Acta Math. Univ. Comenianae 113
Vol. XCII, 2 (2023), pp. 113-123

JENSEN-TYPE INEQUALITIES
FOR LOG-CONVEX FUNCTIONS

H. KHODABAKHSHIAN, N. GOUDARZI AND R. SAFSHEKAN

ABSTRACT. The main result of this paper is to give refinement and reverse the
celebrated Jensen’s inequality. We also present a stronger estimate for the first
inequality in the Hermite-Hadamard inequality. We directly apply our results to
establish several operator inequalities.

1. INTRODUCTION

Let B (H) be the C*-algebra of all bounded linear operators on a Hilbert space H.
As customary, we reserve m, M for scalars and 14 for the identity operator on
H. A self-adjoint operator A is said to be positive (written A > 0) if (Az,z) >0
holds for all z € H, and also an operator A is said to be strictly positive (denoted
by A > 0) if A is positive and invertible. If A and B are self-adjoint, we write
A < Bincase 0 < B— A. The Gelfand map f(t) — f(A) is an isometrical
*-isomorphism between the C*-algebra C (o (A)) of continuous functions on the
spectrum o (A) of a selfadjoint operator A and the C*-algebra generated by A and
the identity operator 1y. If f,g € C (0 (A)), then f (t) > g(t) (t € o (A)) implies
that f (4) > g (4).

A linear map ®: B(#H) — B(K) is positive if ® (A) > 0 whenever A > 0. It
is said to be unital if ® (13y) = 1k, where 14 is the identity operator on Hilbert
space K. A continuous function f defined on the interval J C R is called an
operator convex function if f ((1 —v)A+vB) < (1 —v) f(A) +vf (B) for every
0 < v < 1 and for every pair of bounded self-adjoint operators A and B whose
spectra are both in J.

The well-known Jensen’s inequality states that if f is a convex function on the
interval [m, M], then

n n
1) f(zw) <3 wif (@)
i=1 i=1
for all a; € [m, M] and w; € [0,1] (i =1,...,n) with > ; w; = 1.
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A lot of literature is devoted to Jensen’s inequality concerning different gener-
alizations, refinements, and converse results; see, for example, [2, 6, 10].

Mond and Pecarié [5] gave an operator extension of the Jensen’s inequality as
follows: Let A € B(H) be a self-adjoint operator with o (A4) C [m, M], and let
f (t) be a convex function on [m, M]. Then for any unit vector = € H,

f({Az,z)) < (f (A) z, ).

Choi [1] showed that if f: J — R is an operator convex function, A is a self-
adjoint operator with the spectra in J, and ®: B(H) — B(K) is unital positive
linear mapping, then

(2) f(@(A4) <@ (f(A4)).

Though in the case of a convex function, the inequality (2) does not hold in general,
we have the following estimate [3, Lemma 2.1]:

3) fU®(A)z,z)) < (@ (f (A)) 2, )

for any unit vector x € K.

We here cite [4] and [11] as pertinent references to inequalities of types (2)
and (3). We refer the reader to [3, 7, 8] for other recent results treating the
Jensen’s operator inequality.

The current paper gives extensions of Jensen-type inequalities for logarithmi-
cally convex functions. Recall that the function f: J — (0, 00) is called a log-con-
vex if it satisfies the following inequality:

F(-tatm) <@ f e 0<t<).

Our results have been employed to obtain new estimates related to operator means
and Tsallis relative operator entropy.

2. MAIN RESULTS

For our purpose, we need the following well-known result. See, for example, [7].

Lemma 2.1. Let f: J — R be a convez function and let a,b € J. Then

f((l_t)a+tb)<(1—t)f(a)+tf(b)_2r(f(a)+f(b) _f<a+b)>

2 2
and
(1—t)f(a)+tf(b)<f((l—t)a+tb)+2R(f(a);rf(b) _f<a—2&-b)>7

where r = min {1 —¢,t}, R = max {1 —¢,t}, and 0 <t < 1.

In our first result, we present a refinement of the Jensen’s inequality for log-
convex functions.
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Theorem 2.2. Let f: J — (0,00) be a log-convex function and x1, 22, ..., T, €
J. If wy,wa, ..., wy, are positive numbers with Z?:l w; =1, then

f(Zwm:i iy /™ (2) 5 < H U ().

)<
i=1 \/f o wie ) Ty £ (a0) i=1
Ty /o (7 Ly

Proof. Assume that f is a convex function. From Lemma 2.1, we infer that

fla+t(d—a))— f(a) 2min {t,1 —t} [ f(a)+ f(b) a+b
; S G i)

Sfaﬂ_fm)_l—ut—u<fuo+fw)_f(a+b)>.

t 2 2

or

flat+t(b—a))—f(a)
t

Now by letting ¢t — 0, we get

W f@rf@o-asse-2 (LT (40)

Since for any convex function

f<a;b)§f(a);f(b)

)

we have

s f@o-a <o -2(H 0y (2] < o,

Putting a = > | w;z;, we get

f(iwm) +bf/(zn:wz'$i> - f’(iw%) Xn:wﬂi
i=1 i=1 i=1 i=1

SR (> ATTIES UYL

By replacing b = x;, and then multiplying by w; and summing from 1 to n, we get
—~ ~ f (i, wiza) + 350 wif (24)
f(;wzxz)§2wzf(xz)2< 5
_ sz (W)) <3 wif (@)
1=1

for any convex function f: J — R. If f is log-convex, then log f is convex.
Therefore, from the above inequality, we have

log f (i: wian) < z": w; log f (x:) — 2 (log S (i wiwi) + 300, wilog f (x:)
=1 7

2

szlogf(w)) < iwilogf(mi)
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or equivalently,

3 B | R e

2
_ 1ogﬁfwi (27:1 W;Uj + x))
=1
[, [ ()

\/f(zzlzl wiz) [I7_, f7i (=)
[T, f*e (M)

We deduce the desired result by applying exp from both sides of the above in-
equality. O

= log

s <log[[ 1" (@)

As a direct consequence of Theorem 2.2, we can obtain the following corollary.

Corollary 2.3. Let f: J — (0,00) be a log-convez function and x1, 2, . .., Ty €
J. If wy,wa, ..., w, are positive numbers with Z _yw; =1, then

f(Zw) Silg (M)
=1
< V P ) T, 72 e < T £ )
=1

Proof. Assume that f is a convex function. It follows from Theorem 2.2 (see
also [9]),

S LW ) + Y w; i
szf< e 1wjx]+x1>§f(zz_1wm)2z 1wf(:v)'

Now, by the Jensen’s inequality for the convex function, we have
n
1WiTj + T
() < (Bt
=

f (Z wﬂi) + Enj w; f () n
< —= 2 = < ;wzf(%)

Next, if f is log-convex, then

o 5 (D) < Zwl log f (W>
=1

1 n i Ti o 11 i =
. ogf@:lww);&_lw og f (xi) g;wilogf<xi>.
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As an alternative,
- L Y wiTy +
i=1 i=1
< log \/f (Zizl wle) Hi:l fr (i) < log H Fo(@a).
i=1

We deduce the desired result by applying exp from both sides of the above in-
equality. O

The following theorem gives a converse of the Jensen’s inequality for log-convex
functions.

Theorem 2.4. Let f: J — (0,00) be a differentiable log-convex function,
T1,T2, ..., Ty € J, and let wy,wa, ..., w, be positive numbers with Z?:l w; = 1.
Then

n . f(;::l wﬂ?i)

2
o \/H;l:1 i (%)/(E;lzl w7zl)
T, £ (%)

+ exp (é Wi J;c/ ((::;)) N i wi ]Jc: ((:)))

1=1

s(Fom) o (S-St

Proof. Assume that f is a convex function. As we have shown in the proof of
Theorem 2.2,

@+ f@o-a s -2(HOT 0 (410)),

2
By replacing b= >""" | w;z;, we get

1 (@) + Y waf (@)~ af (a)

- f(wa) o (f(a) +f(221;1wm) iy (a+z;;:1 wx)) S f(zij)

By setting a = x;, and then multiplying by w; and summing from 1 to n, we get

Zwif () + szxl Zwif/ (z:) — Zwmif/ (x3)
< f(lzn;wzxz) -2 <ZZL1 wif (i) "2' f (i, wiwi) — Zn:wlf<4xl + D Wit >>

n
- 2
i=1

n

< f(zwzfﬂz)

1=1
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Now, if f is log-convex, then the above inequality gives

szlogf acl +Z’LU1 logf 171 szxz Ing(ml))
< logf(Zwim)
L (Z?l wilog f (w:) +log f (37, wir:) Zwtlogf( i35 uum))

2
< logf(Zwi:ri).
=1

In other words,

) <
1Ongw1 xz Z I.L szxz

Z

f( > wixi)

< log =1 5 < logf(Zwi:ri)
\/l'[ f“’7(;rL)f E; 1wi$i)> i=1

EYED S NRYEr
[T, fi (’7

By applying exp, we infer that

| EAED

=1

i=1 I (5 ' (x
< exp | log + W;T5 — W;
(\/Hf i f (o 1w1x1)>2 ; [ () ; f(
I, foi (M)
f( i wﬂi) , n ,
= =1 +exp< ’U)i$if () — wif (xi)>
<\/H?=1 Fwies) f(Sr, wiws) ) 2 ; f(z:) ; f(xy)

A wiw;
[T, fve (7]2
n

<exp<logf<§:wﬂ%)Jrz:“”‘”z /((;JZ l_lw’§/(§l>
)

n

Z 7,

(

= f(Zwlxz> + exp (Zwm xz iwlf/ xl))
xz) i1 f xz)

This completes the proof of the theorem. O

We close this section by providing a new refinement and a reverse for the first
inequality in the Hermite-Hadamard inequality for log-convex functions.
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Theorem 2.5. Let f: J — (0,00) be a log-convex function and let a,b € J.
Then

b h 1-
f(a;_ )-l—exp(/H|2ttl|logf((1—t)a+tb)dt
0

1

t
L | 1—
+/1+|2t71| og f((1—t)b+ta)dt
0
1

_/ﬁlogf@(a—b) (t2—t)+a)dt>

1

<exp</logf((1—t)a+tb)dt>

0

and
1

exp (/logf((l —t)a+tb) dt)

0

Sf<a—2i—b) +eXp</1112t|10gf(2(a_b) (t2_t)+a)dt
0

_/Mlogf((l—t)aﬂb)dt—/11’52t|10gf((1—t)b+ta)dt>.
0 0

Proof. We prove the first inequality. Assume that f is a convex function. It
follows from Lemma 2.1 that

f(a+b> < fla)+f(®) 1

! O (-0 @ + )= F (= a+ ).

Now, by replacing a = (1 —t)a +tb and b = (1 —t) b+ ta, we get
f(a+b) < fF(l—=t)a+th) + f((1 —t)b+ta)

2 - 2
(5) —%((1—t)f((1—t)a+tb)
FE (1= )b+ta) = [ (2(a—b) (P = 1) +a) ).
Thus,
a+b f((1=t)a+1tb)+ f((1—t)b+ ta)
f( : )s !
- (%f((l—t)a—&-tb)—&—ﬁf((l—t)b—kta)

,ﬁf@(afb) (tz—t)+a)).
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By taking integral over 0 < ¢ < 1, we get

f(a;b> S/lf((l—t)a—&—tb)dt
0

1 1
1t t

i (/Hpt_ufm‘”““")d”/mm““‘”““‘)d’*
0 0

1

_/ﬁf@(a—b) (tz—t)+a)dt>.

0

Next, if f is log-convex, then we get

1
a+b 1-—t
0

1

t
+/m10gf((1*t)b+ta)dt
0

[N

7/ﬁlogf(2(afb) (t* —t) +a)dt

0
1

S/logf((lft)athb)dt.

0
By applying exp, we obtain

1

f(“”) +exp</1_tlogf((1—t)a+tb)dt

2 T+2t— 1

1

t
0
1

,/ﬁlog]‘@(afb) (tzt)+a)dt>

1

Sexp(/logf((lt)athb)dt).

0

We prove the second inequality. Assume that f is a convex function. By
Lemma 2.1, we have

f(a);'f(b)§f<a-2H)>+21T((1_t)f(a)+tf(b)—f((1—t)a+tb)).
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Therefore,

/f((l—t)a+tb)dt

atb\ [ 1-t
Sf( 2 )+/1,‘1,2t‘f((1—t)a+tb)dt
0

1 1

+/ﬁf((l_t)b—'_m)_/ﬁf(z(a—b)(t2—t)+a)dt,

0 0

If f is log-convex, then the above inequality implies
1

/logf((l—t)a+tb)dt

0

1
b 1 2
0

1 1

11—t t
_/mlogf((l—t)a‘f'tb)dt—/mlogf((l—t)b—l—ta)dt.
Y 0

Now, if we apply exp, we infer that
1

exp (/logf((lt)a+tb)dt>

0

1
§f<a;b)+eXp(/1_|11_2t|10gf(2(a—b)(t2_t)+a)dt
0

1 1

1—-1t t
0 0

as desired. 0

3. APPLICATIONS

Lemma 2.1 is a powerful tool for obtaining inequalities related to convex functions.
In the following, we give examples showing how Lemma 2.1 affects getting operator
inequalities.

For positive and invertible operators A, B € B(H), define the geometric mean
as

1 1 1 t 1
A#,B = A3 (ATBA*E) AT (0<t<1).
Let € H be a unit vector. The function f (¢t) = (Af; Bz, ) is a convex function
on [0, 1] (see [7]).
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e It follows from the inequality (5) that

(©) f@) SW_i((1_t)f(t)+tf(1_t)_f(2(t_t2))),

provided that f: J — R is a convex function and R=max {¢,1 — ¢} with 0<t<1.
The first inequality in Lemma 2.1 ensures that

LOLIO <7 (S5) 4 5 (=07 @417 @) = £ = Dat ),
where » = min {¢,1 — t}. By replacing a = (1 —t)a+tb and b= (1 — t) b+ ta, we
get

f((T—=t)a+th)+ f((1—t)b+ta)

2
<f(“;b) b (= F(@-natm

Htf (1 —t)b+ta) — £ (2(a—b) (2 —1) +a)>7
which is an interesting inequality in itself. The above inequality implies

) W<f<;>+21r((1—t)f(t)+tf(1—t)—f(2(t_t2))).

Thus, by (6) and (7), we have

ABL A=D1 (1 1) A28+ 1481 B At B) < AP

Al B+ A B 1
< MBI (1 1) AtuB + 481 B — Atagr—in)B)
where 7 = min{¢,1 —¢}, R = max{t,1 —t}, and 0 < ¢ < 1. Notice that, in
general, we have

Aﬁng; (0<t<1).

e By Lemma 2.1, we can write

<1—t>f<o>+tf<1>—23(fw—f(;))
<f(@)
<070+ -2 (FOIE - (3)).

which in turn demonstrates that
A+ B

(1—t)A+tB—2R< —AﬁB><AﬁtB

A+ B
2

g(lt)A+tBQT< AjjB).
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Consequently,

B_A—g(A+B—2(AﬁB))STt(A\B)
gB—A—%(AJrB—?(AﬁB)),

where

A4,B— A

T; (A|B) = P

0<t<1)

is called the operator Tsallis relative operator entropy.

10.

11.
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