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MINIMAL OUTER CONNECTED MONOPHONIC

SETS IN GRAPHS

K. GANESAMOORTHY and S. LAKSHMI PRIYA

Abstract. For a connected graph G of order at least two, an outer connected

monophonic set S in a graph G is called a minimal outer connected monophonic

set if no proper subset of S is an outer connected monophonic set of G. The upper
outer connected monophonic number m+

oc(G) of G is the maximum cardinality of

a minimal outer connected monophonic set of G. We determine bounds for it and
find the upper outer connected monophonic number of certain classes of graphs.

It is shown that for any three positive integers a, b, c with 3 ≤ a ≤ b ≤ c, there

is a connected graph G with m(G) = a,moc(G) = b,m+
oc(G) = c, where m(G) is

the monophonic number of a graph and moc(G) is the outer connected monophonic

number of a graph. Also, it is shown that for any three positive integers a, b, and

n with 3 ≤ a ≤ n ≤ b, there is a connected graph G with moc(G) = a,m+
oc(G) = b,

and a minimal outer connected monophonic set of cardinality n.

1. Introduction

By a graph G = (V,E), we mean a simple undirected connected graph, where V
is the set of vertices and E is the set of edges of G. The order and size of G are
denoted by p and q, respectively. For basic graph theoretic terminology we refer to
Harary [1, 9]. A vertex v of G is called an extreme vertex if the subgraph induced
by its neighbors is complete. A chord of a path P is an edge joining two non-
adjacent vertices of P . A path P is called a monophonic path if it is a chordless
path. A set S of vertices of G is a monophonic set of G if each vertex v of G lies
on an x− y monophonic path for some x and y in S. The minimum cardinality of
a monophonic set of G is the monophonic number of G and is denoted by m(G).
The monophonic number of a graph, algorithmic aspects of monophonic and its
related concepts were introduced and studied in [2, 3, 4, 10, 11, 14, 15]. A set
S of vertices in a graph G is said to be an outer connected monophonic set if S is
a monophonic set of G, and either S = V or the subgraph induced by V − S is
connected. The minimum cardinality of an outer connected monophonic set of G
is the outer connected monophonic number of G and is denoted by moc(G). The
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outer connected monophonic number of a graph was introduced in [5], and further
studied in [6, 7, 8].

For any two vertices u and v in a connected graph G, the monophonic distance
dm(u, v) from u to v is defined as the length of a longest u−v monophonic path in
G. The monophonic eccentricity em(v) of a vertex v in G is em(v) = max{dm(v, u) :
u ∈ V (G)}. The monophonic radius, radm(G) of G is radm(G) = min {em(v) :
v ∈ V (G)} and the monophonic diameter, diamm(G) of G is diamm(G) = max
{em(v) : v ∈ V (G)}. The monophonic distance was introduced in [12], and
further studied in [13]. These concepts have interesting applications in Channel
Assignment Problem in FM radio technologies. The monophonic matrix is used
to discuss different aspects of certain molecular graphs associated to the molecules
arising in special situations of molecular problems in theoretical chemistry.

The following theorems are further used in the sequel.

Theorem 1.1 ([14]). Each extreme vertex of a connected graph G belongs to
every monophonic set of G.

Theorem 1.2 ([14]). If T is a tree with k end-vertices, then m(T ) = k.

Theorem 1.3 ([5]). If T is a tree with k end-vertices, then moc(T ) = k.

Throughout this paper, G denotes a connected graph with at least two vertices.

2. Main results

Definition 2.1. An outer connected monophonic set S in a graph G is called
a minimal outer connected monophonic set if no proper subset of S is an outer
connected monophonic set of G. The upper outer connected monophonic number
m+

oc(G) of G is the maximum cardinality of a minimal outer connected monophonic
set of G.
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Figure 2.1: G

Example 2.2. For the graph G given in Figure 2.1 of order 7, it is clear that
no 2-element subset of V (G) is a monophonic set of G. The set S = {v2, v3, v5} is
a monophonic set of G and so m(G) = 3. Since the subgraph induced by V −S is
not connected, S is not an outer connected monophonic set of G. It is clear that
no 2-element or 3-element subset of V (G) is an outer connected monophonic set of
G. The minimal outer connected monophonic sets of G are S1 = {v1, v5, v6, v7},
S2 = {v1, v2, v3, v4, v5} and S3 = {v2, v3, v5, v6, v7}. By the definitions of the
outer connected monophonic number and the upper outer connected monophonic
number of a graph, we have moc(G) = 4 and m+

oc(G) = 5. Thus the monophonic
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Example 2.2. For the graph G given in Figure 2.1 of order 7, it is clear that
no 2-element subset of V (G) is a monophonic set of G. The set S = {v2, v3, v5} is
a monophonic set of G, and so m(G) = 3. Since the subgraph induced by V −S is
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not connected, S is not an outer connected monophonic set of G. It is clear that
no 2-element or 3-element subset of V (G) is an outer connected monophonic set of
G. The minimal outer connected monophonic sets of G are S1 = {v1, v5, v6, v7},
S2 = {v1, v2, v3, v4, v5}, and S3 = {v2, v3, v5, v6, v7}. By the definitions of the
outer connected monophonic number, and the upper outer connected monophonic
number of a graph, we have moc(G) = 4 and m+

oc(G) = 5. Thus the monophonic
number, the outer connected monophonic number and the upper outer connected
monophonic number of a graph are different.

An application point of view, Wireless Sensor Networks (WSN’s) is represented
as a graph G = (V,E), where each vertex is related to a sensor node and each edge
is a wireless communication link between sensor nodes. Each sensor node sends
and receives a message; and also performs some computation from its neighbors. In
WSN’s, we make a set of nodes S as an anchor node set such that any node on this
network lies on a monophonic path joining a pair of nodes in S and if the anchor
node set S fails, then all other nodes in the network are still able to communicate
with each other. An anchor node set S is called minimal if no proper subset of S is
an anchor node set in the given network. The problem is to identify the maximum
cardinality of a minimal anchor node set in the given network. Then the model of
this problem in WSN’s to find the upper outer connected monophonic number of
a network. Since no intervention is possible in monophonic paths, the maximum
cardinality of a minimal anchor node set involves in WSN’s is more secured.

Remark 2.3. Every minimum outer connected monophonic set of G is a min-
imal outer connected monophonic set of G and the converse need not be true.
For example, the graph G given in Figure 2.1, S2 = {v1, v2, v3, v4, v5} is a min-
imal outer connected monophonic set and it is not a minimum outer connected
monophonic set of G.

The following results are clear from the fact that each minimal outer connected
monophonic set is an outer connected monophonic set of G and every outer con-
nected monophonic set of G is a monophonic set of G, and also every monophonic
set of G contains its extreme vertices.

Remark 2.4. Each extreme vertex of a connected graph G belongs to every
minimal outer connected monophonic set of G.

Remark 2.5. For the complete graph Kp, moc(Kp) = m+
oc(Kp) = p.

Theorem 2.6. Let G be a connected graph with cut-vertices and let S be a
minimal outer connected monophonic set of G. If v is a cut-vertex of G, then
every component of G− v contains an element of S.

Proof. Suppose that there is a component G1 of G − v such that G1 contains
no vertex of S. Let u be a vertex in G1. Since S is a minimal outer connected
monophonic set of G, there exist vertices x, y ∈ S such that u lies on some x− y
monophonic path P : x = u0, u1, . . . u, . . . , un = y in G. Let P1 be the x − u
subpath of P and P2 be the u− y subpath of P . Since v is a cut-vertex of G, both
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P1 and P2 contain v so that P is not a path, which is a contradiction. Thus every
component of G− v contains an element of S. �

Theorem 2.7. For any connected graph G of order p, 2 ≤ m(G) ≤ moc(G) ≤
m+

oc(G) ≤ p. Moreover, moc(G) = p if and only if m+
oc(G) = p.

Proof. Any monophonic set needs at least two vertices, and so m(G) ≥ 2.
Since every outer connected monophonic set of G is a monophonic set of G,
m(G) ≤ moc(G). Since every minimal outer connected monophonic set of G
is an outer connected monophonic set of G, moc(G) ≤ m+

oc(G). Also, V (G) is
an outer connected monophonic set of G, it is clear that m+

oc(G) ≤ p. Thus
2 ≤ m(G) ≤ moc(G) ≤ m+

oc(G) ≤ p.
Let m+

oc(G) = p. Then S = V (G) is the unique minimal outer connected mono-
phonic set of G. Since no proper subset of S is an outer connected monophonic
set of G, it is clear that S is the unique minimum outer connected monophonic
set of G, and so moc(G) = p. The converse is clear. �

Remark 2.8. The bounds in Theorem 2.7 are sharp. By Theorem 1.2, any
non-trivial path Pn (n ≥ 2), m(Pn) = 2. By Remark 2.5, for the complete graph
Kp(p ≥ 2), m+

oc(Kp) = p. Also, all the inequalities in Theorem 2.7 can be strict.
For the graph G given in Figure 2.1, m(G) = 3, moc(G) = 4, and m+

oc(G) = 5.
Thus, we have 2 < m(G) < moc(G) < m+

oc(G) < p.

Theorem 2.9. If G is a connected graph of order p with moc(G) = p− 1, then
m+

oc(G) = p− 1.

Proof. If moc(G) = p − 1, then by Theorem 2.7 we have m+
oc(G) = p − 1 or

p. If m+
oc(G) = p, by Theorem 2.7, moc(G) = p, which is a contradiction. Hence

m+
oc(G) = p− 1. �
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set of G, it is clear that S is the unique minimum outer connected monophonic
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Remark 2.8. The bounds in Theorem 2.7 are sharp. By Theorem 1.2, any
non-trivial path Pn(n ≥ 2), m(Pn) = 2. By Remark 2.5, for the complete graph
Kp(p ≥ 2), m+

oc(Kp) = p. Also, all the inequalities in Theorem 2.7 can be strict.
For the graph G given in Figure 2.1, m(G) = 3, moc(G) = 4 and m+

oc(G) = 5.
Thus, we have 2 < m(G) < moc(G) < m+

oc(G) < p.

Theorem 2.9. If G is a connected graph of order p with moc(G) = p− 1 then
m+

oc(G) = p− 1.

Proof. If moc(G) = p − 1, then by Theorem 2.7 we have m+
oc(G) = p − 1 or

p. If m+
oc(G) = p, by Theorem 2.7 moc(G) = p, which is a contradiction. Hence

m+
oc(G) = p− 1. �
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Remark 2.10. The converse of Theorem 2.9 need not be true. For the graph G
given in Figure 2.2 of order 5, no 2-element subset of V (G) is an outer connected
monophonic set of G. It is clear that S = {v1, v2, v4} is an outer connected mono-
phonic set of G and so moc(G) = 3. The minimal outer connected monophonic
sets of G are S = {v1, v2, v4}, S1 = {v1, v3, v4, v5} and S2 = {v2, v3, v4, v5}. By
the definition of the upper outer connected monophonic number of a graph, we
have m+

oc(G) = 4 = p− 1.

Observation 2.11. The upper outer connected monophonic number of some
standard graphs:

• For any tree T with k end-vertices, moc(T ) = m+
oc(T ) = k.

• For the wheel Wn(n ≥ 5),moc(G) = m+
oc(G) = 2.

• For the star G = K1,p−1, moc(G) = m+
oc(G) = p− 1.

• For the complement of the cycle Cn(n ≥ 6),moc(C̄n) = m+
oc(C̄n) = 2.

Figure 2.2. G.

Remark 2.10. The converse of Theorem 2.9 need not be true. For the graph
G given in Figure 2.2 of order 5, no 2-element subset of V (G) is an outer connected
monophonic set of G. It is clear that S = {v1, v2, v4} is an outer connected mono-
phonic set of G, and so moc(G) = 3. The minimal outer connected monophonic
sets of G are S = {v1, v2, v4}, S1 = {v1, v3, v4, v5}, and S2 = {v2, v3, v4, v5}. By
the definition of the upper outer connected monophonic number of a graph, we
have m+

oc(G) = 4 = p− 1.
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Observation 2.11. The upper outer connected monophonic number of some
standard graphs:

• For any tree T with k end-vertices, moc(T ) = m+
oc(T ) = k.

• For the wheel Wn (n ≥ 5), moc(G) = m+
oc(G) = 2.

• For the star G = K1,p−1, moc(G) = m+
oc(G) = p− 1.

• For the complement of the cycle Cn (n ≥ 6), moc(C̄n) = m+
oc(C̄n) = 2.

3. Some realization results

In view of Theorem 2.7, we have the following realization result.

Theorem 3.1. For any three integers a, b, and c such that 3 ≤ a ≤ b ≤ c, there
is a connected graph G with m(G) = a, moc(G) = b, and m+

oc(G) = c.

Proof. We prove this theorem by considering four cases.
Case 1. 3 ≤ a = b = c.
Let G be any tree with a end-vertices. Then by Theorems 1.2, 1.3, and Observa-
tion 2.11, G has the desired properties.
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Case 2. 3 ≤ a < b = c . Let K1,4 be a star having the vertex set x, v1, v2, z1, z2
with x as the cut-vertex. The required graph G is obtained from the star K1,4

by adding b new vertices w1, w2, . . . , wb−a+2, z3, u1, u2, . . . , ua−3 and joining each
wi (1 ≤ i ≤ b − a+ 2) to the vertices v1 and v2; and joining the vertex z3 to the
vertices z1 and z2; and also joining each ui(1 ≤ i ≤ a− 3) to the vertex x, thereby
producing the graph G as shown in the Figure 3.1. Then S = {u1, u2, . . . , ua−3} is
the set of all extreme vertices of G. Since every outer connected monophonic set of
G is a monophonic set of G and by Theorem 1.1, Remark 2.4, every monophonic
set, every outer connected monophonic set and every minimal outer connected
monophonic set of G contain S. It is clear that S is not a monophonic set of G.
Also, for any two vertices u, v ∈ V (G)−S, S∪{u, v} is not a monophonic set of G.
Clearly, S1 = S∪{v1, v2, z3} is a minimum monophonic set of G and so m(G) = a.
Since the subgraph induced by V−S1 is not connected, S1 is not an outer connected
monophonic set of G. It is easy to observe that every minimum outer connected
monophonic set and every minimal outer connected monophonic set of G contain
{w1, w2, . . . , wb−a+2}. With this, it is clear that S2 = S∪{w1, w2, . . . , wb−a+2, z3}
is the unique minimal outer connected monophonic set of G, and hencemoc(G) = b
and m+

oc(G) = b.
Case 3. 3 ≤ a = b < c. Let G be the graph obtained from the path P3 : x, y, z

of order 3 by adding c new vertices v1, v2, . . . , vc−a+1, u1, u2, . . . , ua−1 and joining
each ui(1 ≤ i ≤ a− 1) with the vertices y and z of P3; and joining each vi(1 ≤ i ≤
c− a) to vj(i+1 ≤ j ≤ c− a+1); and also joining each vi(1 ≤ i ≤ c− a+1) with
the vertices x and z of P3, thereby producing the graph G as shown in Figure 3.2.
Then S = {u1, u2, . . . , ua−1} is the set of all extreme vertices of G. Since every
outer connected monophonic set of G is a monophonic set of G and by Theorem
1.1, every monophonic set and every outer connected monophonic set of G contain
S. It is clear that S is not a monophonic set of G. However, S1 = S ∪ {x} is a

Figure 3.1. G.

Case 2. 3 ≤ a < b = c .
Let K1,4 be a star having the vertex set x, v1, v2, z1, z2 with x as the cut-vertex.
The required graph G is obtained from the star K1,4 by adding b new vertices
w1, w2, . . . , wb−a+2, z3, u1, u2, . . . , ua−3 and joining each wi (1 ≤ i ≤ b− a + 2) to
the vertices v1 and v2, and joining the vertex z3 to the vertices z1 and z2, and also
joining each ui (1 ≤ i ≤ a − 3) to the vertex x, thereby producing the graph G
as shown in the Figure 3.1. Then S = {u1, u2, . . . , ua−3} is the set of all extreme
vertices of G. Since every outer connected monophonic set of G is a monophonic
set of G and by Theorem 1.1, Remark 2.4, every monophonic set, every outer
connected monophonic set, and every minimal outer connected monophonic set
of G contain S. It is clear that S is not a monophonic set of G. Also, for any
two vertices u, v ∈ V (G) − S, S ∪ {u, v} is not a monophonic set of G. Clearly,
S1 = S ∪ {v1, v2, z3} is a minimum monophonic set of G, and so m(G) = a. Since
the subgraph induced by V − S1 is not connected, S1 is not an outer connected
monophonic set of G. It is easy to observe that every minimum outer connected
monophonic set and every minimal outer connected monophonic set of G contains
{w1, w2, . . . , wb−a+2}. With this, it is clear that S2 = S∪{w1, w2, . . . , wb−a+2, z3}
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is the unique minimal outer connected monophonic set of G, and hence moc(G) = b
and m+

oc(G) = b.
Case 3. 3 ≤ a = b < c.
Let G be the graph obtained from the path P3 : x, y, z of order 3 by adding c new
vertices v1, v2, . . . , vc−a+1, u1, u2, . . . , ua−1 and joining each ui(1 ≤ i ≤ a− 1) with
the vertices y and z of P3; and joining each vi (1 ≤ i ≤ c − a) to vj (i + 1 ≤
j ≤ c − a + 1); and also joining each vi (1 ≤ i ≤ c − a + 1) with the vertices
x and z of P3, thereby producing the graph G as shown in Figure 3.2. Then
S = {u1, u2, . . . , ua−1} is the set of all extreme vertices of G. Since every outer
connected monophonic set of G is a monophonic set of G and by Theorem 1.1,
every monophonic set and every outer connected monophonic set of G contain
S. It is clear that S is not a monophonic set of G. However, S1 = S ∪ {x} is a
monophonic set of G, and so m(G) = a. Since the subgraph induced by V − S1 is
connected, S1 is an outer connected monophonic set of G, and so moc(G) = a.
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monophonic set of G and so m(G) = a. Since the subgraph induced by V − S1 is
connected, S1 is an outer connected monophonic set of G and so moc(G) = a.
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Next, we prove that m+
oc(G) = c. Clearly S2 = S ∪ {v1, v2, . . . , vc−a+1} is an

outer connected monophonic set of G. Now, we claim that S2 is a minimal outer
connected monophonic set of G. Assume, to the contrary, that S2 is not a minimal
outer connected monophonic set of G. Then there is a proper subset T of S2 such
that T is an outer connected monophonic set of G. Hence there exists a vertex
v ∈ S2 such that v /∈ T . By Remark 2.4, v 6= ui (1 ≤ i ≤ a − 1). Therefore
v = vj for some j(1 ≤ j ≤ c − a + 1). It is easily verified that the vertex vj
does not lies on any monophonic path joining a pair of vertices of T and so T is
not a monophonic set of G, which is a contradiction to T is an outer connected
monophonic set of G. Thus S2 is a minimal outer connected monophonic set of
G and so m+

oc(G) ≥ c. Next, we prove that m+
oc(G) = c. Let S3 be an outer

connected monophonic set of G with |S3| ≥ c + 1. Necessarily, S ⊆ S3. Observe
that for any v ∈ {v1, v2, . . . , vc−a+1}, (S2 − {v}) ∪ {z, y} is not a monophonic set.
Thus, S3 contains S1 or S2 as a proper subset, and so S3 is not a minimal outer
connected monophonic set of G. Therefore, m+

oc(G) = c.
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Case 4. 3 ≤ a < b < c. Let P3 : x, y, z be a path of order 3. Let G be the graph
obtained from P3 by adding c new vertices u1, u2, . . . , ua−2, w1, w2, . . . , wc−b+2,
v1, v2, . . . , vb−a and joining each ui(1 ≤ i ≤ a− 2) with the vertex y; and joining
each wi(1 ≤ i ≤ c− b+2) with the vertices x, y and z; and joining each vi(1 ≤ i ≤
b−a) with the vertices x and z, thereby producing the graph G as shown in Figure
3.3. Then S = {u1, u2, . . . , ua−2} is the set of all extreme vertices of G. Since every
outer connected monophonic set ofG is a monophonic set ofG and by Theorem 1.1,
every monophonic set and every outer connected monophonic set of G contain S.

Figure 3.2. G.

Next, we prove that m+
oc(G) = c. Clearly S2 = S ∪ {v1, v2, . . . , vc−a+1} is an

outer connected monophonic set of G. Now, we claim that S2 is a minimal outer
connected monophonic set of G. Assume to the contrary, that S2 is not a minimal
outer connected monophonic set of G. Then there is a proper subset T of S2 such
that T is an outer connected monophonic set of G. Hence there exists a vertex
v ∈ S2 such that v /∈ T . By Remark 2.4, v 6= ui (1 ≤ i ≤ a − 1). Therefore,
v = vj for some j (1 ≤ j ≤ c − a + 1). It is easily verified that the vertex vj
does not lie on any monophonic path joining a pair of vertices of T , and so T is
not a monophonic set of G, which is a contradiction to T is an outer connected
monophonic set of G. Thus S2 is a minimal outer connected monophonic set of
G, and so m+

oc(G) ≥ c. Next, we prove that m+
oc(G) = c. Let S3 be an outer

connected monophonic set of G with |S3| ≥ c + 1. Necessarily, S ⊆ S3. Observe
that for any v ∈ {v1, v2, . . . , vc−a+1}, (S2 − {v}) ∪ {z, y} is not a monophonic set.
Thus, S3 contains S1 or S2 as a proper subset, and so S3 is not a minimal outer
connected monophonic set of G. Therefore, m+

oc(G) = c.
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monophonic set of G and so m(G) = a. Since the subgraph induced by V − S1 is
connected, S1 is an outer connected monophonic set of G and so moc(G) = a.
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Figure 3.2: G

Next, we prove that m+
oc(G) = c. Clearly S2 = S ∪ {v1, v2, . . . , vc−a+1} is an

outer connected monophonic set of G. Now, we claim that S2 is a minimal outer
connected monophonic set of G. Assume, to the contrary, that S2 is not a minimal
outer connected monophonic set of G. Then there is a proper subset T of S2 such
that T is an outer connected monophonic set of G. Hence there exists a vertex
v ∈ S2 such that v /∈ T . By Remark 2.4, v 6= ui (1 ≤ i ≤ a − 1). Therefore
v = vj for some j(1 ≤ j ≤ c − a + 1). It is easily verified that the vertex vj
does not lies on any monophonic path joining a pair of vertices of T and so T is
not a monophonic set of G, which is a contradiction to T is an outer connected
monophonic set of G. Thus S2 is a minimal outer connected monophonic set of
G and so m+

oc(G) ≥ c. Next, we prove that m+
oc(G) = c. Let S3 be an outer

connected monophonic set of G with |S3| ≥ c + 1. Necessarily, S ⊆ S3. Observe
that for any v ∈ {v1, v2, . . . , vc−a+1}, (S2 − {v}) ∪ {z, y} is not a monophonic set.
Thus, S3 contains S1 or S2 as a proper subset, and so S3 is not a minimal outer
connected monophonic set of G. Therefore, m+

oc(G) = c.
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Case 4. 3 ≤ a < b < c. Let P3 : x, y, z be a path of order 3. Let G be the graph
obtained from P3 by adding c new vertices u1, u2, . . . , ua−2, w1, w2, . . . , wc−b+2,
v1, v2, . . . , vb−a and joining each ui(1 ≤ i ≤ a− 2) with the vertex y; and joining
each wi(1 ≤ i ≤ c− b+2) with the vertices x, y and z; and joining each vi(1 ≤ i ≤
b−a) with the vertices x and z, thereby producing the graph G as shown in Figure
3.3. Then S = {u1, u2, . . . , ua−2} is the set of all extreme vertices of G. Since every
outer connected monophonic set ofG is a monophonic set ofG and by Theorem 1.1,
every monophonic set and every outer connected monophonic set of G contain S.

Figure 3.3. G.

Case 4. 3 ≤ a < b < c. Let P3 : x, y, z be a path of order 3. Let G be the graph
obtained from P3 by adding c new vertices u1, u2, . . . , ua−2, w1, w2, . . . , wc−b+2,
v1, v2, . . . , vb−a, and joining each ui (1 ≤ i ≤ a − 2) with the vertex y, and
joining each wi (1 ≤ i ≤ c − b + 2) with the vertices x, y and z; and joining
each vi (1 ≤ i ≤ b − a) with the vertices x and z, thereby producing the graph
G as shown in Figure 3.3. Then S = {u1, u2, . . . , ua−2} is the set of all extreme
vertices of G. Since every outer connected monophonic set of G is a monophonic
set of G and by Theorem 1.1, every monophonic set and every outer connected
monophonic set of G contain S. It is clear that S is not a monophonic set of G.
Also, for any vertex u ∈ V (G)−S, S ∪{u} is not a monophonic set of G. Clearly,
S1 = S ∪ {x, z} is a minimum monophonic set of G, and so m(G) = a. Since
the subgraph induced by V − S1 is not connected, S1 is not an outer connected
monophonic set of G. It is easy to observe that every outer connected monophonic
set of G contains {v1, v2, . . . , vb−a} and since S2 = S1 ∪ {v1, v2, . . . , vb−a} is a
minimum outer connected monophonic set of G, it follows that moc(G) = b.

Clearly, the set T = S ∪ {w1, w2, . . . , wc−b+2, v1, v2, . . . , vb−a} is an outer con-
nected monophonic set of G. We show that T is a minimal outer connected mono-
phonic set of G. Assume to the contrary, that T is not a minimal outer connected
monophonic set of G, then there is a proper subset W of T such that W is an
outer connected monophonic set of G. Hence there exists a vertex say v ∈ T such
that v /∈ W . By Remark 2.4, v 6= ui for all i = 1, 2, . . . , a− 2. Then either v = vi
(1 ≤ i ≤ b − a) for some i, or v = wj (1 ≤ j ≤ c − b + 2) for some j. Clearly,
the vertex v does not lie on any monophonic path joining a pair of vertices of W ,
and so W is not a monophonic set of G, which is a contradiction to W is an outer
connected monophonic set of G. Thus T is a minimal outer connected monophonic
set of G and so m+

oc(G) ≥ |T | = c. Next, we prove that m+
oc(G) = c. Suppose that

m+
oc(G) ≥ c + 1. Let T ′ be a minimal outer connected monophonic set of G with
|T ′| ≥ c + 1. Then the set T ′ is of the form T ′ = T ∪ {x, y} or T ′ = T ∪ {y, z} or
T ′ = V (G). Since T is a proper subset of T ′, T ′ is not a minimal outer connected
monophonic set of G. Therefore, m+

oc(G) = c. �

Corollary 3.2. Let n be a positive integer. Then there exist connected graphs
G and H such that moc(G)−m(G) = n and m+

oc(H)−moc(H) = n.
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Theorem 3.3. For any three integers a, b, and n with 3 ≤ a ≤ n ≤ b, there is a
connected graph G with moc(G) = a, m+

oc(G) = b, and a minimal outer connected
monophonic set of cardinality n.

Proof. We prove this theorem by considering four cases.
Case 1. a = n = b.
Let G be any tree with a end-vertices. Then by Theorem 1.3 and Observation 2.11,
moc(G) = m+

oc(G) = a.
Case 2. a = n < b.
For the graph G given in Figure 3.2 of Theorem 3.1 (put c = b), it is proved
that moc(G) = a, m+

oc(G) = b, and S = {u1, u2, . . . , ua−1, x} is a minimal outer
connected monophonic set of cardinality n.
Case 3. a < n = b.
For the graph G given in Figure 3.2 of Theorem 3.1 (put c = b), it is proved
that moc(G) = a, m+

oc(G) = b and S = {u1, u2, . . . , ua−1, v1, v2, . . . , vb−a+1} is a
minimal outer connected monophonic set of cardinality n.
Case 4. a < n < b.
Let C : z1, z2, z3, z4 and C ′ : v1, v2, v3, v4 be two cycles, each of order 4. Let
H be the graph obtained from C and C ′ by identifying the vertex z1 in C and
the vertex v1 in C ′. Let G be the graph obtained from H by adding b new
vertices u1, u2, . . . , ua−2, y1, y2, . . . , yb−n+1, x1, x2, . . . , xn−a+1 and joining each ui

(1 ≤ i ≤ a − 2) with the vertex v1; and joining each yi (1 ≤ i ≤ b − n + 1) with
the vertices z2 and v2; and also joining each xi (1 ≤ i ≤ n − a + 1) with the
vertices z4 and v4, thereby producing the graph G as shown in Figure 3.4. Then
S = {u1, u2, . . . , ua−2} is the set of all extreme vertices of G. Since every outer
connected monophonic set of G is a monophonic set of G and by Theorem 1.1, every
outer connected monophonic set of G contains S. It is clear that S is not an outer
connected monophonic set of G. Also for any vertex u ∈ V (G)− S, S ∪ {u} is not
an outer connected monophonic set of G. It is easily verified that S1 = S∪{z3, v3}
is an outer connected monophonic set of G, and so moc(G) = a.
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S = {u1, u2, . . . , ua−2} is the set of all extreme vertices of G. Since every outer
connected monophonic set ofG is a monophonic set ofG and by Theorem 1.1, every
outer connected monophonic set of G contains S. It is clear that S is not an outer
connected monophonic set of G. Also for any vertex u ∈ V (G)− S, S ∪ {u} is not
an outer connected monophonic set of G. It is easily verified that S1 = S∪{z3, v3}
is an outer connected monophonic set of G and so moc(G) = a.
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ua−2

Figure 3.4: G

Next, we show that m+
oc(G) = b. Let M = S ∪ {y1, y2, . . . , yb−n+1, x1, x2,

. . . , xn−a+1}. It is clear that M is an outer connected monophonic set of G. We
claim that M is a minimal outer connected monophonic set of G. Assume that M
is not a minimal outer connected monophonic set of G. Then there is a proper sub-
set M1 of M such that M1 is an outer connected monophonic set of G. Hence there
exist a vertex w ∈ M such that w /∈ M1. By Remark 2.4, w 6= ui(1 ≤ i ≤ a− 2).
Then either w = yi(1 ≤ i ≤ b − n + 1) or w = xj(1 ≤ j ≤ n − a + 1). If
w = yi(1 ≤ i ≤ b − n+ 1) or w = xj(1 ≤ j ≤ n − a + 1) then the vertex w does
not lie on any x − z monophonic path for some x, z ∈ M1, which is a contradic-
tion to M1 is an outer connected monophonic set of G. Hence M is a minimal
outer connected monophonic set of G and so m+

oc(G) ≥ b. Now, we prove that
m+

oc(G) = b. Suppose that m+
oc(G) ≥ b + 1. Let X be a minimal outer connected

monophonic set of G with cardinality |X | ≥ b + 1. Then there exists atleast
one vertex, say, v ∈ X such that v /∈ M . Thus v ∈ {v1, z2, z3, z4, v2, v3, v4}. If
v ∈ {z2, z3, v2, v3}, thenX1 = (M−{y1, y2, . . . yb−n+1})∪{v} is an outer connected
monophonic set of G and also it is a proper subset of X , which is a contradiction
to X is a minimal outer connected monophonic set of G. If v ∈ {z4, v4}, then
X2 = (M − {x1, x2, . . . xn−a+1}) ∪ {v} is an outer connected monophonic set of
G and also it is a proper subset of X , which is a contradiction to X is a minimal
outer connected monophonic set of G. If v = v1, then the subgraph induced by
V −X is not connected, which is a contradiction to X is a minimal outer connected
monophonic set of G. Thus m+

oc(G) = b.
Finally we show that there is a minimal outer connected monophonic set of

cardinality n. Let T = S ∪ {z3, x1, x2, . . . , xn−a+1}. It is clear that T is an outer
connected monophonic set of G. We claim that T is a minimal outer connected
monophonic set ofG. Assume that T is not a minimal outer connected monophonic
set of G. Then there is a proper subset T1 of T such that T1 is an outer connected

Figure 3.4. G.

Next, we show that m+
oc(G) = b. Let M = S ∪ {y1, y2, . . . , yb−n+1, x1, x2,

. . . , xn−a+1}. It is clear that M is an outer connected monophonic set of G.
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We claim that M is a minimal outer connected monophonic set of G. Assume
that M is not a minimal outer connected monophonic set of G. Then there is
a proper subset M1 of M such that M1 is an outer connected monophonic set
of G. Hence there exists a vertex w ∈ M such that w /∈ M1. By Remark 2.4,
w 6= ui (1 ≤ i ≤ a − 2). Then either w = yi (1 ≤ i ≤ b − n + 1) or w = xj

(1 ≤ j ≤ n− a + 1). If w = yi (1 ≤ i ≤ b− n + 1) or w = xj (1 ≤ j ≤ n− a + 1),
then the vertex w does not lie on any x− z monophonic path for some x, z ∈M1,
which is a contradiction to M1 is an outer connected monophonic set of G. Hence
M is a minimal outer connected monophonic set of G, and so m+

oc(G) ≥ b. Now,
we prove that m+

oc(G) = b. Suppose that m+
oc(G) ≥ b+1. Let X be a minimal outer

connected monophonic set of G with cardinality |X| ≥ b+ 1. Then there exists at
least one vertex, say, v ∈ X such that v /∈M . Thus v ∈ {v1, z2, z3, z4, v2, v3, v4}. If
v ∈ {z2, z3, v2, v3}, then X1 = (M−{y1, y2, . . . yb−n+1})∪{v} is an outer connected
monophonic set of G and also it is a proper subset of X, which is a contradiction
to X is a minimal outer connected monophonic set of G. If v ∈ {z4, v4}, then
X2 = (M − {x1, x2, . . . xn−a+1}) ∪ {v} is an outer connected monophonic set of
G and also it is a proper subset of X, which is a contradiction to X is a minimal
outer connected monophonic set of G. If v = v1, then the subgraph induced by
V −X is not connected, which is a contradiction to X is a minimal outer connected
monophonic set of G. Thus m+

oc(G) = b.
Finally, we show that there is a minimal outer connected monophonic set of

cardinality n. Let T = S ∪ {z3, x1, x2, . . . , xn−a+1}. It is clear that T is an outer
connected monophonic set of G. We claim that T is a minimal outer connected
monophonic set of G. Assume that T is not a minimal outer connected monophonic
set of G. Then there is a proper subset T1 of T such that T1 is an outer connected
monophonic set of G. Hence there exist a vertex t ∈ T such that t /∈ T1. By
Remark 2.4 shows that t 6= ui (i = 1, 2, . . . , a − 2). Then either t = z3 or t = xj

(1 ≤ j ≤ n − a + 1). If t = z3 or t = xj (1 ≤ j ≤ n − a + 1), then the vertex t
is not an internal vertex of any x− y monophonic path for some x, y ∈ T1, which
is a contradiction to T1 is an outer connected monophonic set of G. Thus T is
a minimal outer connected monophonic set of G with cardinality n. Hence the
theorem. �

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [12] that
every two positive integers a and b with a ≤ b are realizable as the monophonic
radius and monophonic diameter, respectively, of some connected graph. This
theorem can also be extended so that the upper outer connected monophonic
number can be prescribed when radm(G) < diamm(G).

Theorem 3.4. For any three positive integers r, d, and k ≥ 2 with r < d, there
is a connected graph G such that radm(G) = r, diamm(G) = d, and m+

oc(G) = k.

Proof. Now, let r = 1 and d ≥ 2. Let G be the graph obtained from the cycle
Cd+2 : v1, v2, . . . , vd+2, v1 of order d+2 by adding k−2 new vertices u1, u2, . . . , uk−2
to Cd+2 and joining each vertex x ∈ {u1, u2, . . . , uk−2, v3, v4, . . . , vd+1} to the
vertex v1 of Cd+2. The graph G is shown in Figure 3.5. It is easily verified that
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1 ≤ em(u) ≤ d for any vertex u in G, em(v1) = 1 and em(v2) = em(vd+2) = d.
Thus radm(G) = r and diamm(G) = d. Let S = {u1, u2, . . . , uk−2, v2, vd+2} be the
set of all extreme vertices of G. By Remark 2.4, every minimal outer connected
monophonic set of G contains S. It is clear that S is the unique minimal outer
connected monophonic set of G, and so m+

oc(G) = |S| = k.
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monophonic set of G. Hence there exist a vertex t ∈ T such that t /∈ T1. By
Remark 2.4 shows that t 6= ui(i = 1, 2, . . . , a − 2). Then either t = z3 or t =
xj(1 ≤ j ≤ n − a + 1). If t = z3 or t = xj(1 ≤ j ≤ n − a + 1), then the vertex t
is not an internal vertex of any x − y monophonic path for some x, y ∈ T1, which
is a contradiction to T1 is an outer connected monophonic set of G. Thus T is
a minimal outer connected monophonic set of G with cardinality n. Hence the
theorem. �

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [12] that
every two positive integers a and b with a ≤ b are realizable as the monophonic
radius and monophonic diameter, respectively, of some connected graph. This
theorem can also be extended so that the upper outer connected monophonic
number can be prescribed when radm(G) < diamm(G).

Theorem 3.4. For any three positive integers r, d and k ≥ 2 with r < d, there
is a connected graph G such that radm(G) = r, diamm(G) = d and m+

oc(G) = k.

Proof. Now, let r = 1 and d ≥ 2. Let G be the graph obtained from the cycle
Cd+2 : v1, v2, . . . , vd+2, v1 of order d+2 by adding k−2 new vertices u1, u2, . . . , uk−2

to Cd+2 and joining each vertex x ∈ {u1, u2, . . . , uk−2, v3, v4, . . . , vd+1} to the
vertex v1 of Cd+2. The graph G is shown in Figure 3.5. It is easily verified that
1 ≤ em(u) ≤ d for any vertex u in G, em(v1) = 1 and em(v2) = em(vd+2) = d.
Thus radm(G) = r and diamm(G) = d. Let S = {u1, u2, . . . , uk−2, v2, vd+2} be
the set of all extreme vertices of G. By Remark 2.4, every minimal outer connected
monophonic set of G contains S. It is clear that S is the unique minimal outer
connected monophonic set of G and so m+

oc(G) = |S| = k.
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Figure 3.5: G

Now, let r ≥ 2 and r < d. Let H be the graph obtained from the cycle
Cr+2 : v1, v2, . . . , vr+2, v1 of order r+2 and the path Pd−r+1 : w0, w1, . . . , wd−r of
order d−r+1 by identifying the vertex vr+1 in Cr+2 and the vertex w0 in Pd−r+1;
and also joining each vertex wi(1 ≤ i ≤ d − r) in Pd−r+1 with the vertex vr+2 in
Cr+2. Now, let G be the graph obtained from H by adding k − 2 new vertices
u1, u2, . . . , uk−2 and joining each vertex ui(1 ≤ i ≤ k − 2) to the vertex vr+2 in

Figure 3.5. G.

Now, let r ≥ 2 and r < d. Let H be the graph obtained from the cycle
Cr+2 : v1, v2, . . . , vr+2, v1 of order r + 2 and the path Pd−r+1 : w0, w1, . . . , wd−r of
order d−r+1 by identifying the vertex vr+1 in Cr+2 and the vertex w0 in Pd−r+1,
and also joining each vertex wi(1 ≤ i ≤ d − r) in Pd−r+1 with the vertex vr+2 in
Cr+2. Now, let G be the graph obtained from H by adding k − 2 new vertices
u1, u2, . . . , uk−2 and joining each vertex ui (1 ≤ i ≤ k−2) to the vertex vr+2 in H.
The graph G is shown in Figure 3.6. It is easily verified that r ≤ em(x) ≤ d for any
vertex x in G. Also em(vr+2) = r and em(v1) = em(wd−r) = d. Thus radm(G) = r
and diamm(G) = d. Let S = {u1, u2, . . . , uk−2, wd−r} be the set of all extreme
vertices of G. By Remark 2.4, every minimal outer connected monophonic set of
G contains S. Clearly, S is not an outer connected monophonic set of G. It is
easily verified that S′ = S ∪ {v1} is a minimal outer connected monophonic set of
G, m+

oc(G) ≥ k. The minimal outer connected monophonic sets of G are S ∪ {x}
where x ∈ V (Cr+2)−{vr+1, vr+2}. By the definition of the upper outer connected
monophonic number of a graph G, we have m+

oc(G) = k. �

We leave the following problem as an open question.

Problem 3.5. For any three positive integers r, d, and k ≥ 2 with r = d,
does there exist a connected graph G with radm(G) = r, diamm(G) = d, and
m+

oc(G) = k?
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H . The graph G is shown in Figure 3.6. It is easily verified that r ≤ em(x) ≤ d
for any vertex x in G. Also em(vr+2) = r and em(v1) = em(wd−r) = d. Thus
radm(G) = r and diamm(G) = d.
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Figure 3.6: G

Let S = {u1, u2, . . . , uk−2, wd−r} be the set of all extreme vertices of G. By
Remark 2.4, every minimal outer connected monophonic set of G contains S.
Clearly, S is not an outer connected monophonic set of G. It is easily verified that
S′ = S∪{v1} is a minimal outer connected monophonic set of G, m+

oc(G) ≥ k. The
minimal outer connected monophonic sets of G are S ∪ {x} where x ∈ V (Cr+2)−
{vr+1, vr+2}. By the definition of the upper outer connected monophonic number
of a graph G, we have m+

oc(G) = k. �

We leave the following problem as an open question.

Problem 3.5. For any three positive integers r, d and k ≥ 2 with r = d,
does there exist a connected graph G with radm(G) = r, diamm(G) = d and
m+

oc(G) = k?
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