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TOPOLOGICAL AND GEOMETRIC APPROACH

TO THE FIXED-POINT THEORY WITH LEAKLY

RECTIFIED LINEAR UNIT APPLICATION

N. TAŞ

Abstract. In this paper, we focus on the Banach contraction principle on Sb-

metric spaces. We present an alternative proof to the Banach contraction principle
on Sb-metric spaces. Also, we investigate some geometric properties of the fixed-

point set of a given self-mapping modifying the Banach contractive condition with

an illustrative example. Finally, we obtain an application to Leakly rectified linear
unit activation functions.

1. Introduction and background

What is the notion of a fixed point in mathematics?
A fixed point u of a self-mapping T : U → U is an element such that

Tu = u,

that is, the self-mapping’s domain is mapped to itself by T .
Also, the following method can be considered as a fixed point method:
Let T : U → U be a self-mapping and S : U → U a function defined as

Su = Tu− u
for all u ∈ U . If z ∈ U is the solution of

Su = 0,

then z is a fixed point of T .
A notion of a fixed point can be discussed by the geometric approach. For this

purpose, let u be a fixed point of T . Then the point (u, Tu) is on the line v = u.
For example, let us define the self-mapping T : R→ R as

Tu = u3

for all u ∈ R. Then we get the fixed point set of T such as

Fix(T ) = {u ∈ R : Tu = u} = {−1, 0, 1} ,
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as seen in the following figure drawn by [31].

On the other hand, the fixed-point set of T : R+ ∪ {0} → R+ ∪ {0} defined by
Tu = u3 can be found as

Fix(T ) =
{
u ∈ R : Tu = T−1u

}
.

Now, let us consider the above example. Then we get

Fix(T ) =
{
u ∈ R : u3 = 3

√
u
}

= {0, 1} ,

as seen in the following figure drawn by [31].

The fixed-point theory was started with the Banach contraction principle [4].
This principle guarantees the existence and uniqueness of fixed points of a self-
mapping. But there are some examples of a self-mapping which does not satisfy
the condition of the Banach contractive condition or has more than one fixed
points. In this case, this principle has been generalized with different methods.
One of these methods is to generalize either the used contractive condition or the
used metric space such as an S-metric, an Sb-metric, a G-metric, a Gb-metric etc
(for example, see [2, 7, 8, 9, 10, 12, 13] and the references therein).

Let U be a nonempty set, b ≥ 1 a given real number, andM : U×U×U → [0,∞)
a function satisfying the following conditions for all u, v, w, a ∈ U :



APPROACH TO THE FIXED-POINT THEORY 93

(a) M(u, v, w) = 0 if u = v = w,
(b) 0 <M(u, u, v) with u 6= v,
(c) M(u, u, v) ≤M(u, v, w) with v 6= w,
(d) M(u, v, w) =M(u,w, v) =M(v, w, u) = . . .,
(e) M(u, v, w) ≤M(u, a, a) +M(a, v, w),
(f) M(u, v, w) ≤ b [M(u, a, a) +M(a, v, w)],
(g) M(u, v, w) = 0 if and only if u = v = w,
(h) M(u, v, w) ≤M(u, u, a) +M(v, v, a) +M(w,w, a),
(i) M(u, v, w) ≤ b [M(u, u, a) +M(v, v, a) +M(w,w, a)].

Using the properties (a)–(i), we get four known notions as generalizations of
metric spaces. If the properties (a)–(e) hold true, then the pair (U,M) is a G-
metric space on U [18]. If the properties (a)–(d) and (f) hold true, then the pair
(U,M) is a Gb-metric space on U [1]. If the properties (g) and (h) hold true,
then the pair (U,M) is an S-metric space on U [27]. If the properties (g) and
(i) hold true, then the pair (U,M) is an Sb-metric space on U [28]. The notion
of a Gb-metric is a generalization of both a metric and a G-metric. The notion
of an Sb-metric is a generalization of both a metric and an S-metric. Also, the
notions of an S-metric and a G-metric are distinct [6]. Thereby, the notions of an
Sb-metric and a Gb-metric are distinct.

In this paper, since we study our results on Sb-metric spaces, we recall some
basic notions related to Sb-metric spaces.

Definition 1.1 ([28]). Let U be a nonempty set and b ≥ 1 a given real number.
A function Sb : U × U × U → [0,∞) is said to be Sb-metric if and only if for all
u, v, w, a ∈ X, the following conditions are satisfied:

(Sb1) Sb(u, v, w) = 0 if and only if u = v = w,
(Sb2) Sb(u, v, w) ≤ b[Sb(u, u, a) + Sb(v, v, a) + Sb(w,w, a)].

The pair (U, Sb) is called an Sb-metric space.

We note that Sb-metric spaces are the generalizations of S-metric spaces since
every S-metric is an Sb-metric with b = 1. But the converse statement is not
always true (see [28] and [30] for more details).

Definition 1.2 ([30]). Let (U, Sb) be an Sb-metric space and b > 1. An
Sb-metric Sb is called symmetric if

Sb(u, u, v) = Sb(v, v, u)

for all u, v ∈ U .

Definition 1.3 ([28]). Let (U, Sb) be an Sb-metric space.

1. A sequence {un} in U converges to u if and only if Sb(un, un, u) → 0 as
n→∞, that is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0,
Sb(un, un, u) < ε. It is denoted by

lim
n→∞

un = u.
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2. A sequence {un} in U is called a Cauchy sequence if for each ε > 0, there
exists n0 ∈ N such that Sb(un, un, um) < ε for each n,m ≥ n0.

3. The Sb-metric space (U, Sb) is said to be complete if every Cauchy sequence
is convergent.

Lemma 1.4 ([28]). Let (U, Sb) be an Sb-metric space with b ≥ 1, then we have

Sb(u, u, v) ≤ bSb(v, v, u) and Sb(v, v, u) ≤ bSb(u, u, v).

Recently, the fixed-circle problem (see [21]) and the fixed-figure problem (see
[22]) have been studied as a geometric approach to the fixed-point theory. When
the number of fixed points is more than one, investigating some solutions to these
problems is important. For this reason, in the literature, there exist some studies
related to these recent problems (for example, see [11, 14, 24, 25, 26], and [29]).

In the light of that motivated by the above reasons, at first, we prove the
Banach contraction principle using the Palais method (for more details, see [17]
and [23]) on Sb-metric spaces. Since the notion of an Sb-metric is a generalization
of a metric (resp. b-metric and S-metric), then studying on an Sb-metric space
is gained importance. Also, we modify the Banach contractive condition and
investigate some geometric properties of fixed-point set of a self-mapping T on
Sb-metric spaces. Finally, we give an application to Leakly rectified linear unit
(Leakly ReLU) activation functions.

2. A topological approach to the Banach contraction principle

In this section, we prove the “Banach Contraction Principle” using the Palais
method on Sb-metric spaces.

Let (U, Sb) be an Sb-metric space with b ≥ 1 and T : U → U self-mapping.
Assume that {un} is a Picard sequence by un = Tnu0, and T satisfies the

Banach contractive condition on Sb-metric spaces, that is, there exists h ∈ [0, 1)
such that

(1) Sb(Tu, Tu, Tv) ≤ hSb(u, u, v)

for all u, v ∈ U .
If (U, Sb) is a complete Sb-metric space, then T has a unique fixed point of T

whenever h ∈ [0, 1).

An alternative proof of the Banach contraction principle: Let h ∈ (0, 1) and
{un} be a Picard sequence by un = Tun−1 = Tnu0.

If um = um−1 for some m ∈ N, then we obtain that T has a unique fixed point
um−1. Therefore, suppose that un 6= un−1 for all n ∈ N.

At first, we show the existence of a fixed point of T . From the inequality (1),
we get

Sb(un, un, un+1) ≤ hSb(un−1, un−1, un)

for all n ∈ N, that is,

Sb(un, un, un+1)→ 0 as n→∞.
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Now we prove the sequence {un} is a Cauchy sequence. To do this, we use the
known Palais method (for more details, see [17] and [23]). For n < m, we consider
the following inequalities:

1

b
Sb(un, un, um) ≤ 2Sb(un, un, un+1) + Sb(um, um, un+1)

≤ 2Sb(un, un, un+1) + bSb(un+1, un+1, um)

≤ 2Sb(un, un, un+1) + 2b2Sb(un+1, un+1, um+1)

+ b2Sb(um, um, um+1).

Using the inequality (1), we get

1

b
Sb(un, un, um) ≤ 2Sb(un, un, un+1) + 2b2hSb(un, un, um) + b2Sb(um, um, um+1),

and so,(1

b
− 2b2h

)
Sb(un, un, um) ≤ 2Sb(un, un, un+1) + b2Sb(um, um, um+1).

From the above inequality, we have the following cases:
Case 1: 1

b − 2b2h > 0, that is, 0 ≤ h < 1
2b3 ,

Case 2: 1
2b3 ≤ h < 1.

Using the inequality (1) and the condition

Sb(un, un, un+1)→ 0 as n→∞,
then under Case 1, we get

Sb(un, un, um) ≤ b

1− 2b3h

[
2Sb(un, un, un+1) + b2Sb(um, um, um+1)

]
→ 0,

as n→∞.
So, for 0 ≤ h < 1

2b3 , we obtain that {un} is Cauchy. Since (U, Sb) is a complete
Sb-metric space, using the similar techniques given in [30], we say that T has a
unique fixed point z.

For Case 2, there exists s ∈ N such that hs < 1
2b3 such that

Sb(T
su, T su, T sv) ≤ hsSb(u, u, v).

Then we have 0 ≤ hs < 1
2b3 , and so from Case 1, there is a unique fixed point

z ∈ U such that
T sz = z, that is, T s(Tz) = Tz.

Consequently, z is a unique fixed point of T , satisfying

Fix(T ) = {z}. �

3. A geometric approach to the Banach contraction principle

In this section, we investigate some fixed-figure results modifying the Banach con-
tractive condition on Sb-metric spaces. At first, we recall the following notions
given in [3] and [20]:

Let (U, Sb) be an Sb-metric space with b ≥ 1 and u0, u1, u2 ∈ U , µ ∈ [0,∞).
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• The circle is defined by

CSb
u0,µ = {u ∈ U : Sb(u, u, u0) = µ} .

• The disc is defined by

DSb
u0,µ = {u ∈ U : Sb(u, u, u0) ≤ µ} .

• The ellipse is defined by

ESb
µ (u1, u2) = {u ∈ U : Sb(u, u, u1) + Sb(u, u, u2) = µ} .

• The hyperbola is defined by

HSb
µ (u1, u2) = {u ∈ U : |Sb(u, u, u1)− Sb(u, u, u2)| = µ} .

• The Cassini curve is defined by

CSb
µ (u1, u2) = {u ∈ U : Sb(u, u, u1)Sb(u, u, u2) = µ} .

• The Apollonious circle is defined by

ASb
µ (u1, u2) =

{
u ∈ U − {u2} :

Sb(u, u, u1)

Sb(u, u, u2)
= µ

}
.

Also, the notion of a fixed figure was given in [3] on Sb-metric spaces as follows:
Let (U, Sb) be an Sb-metric space with b ≥ 1 and T : U → U a self-mapping. A

geometric figure F contained in the fixed point set Fix(T ) is called a fixed figure
of T .

Assume that

1. There exists u0 ∈ U such that

(2) Sb(u, u, Tu) ≤ hSb(u, u, u0)

for all u ∈ U , where h ∈ [(0, 1).
or

2. There exists u1, u2 ∈ U such that

Sb(u, u, Tu) ≤ h [Sb(u, u, u1) + Sb(u, u, u2)] ,(3)

Sb(u, u, Tu) ≤ h|Sb(u, u, u1)− Sb(u, u, u2)|,(4)

Sb(u, u, Tu) ≤ hSb(u, u, u1)Sb(u, u, u2),(5)

and

Sb(u, u, Tu) ≤ hSb(u, u, u1)

Sb(u, u, u2)
,(6)

or all u ∈ U , where h ∈ [0, 1).

Let us define the number µ as

µ = inf {Sb(u, u, Tu) : u /∈ Fix(T )} .
If T satisfies the inequality (2) (resp., the inequality (3), the inequality (4)

with µ > 0, the inequality (5), and the inequality (6), and Tu1 = u1, Tu2 =
u2, then DSb

u0,µ ⊂ Fix(T ) (resp., ESb
µ (u1, u2) ⊂ Fix(T ), HSb

µ (u1, u2) ⊂ Fix(T ),
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CSb
µ (u1, u2) ⊂ Fix(T ), and ASb

µ (u1, u2) ⊂ Fix(T )). Especially, we have CSb
u0,µ ⊂

Fix(T ).

Proof of the above claim. Let T satisfies the inequality (2) with u0 ∈ U . At
first, we show Tu0 = u0. To do this, we assume Tu0 6= u0. Using the inequality
(2), we have

Sb(u0, u0, Tu0) ≤ hSb(u0, u0, u0) = 0,

a contradiction. Hence it should be Tu0 = u0.
Let µ = 0. Then we have DSb

u0,µ = (u0) and by the above equality, we get

DSb
u0,µ ⊂ Fix(T ). Let µ > 0 and u ∈ DSb

u0,µ such that u /∈ Fix(T ). Using the
inequality (2), we get

Sb(u, u, Tu) ≤ hSb(u, u, u0) ≤ hµ ≤ hSb(u, u, Tu),

a contradiction with h ∈ [0, 1). Therefore, it should be u ∈ Fix(T ) and so DSb
u0,µ ⊂

Fix(T ).
Assume that T satisfies the inequality (3) with u1, u2 ∈ U . Let µ = 0. Then we

have ESb
µ (u1, u2) = {u1} = {u2} and so by the hypothesis, we get ESb

µ (u1, u2) ⊂
Fix(T ). Let µ > 0, and u ∈ ESb

µ (u1, u2) such that u /∈ Fix(T ). Using the inequality
(3), we obtain

Sb(u, u, Tu) ≤ h [Sb(u, u, u1) + Sb(u, u, u2)] = hµ ≤ hSb(u, u, Tu),

a contradiction with h ∈ [0, 1). Thereby, it should be u ∈ Fix(T ) and so
ESb
µ (u1, u2) ⊂ Fix(T ).
If T satisfies the inequalities (4), (5), and (6) with u1, u2 ∈ U , then using the

similar approaches, we see that HSb
µ (u1, u2) ⊂ Fix(T ), CSb

µ (u1, u2) ⊂ Fix(T ) and

ASb
µ (u1, u2) ⊂ Fix(T ). Also, if T satisfies the inequality (2) with u0 ∈ U , then we

get CSb
u0,µ ⊂ Fix(T ).

Consequently, we say T fixes the circle CSb
u0,µ, the disc DSb

u0,µ, the ellipse

ESb
µ (u1, u2), the hyperbola HSb

µ (u1, u2), the Cassini curve CSb
µ (u1, u2), and the

Apollonious circle ASb
µ (u1, u2). �

Now we give the following example:
Let U = {−3,−1, 0, 1, 3} be the Sb-metric space with the Sb-metric defined as

Sb(u, v, w) =
1

16
(|u− v|+ |v − w|+ |u− w|)2

for all u, v, w ∈ U [30]. Let us define a self-mapping T : U → U as

Tu =

{
u+ 1 if u = 3,
u if u ∈ U − {3}

for all u ∈ U . Then T satisfies the inequality (2) with u0 = 0 and satisfies (3), (4),
(5), (6) with u1 = −1, u2 = 1. Also, we get µ = 1

4 and Fix(T ) = {−3,−1, 0, 1}.
Consequently, we have CSb

0, 14
= {−1, 1} ⊂ Fix(T ), DSb

0, 14
= {−1, 0, 1} ⊂ Fix(T ),

ESb
1
4

(−1, 1) = ∅ ⊂ Fix(T ), HSb
1
4

(−1, 1) = ∅ ⊂ Fix(T ), CSb
1
4

(−1, 1) = ∅ ⊂ Fix(T )

and ASb
1
4

(−1, 1) = {−3} ⊂ Fix(T ).
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4. An application to Leakly ReLU activation functions

The notion of an activation function is very important in the artificial neural net-
works. Some examples of activation functions are Rectified linear unit (ReLU) [19],
Exponential linear unit (ELU) [5], Scaled exponential linear unit (SELU) [15], and
Leakly rectified linear unit (Leakly ReLU) [16].

Activation functions are important for the fixed-circle problem. The obtained
fixed-circle results are applicable to various activation functions. Some authors
gave some applications related to this problem (see, for example, [24, 25, 26, 29]).

In this section, we focus on Leakly rectified linear unit (Leakly ReLU) type
activation functions defined as

LeaklyRELU(u) = Lu =

{
0.01u if u < 0,
u if u ≥ 0.

Let us consider the Sb-metric defined as

Sb(u, v, w) = b (|u− w|+ |u+ w − 2v|)
for all u ∈ R, where b ≥ 1 [30].

If attention, the function L does not satisfy the condition of the Banach con-
traction principle on Sb-metric spaces. Indeed, if we take u = 1, v = 2, then we
have

Sb(u, u, v) = Sb(1, 1, 2) = 2b

and
Sb(Lu,Lu, Lv) = Sb(1, 1, 2) = 2b.

Then we get
Sb(Lu,Lu, Lv) = 2b ≤ h2b = hSb(u, u, v),

a contradiction with h ∈ [0, 1).
Also, L has more than one fixed point and the fixed-point set of L is

Fix(L) = [0,∞).

On the other hand, this activation function L satisfies the inequality (2) with
u0 = 0 and h = 0.99. Indeed, we get

Sb(u, u, Lu) = 2b (0.99u)

and
Sb(u, u, u0) = 2bu

for all u ∈ (−∞, 0).
We have

Sb(u, u, Lu) ≤ hSb(u, u, u0)

and we find
µ = inf {Sb(u, u, Lu) : u ∈ (−∞, 0)} = 0.

Therefore, the circle CSb
0,0 = {0} is a fixed circle (or fixed point) of L and L has at

least one fixed point u = 0.
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21. Özgür N. Y. and Taş N., Some fixed-circle theorems on metric spaces, Bull. Malays. Math.

Sci. Soc. 42(4) (2019), 1433–1449.
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