
Acta Math. Univ. Comenianae
Vol. XCI, 4 (2022), pp. 365–376

365

ROUGH STATISTICAL CONVERGENCE OF COMPLEX

UNCERTAIN TRIPLE SEQUENCE

Ö. KİŞİ and M. GÜRDAL

Abstract. We investigate the rough statistical convergence of complex uncertain
triple sequences in this research. We show three forms of rough statistically con-

vergent complex uncertain triple sequences and rough λ3-statistical convergence in
measure, as well as other fundamental features.

1. Introduction

Zygmund [33] used the term “almost convergence” to describe the concept of
statistical convergence. It was formally presented by Fast [12]. Later the idea was
associated with summability theory by Fridy [14] and many others [1, 3, 4, 12,
13, 14, 15, 16, 17, 19, 20, 21, 22, 30, 31].

The theory of uncertainty plays a vital role not only in pure mathematics.
The majority of human decisions are made in the face of uncertainty. A specific
sort of mathematical measure can be used to represent the performance of an
uncertainty. Fuzziness is another paradigm for uncertainty pioneered by Zadeh
[32] in 1965 using membership functions. Fuzzy set theory and probability the-
ory are undeniably valuable tools for dealing with uncertainty. However, in real
life, natural language expressions such as “middle age”, “about 30 kilometers”,
“about 15 degrees Celsius”, and “roughly 6 kilograms” are commonly employed
to represent imperfect knowledge or facts. But multiple studies have demon-
strated that such utterances are neither random nor fuzzy. These facts encourage
the development of uncertainty theory as an axiomatic mathematics branch for
representing human uncertainty. To model uncertainty, Liu [25] established an
uncertainty theory that is a branch of mathematics based on normality, mono-
tonicity, self-duality, countable subadditivity, and product measure axioms. Liu
[25] defined the concept of uncertain variables as a function from a measurable
space to R. If real numbers are rebuilt with a set of complex numbers, it is named
as complex uncertain variable which was worked by Peng [26]. Recently, various

Received April 24, 2022; revised October 5, 2022.
2020 Mathematics Subject Classification. Primary 40A35.
Key words and phrases. Statistical convergence; λ-statistical convergence; rough convergence;

uncertain sequence.
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researchers have also done significant studies based on complex uncertain vari-
ables, see, [6, 7, 8, 9, 10, 11, 27, 28, 29]. The conception of rough convergence
was first investigated by Phu [23] in finite-dimensional normed spaces. Phu [24]
expanded the results given in [23] to infinite-dimensional normed spaces. In [2],
Aytar investigated rough statistical convergence. The notion of λ-statistical con-
vergence was examined by Mursaleen [18]. Das et al. [5] expanded these ideas in
2015, including rough λ-statistical convergence in probability. For the purpose of
delve deeper into uncertainty theory, we defined rough statistical convergence of
complex uncertain triple sequences and worked on some convergence conceptions
such as rough statistical convergence in measure, rough λ3-statistical convergence
in measure, rough converges in distribution, and rough statistical convergence in
mean of complex uncertain triple sequences, obtaining some inter-relationships
between them. In the entire paper, let r be a positive, non-negative real number
and ($pqr) be a complex uncertain triple sequence.

2. Main results

Definition 2.1. A complex uncertain triple sequence ($pqr) is called to be
rough statistical (rst) convergent almost surely to $ with roughness degree r
provided that for any event Λ with M(Λ) = 1, so that

δ
(
(p, q, r) ∈ N3 : ‖$pqr(γ)−$(γ)‖ ≥ r + σ

)
= 0

for each γ ∈ Λ. When the above equation supplies, $ is a rough statistical limit
point of {$pqr}, which is generally no more unique. Hence, we contemplate r-sta-
tistical limit set of {$pqr} determined by

st-LIMr$pqr :=
{
$ : $pqr

rst−→ $
}
.

Example 2.2. Take into account the uncertainty space (Γ,L,M). It becomes
Γ = {γ1, γ2, . . . } with M(Λ) =

∑
γp,γq,γr∈Λ

2−(p+q+r). We determine a complex

uncertain variable by

$pqr(γ) =

{
i · (−1)p+q+r when γ = γp+q+r,
0 otherwise,

for p 6= k2, q 6= l2, r 6= m2 and

$pqr(γ) =

{
i · (p+ q + r) when γ = γp+q+r,
0 otherwise,

for p = k2, q = l2, r = m2 and $ = 0. Then, $pqr
rst−→ $ where

st− LIMr$pqr =

{
∅ for r < 1,
$i, $ ∈ [1− r, r − 1] for r ≥ 1.

Additionally, we get that the sequence ($pqr) is not rough convergent a.s. to $,
howewer, it is rst-convergent a.s. to $ for any r ≥ 1.
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Theorem 2.3.

(i) When $pqr
rst a.s.−→ $, then β$pqr

rst a.s.−→ β$, where β ∈ C.
(ii) When $pqr

rst a.s.−→ $ and ϑpqr
rst a.s.−→ ϑ, then β$pqr + βϑpqr

rst a.s.−→ $ + ϑ.

Proof. It is obvious, so omitted. �

Theorem 2.4. The r-statistical limit set of a complex uncertain triple sequence
is convex.

Proof. Presume that $0, $1 ∈ st-LIMr$pqr for the complex uncertain triple
sequence ($pqr), and let σ > 0 be given. Determine

T1 :=
{

(p, q, r) ∈ N3 : ‖$pqr −$0‖ ≥ r + σ
}

and
T2 :=

{
(p, q, r) ∈ N3 : ‖$pqr −$1‖ ≥ r + σ

}
.

Since $0, $1 ∈ st-LIMr$pqr, we get δ(T1) = δ(T2) = 0. So, we acquire

‖$pqr − [(1− τ)$0 + τ$1]‖ = ‖(1− τ) ($pqr −$0) + τ ($pqr −$1)‖ < r + σ

for all (p, q, r) ∈ T c1 ∩ T c2 and every τ ∈ [0, 1]. Since δ (T c1 ∩ T c2 ) = 1, we obtain

δ
{

(p, q, r) ∈ N3 : ‖$pqr − [(1− τ)$0 + τ$1]‖ ≥ r + σ
}

= 0,

namely, [(1− τ)$0 + τ$1] ∈ st-LIMr$pqr, which gives the convexity of the set
st-LIMr$pqr. �

Definition 2.5. A sequence ($pqr) is named to be rough statistical convergent
in measure to $ with roughness degree r provided that for each σ, κ > 0,

δ
{

(p, q, r) ∈ N3 :M{γ : ‖$pqr(γ)−$(γ)‖ ≥ κ} ≥ r + σ
}

= 0

for each γ ∈ Λ. We write $pqr
r−SUM−→ $.

Example 2.6. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

2(p+ q + r) + 1
when sup

γp+q+r∈Λ

p+ q + r

2 (p+ q + r) + 1
< 0.5,

1− sup
γp+q+r∈Λc

p+ q + r

2(p+ q + r) + 1
when sup

γp+q+r∈Λc

p+ q + r

2(p+ q + r) + 1
< 0.5,

0.5 otherwise,

and think about the uncertain variable ($pqr) defined by

$pqr(γ) =

{
i · (p+ q + r) when γ = γp+q+r,
0 otherwise,

for p = k2, q = l2, r = m2, and $pqr(γ) = 0, for p 6= k2, q 6= l2, r 6= m2. Also take
$ ≡ 0. Then, we obtain

δ
{

(p, q, r) ∈ N3 :M{γ : ‖$pqr(γ)−$(γ)‖ ≥ κ} ≥ r + σ
}

= 0

for r ≥ 0. This demonstrates that ($pqr) is rst-convergent in measure to $ for
r ≥ 0. In addition, for r ∈

[
0, 1

2

)
, the sequence ($pqr) is not rough convergent in

measure to $, howewer it is rst-convergent in measure to $.
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Theorem 2.7. When $pqr
r1−SUM−→ $1 and $pqr

r2−SUM−→ $2, then
M{‖$1 −$2‖ ≥ r1 + r2} = 0.

Proof. Assume that σ, κ are any two R+ and take

(u, v, w) ∈
{

(p, q, r) ∈ N3 :M
(
‖$pqr −$1‖ ≥ r1 +

σ

2

)
<
κ

2

}
∩
{

(p, q, r) ∈ N3 :M
(
‖$pqr −$2‖ ≥ r2 +

σ

2

)
<
κ

2

}
(because the asymptotic density of both sets is equal to one, the existence of
(u, v, w) is assured). So,

M (‖$1 −$2‖ ≥ r1 + r2 + σ)

≤M
(
‖$pqr −$1‖ ≥ r1 +

σ

2

)
+M

(
‖$pqr −$2‖ ≥ r2 +

σ

2

)
< κ.

This means that M{‖$1 −$2‖ ≥ r1 + r2} = 0. �

Theorem 2.8.

(i) $pqr
r1−SUM−→ $ ⇔ $pqr −$

r1−SUM−→ 0.

(ii) $pqr
r−SUM−→ $ ⇔ α$pqr

r−SUM−→ α$, where α ∈ C.

(iii) $pqr
r1−SUM−→ $ and νpqr

r2−SUM−→ ν ⇒ $pqr + νpqr
(r1+r2)−SUM−→ $ + ν.

(iv) $pqr
r1−SUM−→ $ and νpqr

r2−SUM−→ ν ⇒ $pqr − νpqr
(r1+r2)−SUM−→ $ − ν.

(v) $pqr
r−SUM−→ $, then for all σ > 0, there is a (k, l,m) ∈ N × N × N so that

for any κ > 0,

lim
u,v,w→∞

1

uvw
|{p ≤ u, q ≤ v, r ≤ w :M (‖$pqr −$klm‖ ≥ 2r + σ) ≥ κ}| = 0.

Proof. Assume that σ, κ be any two R+. Then:
(i) The proof is self-evident, thus it is removed.
(ii) When α = 0, then the claim is obvious. So, presuming α 6= 0, then{

(p, q, r) ∈ N3 :M (‖α$pqr − α$‖ ≥ |α| r + σ) ≥ κ
}

=
{

(p, q, r) ∈ N3 :M
(
‖$pqr −$‖ ≥ r +

σ

|α|

)
≥ κ

}
.

As a result, α$pqr
r−SUM−→ α$, where α ∈ C.

(iii)

M (‖($pqr + νpqr)− ($ + ν)‖ ≥ r1 + r2 + σ)

=M (‖($pqr −$) + (νpqr − ν)‖ ≥ r1 + r2 + σ)

≤M
(
‖$pqr −$‖ ≥ r1 +

σ

2

)
+M

(
‖νpqr − ν‖ ≥ r2 +

σ

2

)
.
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This gives{
(p, q, r) ∈ N3 :M (‖($pqr + νpqr)− ($ + ν)‖ ≥ r1 + r2 + σ) ≥ κ

}
⊆
{

(p, q, r) ∈ N3 :M
(
‖$pqr −$‖ ≥ r1 +

σ

2

)
≥ κ

2

}
∪
{

(p, q, r) ∈ N3 :M
(
‖νpqr − ν‖ ≥ r2 +

σ

2

)
≥ κ

2

}
.

Hence, $pqr + νpqr
(r1+r2)−SUM−→ $ + ν.

(iv) Similar to the preceding evidence, and hence omitted.
(v) Select (k, l,m) ∈ N×N×N to be such thatM

(
‖$klm −$‖ ≥ r + σ

2

)
≥ κ

2
(the existence of (k, l,m) is ensured). The assertion is therefore obvious from the
inequality

M (‖$pqr −$klm‖ ≥ 2r+σ) ≤M
(
‖$pqr −$‖ ≥ r+

σ

2

)
+M

(
‖$klm −$‖ ≥ r+

σ

2

)
≤ κ

2
+M

(
‖$pqr −$‖ ≥ r+

σ

2

)
.

Hence, we obtain

lim
u,v,w→∞

1

uvw
|{p ≤ u, q ≤ v, r ≤ w :M (‖$pqr −$klm‖ ≥ 2r + σ) ≥ κ}| = 0. �

Theorem 2.9. Rough statistical convergence in measure does not mean rough
statistical convergence a.s.

Example 2.10. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

5(p+ q + r) + 1
when sup

γp+q+r∈Λ

p+ q + r

5(p+ q + r) + 1
<

1

5
,

1− sup
γp+q+r∈Λc

p+ q + r

5(p+ q + r) + 1
when sup

γp+q+r∈Λc

p+ q + r

5 (p+ q + r) + 1
<

1

5
,

0.5 otherwise,

and the uncertain variable ($pqr) described by

$pqr(γ) =

{
i · (p+ q + r)3 when γ = γp+q+r,
0 otherwise,

for p, q, r = 1, 2, 3, . . . . Also take $ ≡ 0. Then, for any κ > 0, we obtain

M{γ : ‖$pqr(γ)−$(γ)‖ ≥ κ} =M{γp+q+r} =
p+ q + r

5(p+ q + r) + 1
.

The sequence ($pqr) is thus rst-convergent to $ for r ≥ 1
5 . However, it is not

rst-convergent a.s. to $.

Definition 2.11. A sequence ($pqr) is called to be rough λ3-statistical con-
vergence in measure to $ with roughness degree r provided that for σ, κ > 0,

lim
k,l,m→∞

1

λklm
|{p ∈ Ik, q ∈ Jl, r ∈ Km :M (‖$pqr −$‖ ≥ r + σ) ≥ κ}| = 0,

where Ik = [k − λk + 1, k], Jl = [l − λl + 1, l], Km = [m− λm + 1,m]. We write

$pqr

r−SU
λ3−→ $ in this situation.
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Definition 2.12. If

lim
k,l,m→∞

1

λklm

∑
p∈Ik,q∈Jl,r∈Km

M (‖$pqr −$‖ ≥ r + σ) = 0,

then a complex uncertain sequence ($pqr) is called to be rough (V, λ)-summable in

measure to $ with roughness degree r. We write $pqr
r−[V,λ]M−→ $ in this situation.

Theorem 2.13. The following are identical for any complex uncertain sequence
($pqr).

(i) $pqr

r−SU
λ3−→ $.

(ii) $pqr
r−[V,λ]M−→ $.

Proof. (i) ⇒ (ii): Assume that $pqr

r−SU
λ3−→ $. Then, we can write

1

λklm

∑
p∈Ik,q∈Jl,r∈Km

M (‖$pqr −$‖ ≥ r + σ)

=
1

λklm

∑
p∈Ik,q∈Jl,r∈Km

M(‖$pqr−$‖≥r+σ)≥κ2

M (‖$pqr −$‖ ≥ r + σ)

+
1

λklm

∑
p∈Ik,q∈Jl,r∈Km

M(‖$pqr−$‖≥r+σ)<κ2

M (‖$pqr −$‖ ≥ r + σ)

≤ 1

λklm

∣∣∣{p ∈ Ik, q ∈ Jl, r ∈ Km :M (‖$pqr −$‖ ≥ r + σ) ≥ κ

2

}∣∣∣+
κ

2
.

As a result, we get $pqr
r−[V,λ]M−→ $.

(ii) ⇒ (i): Now, presume that condition (ii) supplies. Then∑
p∈Ik,q∈Jl,r∈Km

M (‖$pqr −$‖ ≥ r + σ)

≥
∑

p∈Ik,q∈Jl,r∈Km
M(‖$pqr−$‖≥r+σ)≥κ

M (‖$pqr −$‖ ≥ r + σ)

≥ κ |{p ∈ Ik, q ∈ Jl, r ∈ Km :M (‖$pqr −$‖ ≥ r + σ) ≥ κ}| .

Therefore,

1

λklm

∑
p∈Ik,q∈Jl,r∈Km

M (‖$pqr −$‖ ≥ r + σ)

≥ 1

λklm
|{p ∈ Ik, q ∈ Jl, r ∈ Km :M (‖$pqr −$‖ ≥ r + σ) ≥ κ}| .

As a result, we get $pqr

r−SU
λ3−→ $. �



ROUGH STATISTICAL CONVERGENCE 371

Definition 2.14. Assume that Φ,Φ1,Φ2, . . . be the complex uncertainty dis-
tributions of complex uncertain variables $,$pqr, respectively, where p, q, r ∈ N.
A sequence ($pqr) is defined as rough statistical convergence in distribution to $
with roughness degree r if for σ > 0,

δ
(
(p, q, r) ∈ N3 : ‖Φpqr(y)− Φ(y)‖ ≥ r + σ

)
= 0

for each γ ∈ Λ and for all y at which Φ(y) is continuous.

Example 2.15. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

3(p+ q + r) + 1
when sup

γp+q+r∈Λ

p+ q + r

3(p+ q + r) + 1
<

1

3
,

1− sup
γp+q+r∈Λc

p+ q + r

3(p+ q + r) + 1
when sup

γp+q+r∈Λc

p+ q + r

3 (p+ q + r) + 1
<

1

3
,

0.5 otherwise,

and the uncertain variable ($pqr) be described by

$pqr(γ) =

{
i · (p+ q + r)2 when γ = γp+q+r,
0 otherwise,

for p = k2, q = l2, r = m2, and $pqr(γ) = 0, for p 6= k2, q 6= l2, r 6= m2. In
addition, take $ ≡ 0. Then, for p = k2, q = l2, r = m2, we get the uncertainty
distribution of uncertain variable ($pqr) as

Φpqr(y) = Φpqr (u+ iv) =


0 if u < 0, v <∞,
0 if u ≥ 0, v < 0,

1− p+ q + r

3(p+ q + r) + 1
if u ≥ 0, 0 ≤ v < (p+ q + r)2,

1 if u ≥ 0, v ≥ (p+ q + r)2.

Φpqr(y) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,
1 when u ≥ 0, v ≥ 0.

Φ(y) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,
1 when u ≥ 0, v ≥ 0.

is also the complex uncertainty distribution of uncertain variable $. Thus, we
obtain

δ
(
(p, q, r) ∈ N3 : ‖Φpqr(y)− Φ(y)‖ ≥ r + σ

)
= 0

for r ≥ 0. In addition, we find that the sequence ($pqr) is not rough convergent
in distribution to $, however it rst-convergent in distribution to $ for r ∈

[
0, 1

3

)
.

Theorem 2.16. In distribution, rough statistical convergence does not imply
rough statistical convergence a.s.

Example 2.17. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

3(p+ q + r) + 1
when sup

γp+q+r∈Λ

p+ q + r

3(p+ q + r) + 1
<

1

3
,

1− sup
γp+q+r∈Λc

p+ q + r

3(p+ q + r) + 1
when sup

γp+q+r∈Λc

p+ q + r

3 (p+ q + r) + 1
<

1

3
,

0.5 otherwise,
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and contemplate the uncertain variable ($pqr) described by

$pqr(γ) =

{
i · (p+ q + r)2 when γ = γp+q+r,
0 otherwise,

for p = k2, q = l2, r = m2, and $pqr(γ) = 0. Then, as

Φpqr(y) = Φpqr (u+ iv) =


0 if u < 0, v <∞,
0 if u ≥ 0, v < 0,

1− p+ q + r

3(p+ q + r) + 1
if u ≥ 0, 0 ≤ v < (p+ q + r)2,

1 if u ≥ 0, v ≥ (p+ q + r)2,

for p, q, r ∈ N, we have the uncertainty distribution of uncertain variable ($pqr).
In addition, the complex uncertainty distribution of uncertain variable $ is

Φ(y) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,
1 when u ≥ 0, v ≥ 0.

Thus, we obtain

δ
(
(p, q, r) ∈ N3 : ‖Φpqr(y)− Φ(y)‖ ≥ r + σ

)
= 0

for r ≥ 1
3 . However, it is not rst-convergent a.s. to $.

Definition 2.18. A sequence ($pqr) is said to have rough statistical conver-
gence in mean to $ with roughness degree r if and only if

δ
(
(p, q, r) ∈ N3 : E [‖$pqr(γ)−$ (γ)‖] ≥ r + σ

)
= 0

for each γ ∈ Λ and σ > 0.

Example 2.19. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

2(p+ q + r)2 + 1
if sup

γp+q+r∈Λ

p+ q + r

2(p+ q + r)2 + 1
< 0.5,

1− sup
γp+q+r∈Λc

p+ q + r

2(p+ q + r)2 + 1
if sup
γp+q+r∈Λc

p+ q + r

2(p+ q + r)2 + 1
< 0.5,

0.5 otherwise,

and the uncertain variable ($pqr) be described by

$pqr(γ) =

{
(p+ q + r) · i when γ = γp+q+r,
0 otherwise,

for p = k2, q = l2, r = m2, and $pqr(γ) = 0, for p 6= k2, q 6= l2, r 6= m2. Also take
$ ≡ 0. Then, for p = k2, q = l2, r = m2, we obtain the uncertainty distribution
of uncertain variable ($pqr) as

Φpqr(y) = Φpqr (u+ iv) =


0 if u < 0, v <∞,
0 if u ≥ 0, v < 0,

1− p+ q + r

2(p+ q + r)2 + 1
if u ≥ 0, 0 ≤ v < p+ q + r,

1 if u ≥ 0, v ≥ p+ q + r.
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Φpqr(y) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,
1 when u ≥ 0, v ≥ 0.

In addition, the complex uncertainty distribution of uncertain variable $ is

Φ(y) =


0 if u < 0, v <∞,
0 if u ≥ 0, v < 0,
1 if u ≥ 0, v ≥ 0.

As a result, we acquire for p = k2, q = l2, r = m2,

E [‖$pqr(γ)−$ (γ)‖] =
(p+ q + r)2

2(p+ q + r)2 + 1

=⇒ δ
{

(p, q, r) ∈ N3 : E [‖$pqr(γ)−$ (γ)‖] ≥ r + σ
}

= 0

for r ≥ 0. In addition, we get that the sequence ($pqr) is not rough convergent in
mean to $, hovewer it is rst-convergent in mean to $ for r ∈

[
0, 1

2

)
.

Theorem 2.20. Rough statistical convergence in mean does not imply rough
statistical convergence a.s.

Example 2.21. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

2(p+ q + r)2 + 1
if sup

γp+q+r∈Λ

p+ q + r

2 (p+ q + r)2 + 1
< 0.5,

1− sup
γp+q+r∈Λc

p+ q + r

2(p+ q + r)2 + 1
if sup

γp+q+r∈Λc

p+ q + r

2(p+ q + r)2 + 1
< 0.5,

0.5 otherwise,

and the uncertain variable ($pqr) be described by

$pqr(γ) =

{
(p+ q + r) · i when γ = γp+q+r,
0 otherwise

for p = k2, q = l2, r = m2 and $ ≡ 0. Then, as

Φpqr(y) = Φpqr (u+ iv) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,

1− p+ q + r

2(p+ q + r)2 + 1
when u ≥ 0, 0 ≤ v < p+ q + r,

1 when u ≥ 0, v ≥ p+ q + r

for p, q, r ∈ N, we get the uncertainty distribution of uncertain variable ($pqr). In
addition, the complex uncertainty distribution of uncertain variable $ is

Φ(y) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,
1 when u ≥ 0, v ≥ 0.

Thus, we obtain for p = k2, q = l2, r = m2,

lE [‖$pqr(γ)−$ (γ)‖] =
(p+ q + r)2

2(p+ q + r)2 + 1

=⇒ δ
(
(p, q, r) ∈ N3 : E [‖$pqr(γ)−$ (γ)‖] ≥ r + σ

)
= 0
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for r ≥ 0.5. As a result, the sequence ($pqr) is roughly convergent in mean to $
for r ≥ 0.5, but not roughly statistically convergent a.s. to $.

Theorem 2.22. Rough statistical convergence in measure is not synonymous
with rough statistical convergence in mean.

Example 2.23. Contemplate the uncertainty space (Γ,L,M) to be {γ1, γ2, . . . }
with

M(Λ) =


sup

γp+q+r∈Λ

p+ q + r

2(p+ q + r) + 1
if sup

γp+q+r∈Λ

p+ q + r

2(p+ q + r) + 1
< 0.5,

1− sup
γp+q+r∈Λc

p+ q + r

2(p+ q + r) + 1
if sup

γp+q+r∈Λc

p+ q + r

2 (p+ q + r) + 1
< 0.5,

0.5 otherwise,

and the uncertain variable ($pqr) to be described by

$pqr(γ) =

{
(p+ q + r) · i when γ = γp+q+r,
0 otherwise

for p, q, r ∈ N and $ ≡ 0. The uncertainty distribution of an uncertain variable
($pqr) is thus obtained as

Φpqr(y) = Φpqr (u+ iv) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,

1− p+ q + r

2(p+ q + r) + 1
when u ≥ 0, 0 ≤ v < p+ q + r

1 when u ≥ 0, v ≥ p+ q + r,

for p, q, r ∈ N. In addition, the complex uncertainty distribution of uncertain
variable $ is

Φ(y) =


0 when u < 0, v <∞,
0 when u ≥ 0, v < 0,
1 when u ≥ 0, v ≥ 0.

Thus, we obtain

δ
(
(p, q, r) ∈ N3 :M{γ : ‖$pqr(γ)−$(γ)‖ ≥ κ} ≥ r + σ

)
= 0,

for r ≥ 0.5, however,

δ
(
(p, q, r) ∈ N3 : E [‖$pqr(γ)−$ (γ)‖ ≥ κ] ≥ r + σ

)
6= 0.

Theorem 2.24. The presence of rough statistical convergence in the distribu-
tion does not imply the presence of rough statistical convergence in the mean.

Proof. It is quite simple to demonstrate from the preceding example, thus it
has been removed. �

3. Conclusion

The notion of rough statistical convergence of complex uncertain sequence was
worked by [10]. The aim of this study is to extend this notion to the complex un-
certain triple sequence. These findings integrate and generalize previous findings.
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