖x2n+2 − p∗‖+ 2〈p∗, p∗ − x2n+2〉
]
.

Using similar argument to obtain (4.9), one gets

(4.39)
‖ϕ2n − p∗‖2 ≤ (1− θ2n)‖x2n − p∗‖2 + θ2n‖w2n − p∗‖2

= (1− θ2n)‖x2n − p∗‖2 + θ2n‖x2n − p∗‖2 = ‖x2n − p∗‖2.
Again, using a similar argument as in the proof of Claim 1 to obtain (4.13), one
obtains
(4.40)
‖x2n+1 − p∗‖2 ≤ (1− β2n)‖ϕ2n − p∗‖2 + 2β2nθ2n‖x2n − v2n‖‖x2n+1 − p∗‖

+ 2β2n〈p∗, p∗ − x2n+1〉.
Substituting (4.39) in (4.40), we have

(4.41)
‖x2n+1 − p∗‖2 ≤ (1− β2n)‖ϕ2n − p∗‖2 + β2n[2‖x2n − v2n‖‖x2n+1 − p∗‖

+ 2〈p∗, p∗ − x2n+1〉].
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It remains only to show that

lim sup
n→∞

〈p∗, p∗ − x2n+1〉 ≤ 0.

In fact, since p∗ = PΩ(0), by the characterization of the metric space projection
in Lemma 2.1, we get

(4.42) lim sup
n→∞

〈p∗, p∗ − x2n+1〉 = max
z∈ωω(xn)

〈p∗, p∗ − z〉 ≤ 0.

Now from, (4.30), (4.41), (4.42), and Lemma 2.3, it follows that the sequence
{x2n} converges strongly to p∗ = PΩ(0).

Case 2: Suppose that there exists a subsequence {‖x2nm − p∗‖}∞m=0 ⊂ {‖x2n −
p∗‖}∞n=0 such that ‖x2nm − p∗‖ ≤ ‖x2nm+1 − p∗‖ for all m ≥ 1. For this case, we
define τ : N→ N by

τ(n) := max{k ≤ n : ‖x2k − p∗‖ ≤ ‖x2k+1 − p∗‖}.
Then, we have from Lemma 2.4 that τ(n) → ∞ as n → ∞ and ‖xτ(n) − p∗‖ ≤
‖xτ(n)+1 − p∗‖, so that we have from (4.27),
(4.43)

(1− θ2τ(n) − β2τ(n))θ2τ(n)‖v2τ(n) − x2τ(n)‖2 + θ2τ(n)
2− γ
γ
‖v2τ(n) − w2τ(n)‖2

≤
(
1− β2τ(n)+1

)
‖x2τ(n) − p∗‖2 − ‖x2τ(n)+2 − p∗‖2

+
[(

1− β2τ(n)+1 + θ2τ(n)+1α2τ(n)+1

)
β2τ(n) + β2τ(n)+1

]
‖p∗‖2

+ 2θ2τ(n)+1α2τ(n)+1‖x2τ(n)+1 − x2τ(n)‖2.
Following the same lines of proof as in Case 1, we infer from (4.43) that

lim
n→∞

‖v2τ(n) − x2τ(n)‖2 = 0,(4.44)

lim
n→∞

‖v2τ(n) − w2τ(n)‖2 = 0,(4.45)

lim sup
n→∞

〈p∗, p∗ − x2τ(n)+1〉 = max
z∈ωω(xτ(n))

〈p∗, p∗ − z〉 ≤ 0,(4.46)

and

(4.47)

‖x2τ(n)+1 − p∗‖2 ≤ (1− β2τ(n))‖x2τ(n) − p∗‖2

+ β2τ(n)

[
2‖x2τ(n) − v2τ(n)‖‖x2τ(n)+1 − p∗‖

+ 〈p∗, p∗ − x2τ(n)+1〉
]
.

Since ‖xτ(n) − p∗‖ ≤ ‖xτ(n)+1 − p∗‖, we have from (4.47) that

(4.48) ‖x2τ(n) − p∗‖≤2‖x2τ(n) − v2τ(n)‖‖x2τ(n)+1 − p∗‖+ 2〈p∗, p∗ − x2τ(n)+1〉.
Combininig (4.44), (4.46), and (4.48) yields

lim sup
n→∞

‖x2τ(n) − p∗‖2 ≤ 0,

and hence,
lim
n→∞

‖x2τ(n) − p∗‖2 = 0.
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From (4.47), we have

lim sup
n→∞

‖x2τ(n)+1 − p∗‖2 ≤ lim sup
n→∞

‖x2τ(n) − p∗‖2.

Thus
lim
n→∞

‖x2τ(n)+1 − p∗‖2 = 0.

Therefore, by Lemma 2.4, we obtain

0 ≤ ‖x2τ(n) − p∗‖ ≤ max
{
‖x2τ(n) − p∗‖, ‖x2n − p∗‖

}
≤ ‖x2τ(n)+1 − p∗‖ → 0.

Consequently, the sequence {x2n} converges strongly to p∗ = PΩ(0).
Now, we show the convergence of the sequence of odd terms {x2n+1}. Note that

by Case 1, since limn→∞ ‖x2n − p∗‖ exists and limm→∞ ‖x2nm − p∗‖ = 0, we get
that limn→∞ ‖x2n − p∗‖ = 0. Therefore, p∗ is unique.

It follows from (4.35), (4.39), the condition on θ2n+1, and α2n+1 that

lim
n→∞

(1− β2n+1)
α2n+1

β2n+1
‖x2n+1 − x2n‖ = 0.

Using similar arguments in obtaining (4.35), we have

lim
n→∞

‖x2n+1 − v2n+1‖ = 0.

To apply Lemma 2.3(ii), we use similar arguments as in proof of Case 1 to show
that

lim sup
n→∞

〈p∗, p∗ − x2n+1〉 = max
z∈ωω(xn)

〈p∗, p∗ − z〉 ≤ 0.

Hence, it follows from Lemma 2.3 that the sequence {x2n+1} converges strongly
to p∗ = PΩ(0), which is the minimum norm solution of the Inclusion Problem.

For second case, we suppose that there exists a subsequence {‖x2nm−p∗‖}∞m=0 ⊂
{‖x2n − p∗‖}∞n=0 such that ‖x2nm − p∗‖ ≤ ‖x2nm+1 − p∗‖ for all m ≥ 1. Following
similar argument as in the proof of Case 2 above, it can be shown that the se-
quence of odd terms {x2n+1} converges strongly to p∗ = PΩ(0). Thus, the sequence
{xn}∞n=0 converges strongly to p∗ = PΩ(0), and hence, the proof is complete. �

5. Applications

5.1. Application to image processing problems

Using known information from the contaminated signal/image to estimate the
original and clean signal/image is called the signal processing/image restoration
problem. This kind of problem can usually be expressed as the following linear
inverse problem:

b = Cx + w,

where C, x, b, and w represent degradation operator, unknown real image, con-
taminated image, and noise function, respectively. Regularization methods have
aroused considerable interest in many researchers for dealing with such problems.
In particular, the l1 regularization method considers finding the solution to the
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following problem:

min
x

{1

2
‖Cx− b‖2 + γ‖x‖1

}
,

where γ stands for the regularization parameter, and ‖x‖1 represents the sum of the
absolute values of the components of x. Set h(x) = 1

2‖Cx− b‖2 and g(x) = ‖x‖1,
then ∇h(x) = C∗(Cx− b) and thus it is a Lipschitz continuous with constant
L(h) = ‖C∗C‖. The proximal map of g(x) = γ‖x‖1 is expressed as proxλg(x) =

(I + λ∂g)−1 and it can be calculated by the following:

proxλg(x) = proxλγ‖·‖1(x) =
(

proxλγ|·|1(x1), . . . ,proxλγ|·|1(xn)
)

= (p1, . . . , pn),

where pk = sgn(xk) max{|xk|−λγ, 0} for 1, 2, . . . n. Set A = ∇h and B = ∂g, then
we immediately get the following result by Theorem 4.2.

Corollary 5.1. Let the mappings A, and B be defined above. Suppose that
Ω 6= ∅, and Assumption 3.2 holds. Let {xn} be a sequence generated by

Algorithm 5.2.

Initialization:
Choose the sequences {αn}, {θn}, and {βn} such that the conditions from As-
sumptions 3.2 hold and let λ1 > 0, µ ∈ (0, 1), and x1, x0 ∈ H.
Iterative Steps:
For xn−1 and xn ∈ H, choose α ∈ [0, 1) and αn such that 0 ≤ αn ≤ ᾱn, where

(5.1) ᾱn :=

min
{ 1

n2‖xn − xn−1‖
, α
}

if xn 6= xn−1,

α, otherwise.

Step 1. Compute

(5.2) wn =

{
xn, n = even,

xn + αn(xn − xn−1), n = odd,

and

(5.3) yn = proxλng(I − λn∇h)wn,

where

(5.4) λn+1 =

min
{ µ‖wn − yn‖
‖∇h(wn)−∇h(yn)‖

, λn

}
, ∇h(wn) 6= ∇h(yn),

λn, otherwise.

Step 2. Compute

dn = wn − yn − λn(∇h(wn∇h(yn)) for all n ≥ 1.

Step 3. Compute

(5.5) xn+1 = (1− θn − βn)xn + θnvn,
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where vn = wn − γηndn.
Update

(5.6) ηn =


〈wn − yn, dn〉
‖dn‖2

, dn 6= 0,

0, dn = 0.

Step 4.
Set n := n+ 1, and go back to Step 1.

Then, the iterative sequence {xn} presented above converges strongly to p∗ ∈ Ω,
where

‖p∗‖ = min{‖z‖ : z ∈ Ω}.

5.2. Application to split feasibility problems

Suppose that C andQ are nonempty closed convex subsets of real Hilbert spacesH1

and H2, respectively. The split feasibility problem (SFP) is described as follows:

find x∗ ∈ C such that Tx∗ ∈ Q,(5.7)

where T : H1 → H2 is a bounded linear operator. We also use Υ to represent the
solution set of (SFP) (5.7). Problem (5.7) appears in image reconstruction and
signal processing. From an optimization point of view, x∗ ∈ Υ if and only if x∗ is
a solution of the following minimization problem with zero optimal value:

min
x∈C

h(x) :=
1

2
‖Tx− PQTx‖2.

It should be noted that h is convex difference. Moreover, note that ∇h(x) =
T ∗(I − PQ)Tx and it is ‖T‖2-Lipschitz contiunuous monotone. Thus, x∗ solves
SFP (5.7) if and only if x∗ solves the following variational inclusion problem:

find x ∈ H1 such that 0 ∈ ∇h(x) + ∂δC(x),

where δC is the indicator function of C. In Theorem (4.2), choosing A = ∇h and
B = ∂δC , the we obtain following result.

Corollary 5.3. Let the mappings A and B be defined above. Suppose that
Υ 6= ∅ and the Assumption 3.2 hold. Let {xn} be a sequence generated by

Algorithm 5.4.

Initialization: Choose the sequences {αn}, {θn}, and {βn} such that the conditions
from Assumptions 3.2 hold and let λ1 > 0, µ ∈ (0, 1), and x1, x0 ∈ H.
Iterative Steps:
For xn−1 and xn ∈ H, choose α ∈ [0, 1) and αn such that 0 ≤ αn ≤ ᾱn where

(5.8) ᾱn :=

min
{ 1

n2‖xn − xn−1‖
, α
}

if xn 6= xn−1,

α, otherwise.
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Step 1. Compute

(5.9) wn =

{
xn, n = even,

xn + αn(xn − xn−1), n = odd,

and

(5.10) yn = PC(I − λn∇h)wn,

where

(5.11) λn+1 =

min
{ µ‖wn − yn‖
‖∇h(wn)−∇h(yn)‖

, λn

}
, ∇h(wn) 6= ∇h(yn),

λn, otherwise.

Step 2. Compute

dn = wn − yn − λn(∇h(wn)−∇h(yn)) for all n ≥ 1.

Step 3. Compute

(5.12) xn+1 = (1− θn − βn)xn + θnvn,

where vn = wn − γηndn.
Update

(5.13) ηn =


〈wn − yn, dn〉
‖dn‖2

, dn 6= 0,

0, dn = 0.

Step 4.
Set n := n+ 1, and go back to Step 1.

Then the iterative sequence {xn} presented above converges strongly to p∗ ∈ Υ,
where

‖p∗‖ = min{‖z‖ : z ∈ Υ}.

6. Numerical example

In this section, we provide some numerical examples occurring in infinite dimen-
sional spaces to show the advantages of our algorithm and compare them with
some known strongly convergent algorithms, including Tan Bing and Sun Young
Cho Algorithm 5.4 and Duong Viet Thong and Prasit Cholamjiak of [31] (Algo-
rithm 3.1). For easy referencing, we term Algorithm 1.1, and Algorithm 3.1 of
[31] as SUN and THONG, respectively. Numerical experiments were carried out
on MATLAB R2015a version. All programs ran on a 64-bit OS PC with Intel(R)
Core(TM) i7-3540M CPU @ 1.00GHz 1.19 GHz and 3GB RAM. All figures were
plotted using the log log plot command.

Example 6.1. Let H = L2([0, 1]) be endowed with inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt and ‖x‖ :=
(∫ 1

0

|x(t)|2dt
)1/2

for all x, y ∈ L2([0, 1]).
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Now, define the operator A,B : L2([0, 1])→ L2([0, 1]) by

Ax(t) =

∫ 1

0

(
x(t)−

( 2tset+s

e
√

e2 − 1

)
cosx(s)

)
ds+

2tet

e
√

e2 − 1
, x ∈ L2([0, 1]),

Bx(t) = max{0, x(t)}, t ∈ [0, 1].

Then A is Lipschitz continuous and monotone, and B is maximal monotone on
L2([0, 1]) (see [15]). The integrals were approximated using the trapz and int
command on MATLAB over the interval [0, 1]. The results of the experiment are
displayed in Table 1 and Figures 1, 2, and 3.

Table 1. Computational Results for Example 6.1.

Algorithms No. of Iterations γ ‖x101 − x100‖2 Time(secs)

Algorithm 3.1 1.0e+ 02 2.5e− 01 1.1671e− 04 71.4678

Thong 4.5432e− 04 74.2397

Sun 1.1566e− 04 75.6076

Algorithm 3.1 1.0e+ 02 1.0e− 01 1.3548e− 04 92.1468
Thong 4.7427e− 04 96.7780
Sun 2.2921e− 04 101.1242

Algorithm 3.1 1.0e+ 02 1.0e− 02 1.6913e− 04 109.0433

Thong 4.8065e− 04 119.2423
Sun 1.6927e− 04 124.0408

Table 2. Computational Results for Example 6.2.

Algorithms No. of Iterations γ ‖x101 − x100‖2 Time(secs)

Algorithm 3.1 1.0e+ 02 2.5e− 01 3.2715e− 06 9.2404e− 02
Thong 5.3333e− 04 6.5388e− 02

Sun 6.1917e− 04 7.0700e− 02

Algorithm 3.1 1.0e+ 02 1.0e− 01 5.5460e− 05 8.5640e− 02

Thong 5.0468e− 04 6.8222e− 02
Sun 1.8265e− 04 7.3701e− 02

Algorithm 3.1 1.0e+ 02 1.0e− 02 1.7413e− 04 9.5250e− 02

Thong 4.8400e− 04 6.7798e− 02

Sun 2.1891e− 04 7.2760e− 02

Example 6.2. In this example, we explore the proposed methods to solve the
split feasibility problem (SFP) in infinite-dimensional Hilbert spaces. For any
x, y ∈ L2([0, 1]), we consider H1 = H2 = L2([0, 1]) embedded with the inner prod-

uct 〈x, y〉 :
∫ 1

0
x(t)y(t)dt and the induced norm ‖x‖ :=

(∫ 1

0
|x(t)|2dt

) 1
2

. Consider

the following nonempty closed and convex subsets C and Q in L2([0, 1]),

C =
{
x ∈ L2([0, 1]) :

∫ 1

0

x(t)dt ≤ 1
}
,

Q =
{
x ∈ L2([0, 1]) :

∫ 1

0

|x(t)− sin(t)|2dt ≤ 16
}
.
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Figure 1. Example 6.1 with γ = 0.25.
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Figure 2. Example 6.1 with γ = 0.1.
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Figure 3. Example 6.1 with γ = 0.01.
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Figure 4. Example 6.2 with γ = 0.25.
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Figure 5. Example 6.2 with γ = 0.1.
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Figure 6. Example 6.2 with γ = 0.01.



88 C. C. OKEKE and A. U. BELLO

Let T : L2([0, 1]) → L2([0, 1]) be the Volterra integration operator, which is

given by (Tx)(t) =
∫ t

0
x(s)ds for all t ∈ [0, 1], x ∈ H. Then T is a bounded linear

operator (see [5, Exercise 20.16]) and its operator norm is ‖T‖ = 2
π . Moreover,

the adjoint T ∗ of T is defined by (T ∗x)(t) =
∫ 1

t
x(s)ds. Note that x(t) = 0 is a

solution of SFP (5.7), and thus the solution set of the problems is nonempty. On
the other hand, it is known that projections on set C and Q have display formulas,
that is,

PC(x) =

{
1− a+ x, a > 1,

x, a ≤ 1,
and PQ(x) =

{
sin(·) + 4(x−sin(·))√

b
, b > 16,

x, b ≤ 16,

where a :=
∫ 1

0
x(t)dt and b :=

∫ 1

0
|x(t)− sin(t)|dt.

Remark 6.3. From the results displayed in Tables 1 and 2, it is clear that
the fastness of the convergence of all the three algorithms heavily depends on
the value of γ. For instance, as the value of γ gets smaller, the time taken to
reach the specified tolerences or the number of iteration increases, likewise, the
slower it converges. In all cases, Algorithm 3.1 seems to perform better than its
counterparts. Finally, µ is taken to be 0.5 throughout the experiment.

7. Conclusion

A strong convergence alternated inertial iterative method for solving monotone in-
clusion problems has been studied in this research. Incorporation of an alternated
inertial extrapolation step in the method has shown a remarkable performance in
terms of speed and CPU time of the proposed method, in comparison with some
existing iterative methods in the literature. The stepsize is chosen self adaptively
in such a way that prior information of the Lipschitz constant of the operator is
not needed during implementation. Numerical experiments presented have shown
that the method is easy to implement and the results indicate that the method is
efficient and robust.
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4. Brézis H., Chapitre II. Operateurs maximaux monotones, North-Holland Math Studies,
1973(5) (1973), 19–51.

5. Bauschke H. H. and Combettes P. L., Convex Analysis and Monotone Operator Theory in
Hilbert Spaces, 2nd ed. New York, Springer, 2017.

6. Bot R. I. and Csetnek E. R., Convergence rates for forward-backward dynamical systems
associated with strongly monotone inclusions, J. Math. Anal. Appl. 457 (2018), 1135–1152.



ALTERNATING INERTIAL FOR MONOTONE INCLUSION 89

7. Cholamjiak W., Cholamjiak P. and Suantai S., An inertial forward-backward splitting method
for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl. 20 (2018),
Art. No. 42.

8. Cholamjiak P. and Shehu Y., Inertial forward-backward splitting method in Banach spaces
with application to compressed sensing, Appl. Math. 64 (2019), 409–435.

9. Combettes P. L. and Wajs V. R., Signal recovery by proximal forward-backward splitting,
Multiscale Model Simul. 4 (2005), 1168–1200.

10. Cuong T. H., Yao J. C. and Yen N. D., Qualitative properties of the minimum sum-of-squares
clustering problem, Optimization 69 (2020), 2131–2154.

11. Dong Q. L., Jiang D., Cholamjiak P. and Shehu Y., A strong convergence result involving
an inertial forward-backward algorithm for monotone inclusion problems, J. Fixed Point
Theory Appl. 19 (2017), 3097–3118.

12. Gibali A. and Thong D. V., Tseng typemethods for solving inclusion problems and its ap-
plications, Calcolo 55 (2018), Art No. 49.

13. Gibali A. and Hieu D. V., A new inertial double-projection method for solving variational
inequalities, J. Fixed Point Theory Appl. 21 (2019), Art. No. 97.

14. Gibali A., Thong D. V. and Vinh N. T., Three new iterative methods for solving inclusion
problems and related problems, Comput. Appl. Math. 39 (2020), Art. No. 187.

15. Hieu D. V., Anh P. K. and Muu L. D., Modified hybrid projection methods for finding
common solutions to variational inequality problems, Comput. Optim. Appl. 66 (2017),
75–96.

16. Lions P. L. and Mercier B., Splitting algorithms for the sum of two nonlinear operators,
SIAM J. Numer. Anal. 16 (1979), 964–979.

17. Lorenz D. A. and Pock T., An inertial forward-backward algorithm for monotone inclusion,
J. Math. Imaging Vision 51 (2015), 311–325.
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