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TWO APPROACHES FOR SOLVING l1-REGULARIZED

LEAST SQUARES WITH APPLICATION

TO TRUSS TOPOLOGY DESIGN

R. KUKUMBERG

Abstract. Many real-world problems may lead to minimization of a non-differen-
tiable convex function of a large number of variables. In this paper, we study

two different approaches for solving the so-called l1-regularized least squares prob-

lem. We apply and compare two competing methods of convex optimization to
solving this problem, namely the proximal gradient method and the interior-point

method. We describe two specialized inexact interior point methods for solving the

l1-regularized least squares problem and compare them with three different versions
of the proximal gradient method known from literature. We illustrate performance

of these methods on a truss topology design problem with more than 35 000 vari-

ables. Both methods are compared, analyzed and a discussion on the performance
is provided.

1. Introduction

Consider a linear model of the form

b = Ax+ v,

where A ∈ Rm×n is a data matrix, b ∈ Rm is a vector of observations, x ∈ Rn
is a vector of unknowns and v ∈ Rm is a noise vector. When m < n, the matrix
A is under-determined and a simple least-squares regression leads to over-fit. A
standard statistical technique against over-fitting is to include a regularization
term in the least squares problem objective. Instead of the standard Tikhonov (l2)
regularization we focus on the so-called l1-regularization to obtain an optimization
problem of the following form

min
x
‖Ax− b‖22 + λ‖x‖1.(1)

The (1) is called the l1-regularized least squares (l1RLS), where λ > 0 is a positive
regularization parameter. It is an unconstrained convex optimization problem with
a non-differentiable cost function due to the presence of the l1 term. The optimal
solution of the problem (1) always exists, but there is no analytic formula for it
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and the solution must be computed numerically. Due to presence of the l1 norm
in the objective, the l1RLS problem produces a sparse solution vector x and the
l1RLS is also referred to as sparse least squares. The regularization parameter λ
in (1) controls trade-off of sparsity versus the first part of objective.

The (1) can be found in many fields of research. In statistics and machine
learning it is used for feature selection in the Lasso regression [1]. It also has
applications in signal processing, medical imaging [2] and sparse design [3].

The main purpose of this paper is to compare two completely different ap-
proaches to solving the l1-regularized least squares problem. The first approach is
based on the first order method called the proximal gradient method. The second
one is based on the primal-dual interior point method, which is the second order
method. Interestingly enough, we show that the accelerated proximal gradient
method performs better in comparison to the inexact interior point methods on
our test problem. The next section introduces these methods and also describes
how to apply these methods for solving the problem (1). In the section 3, we com-
pare the performance of both methods on a truss topology design problem with
more than 35000 variables.

2. Solution methods

Our aim is to compare two approaches to obtaining a solution to the problem
(1). They differ in a way how to deal with non-differentiability of the l1RLS cost
function. The proximal gradient method is used for minimization of the original
non-differentiable unconstrained optimization problem (1). In order to use the
interior point method, we need to reformulate (1) as a convex quadratic problem
with linear constraints.

The interior point method for solving (1) is used, e.g., in [2], [5], [19]. Several
other approaches have been proposed for solving (1) – e.g., homotopy methods
[6], coordinate descent methods [3], the SpaRSA algorithm [7] and primal-dual
Newton Conjugate Gradients method [20]. The performance of first- and second-
order optimization methods for l1RLS is studied in [18].

2.1. Proximal gradient method

A standard approach to solving the non-differentiable problem (1) is a subgradient
method [4]. However, these methods have several drawbacks – they are often slow
and they are not descent methods. In the view of these disadvantages, more
efficient methods were created to solve problems with non-differentiable convex
functions of a various structure. Unconstrained optimization problems with a cost
function split in the convex differentiable part and the convex non-differentiable
part, lead to the so-called Proximal Gradient (PG) method. Further information
on the PG method can be found in [8], [9], [10], [17].

The PG method is used for optimization of an unconstrained problem with a
cost function f(x) split in two components

min f(x) = g(x) + h(x),(2)
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where the function g(x) : Rn → R is differentiable and convex, and the function
h(x) is closed, convex and possibly non-differentiable with an explicit or inexpen-
sive proximal operator.

An essential element of the PG method is the so-called proximal operator. The
proximal operator associated with the convex function h(x) is defined as follows

proxh(x) = argmin
u

(
h(u) +

1

2
‖u− x‖22

)
.(3)

It can be easily shown that the proximal operator of a convex function exists and
is unique for all x. However, the proximal operator of some functions can not be
expressed explicitly, what can hamper the effectiveness of the PG method.

For optimizing (2), the basic proximal gradient method has the main iteration
of the form

x(k) = proxtkh

(
x(k−1) − tk∇g(x(k−1))

)
,

where tk > 0 is the step size, which can be set constant or determined by a line
search at each iteration. Note that if we take h(u) ≡ 0, we get the iteration of the
gradient descent method in the form x(k) = x(k−1) − tk∇g(x(k−1)).

The basic PG method exhibits the convergence rate O(1/k) (see [9], [10]). The
convergence of the PG method is guaranteed for a constant step size and also for
the step size determined by a line search under two standard assumptions:
• The optimal value of objective function f∗ is finite and attained at x∗ (not

necessarily unique).

• The gradient ∇g is Lipschitz continous with a Lipschitz constant L > 0, that
is

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2, for all x, y ∈ Rn.

The basic PG method is a descent method – the value of the objective function at
the next iterate decreases. Moreover, the distance of the iterate from the optimal
point is non-increasing in every step of the algorithm, i.e., ‖x+−x∗‖2 ≤ ‖x−x∗‖2
[17].

2.1.1. Accelerated proximal gradient method. A convergence rate of the
basic PG algorithm can be improved to O(1/k2) by extrapolation [8], [10]. The
modified algorithm is called the accelerated proximal gradient (APG) method
or the PG method with extrapolation. The APG has approximately the same
complexity per iteration as the basic PG. The APG has main iteration of the form

x(k) = proxtkh

(
y(k−1) − tk∇g(y(k−1))

)
y(k) = x(k) +

k − 1

k + 2
(x(k) − x(k−1)),

where the step size tk is either constant or determined by a line search. Under the
same assumptions as the basic method, the APG exhibits a faster convergence rate
O(1/k2), which is optimal for this class of problems [8], [10]. However, the APG
is not a descent method, it does not guarantee that the value of the objective is
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non-increasing, it often reaches better value by ‘jumps’. This fact is a motivation
for other modifications of the method such as the descent version of APG.

2.1.2. Descent version of the accelerated proximal gradient method.
The following modification of APG algorithm guarantees non-increasing value of
the objective at the next iterate (i.e., f(x(k)) ≤ f(x(k−1))):

z(k) = proxtkh

(
y(k−1) − tk∇g(y(k−1))

)
x(k) =

{
z(k) f(z(k)) ≤ f(x(k−1))

x(k−1) otherwise

v(k) = x(k−1) +
1

θk
(z(k) − x(k−1))

y(k) = (1− θk+1)x(k) + θk+1v
(k),

where parameter θk is defined as θk = 2
k+1 . Note that if condition f(z(k)) ≤

f(x(k−1)) does not hold, the value of variable x(k) is kept constant until the better
suboptimal solution is found.

2.1.3. Solution of l1RLS ––– PG. As the l1RLS is an unconstrained minimization
problem with the cost function split in the differentiable convex part ‖Ax − b‖22
and the non-differentiable convex part λ‖x‖1, the proximal gradient method can
be used for solving (1). The essential element of all PG algorithms, the proximal
operator associated with the function th(u) = tλ‖u‖1, is simply expressed as
follows

proxth(x)i =


xi − tλ, xi > tλ,

xi + tλ, xi < −tλ,
0, |xi| ≤ tλ,

due to separability of the function h(u). An equivalent vector formulation of the
proximal operator, more suitable for MATLAB implementation, is of the form

proxth(x) = sign(x) max[0, |x| − tλ].

Another important element of the PG algorithm is a step size strategy. The
convergence of PG methods is guaranteed for a constant step size t = 1/L, where L
is a Lipschitz constant of the gradient of the function g(x) = ‖Ax−b‖22. Therefore,
we can set the constant step size t = 1

2σmax(ATA) in the PG algorithms, where

σmax(ATA) is the largest eigenvalue of the matrix ATA.

2.2. Primal-dual interior point method

Recently, interior point methods are widely used for solving convex programming
problems with differentiable functions. In this section, we focus on a primal-dual
interior point method (PDIPM). For more details on these methods, we refer the
reader to [11], [12], [13].

The PDIPM solves the problem by applying Newton’s method to a sequence
of modified Karush-Kuhn-Tucker (KKT) conditions, where the complementary
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slackness condition is perturbed by a positive parameter. The PDIPM updates
both primal and dual variables at each iteration.

Consider the following optimization problem

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,
(4)

where f0, · · · , fm : Rn → R are convex, twice continuously differentiable functions.
The direction of optimization of primal and dual variables, primal-dual search
direction, is obtained from Newton’s method applied to the nonlinear system of
equations

rt(x, µ) =

(
∇f0(x) +Df(x)Tµ
−diag(µ)f(x)− 1

t1

)
= 0,(5)

which represents the modified KKT equations, where the complementary slackness
condition is perturbed by a positive term 1

t . Here f = (f1, . . . , fm)T and Df(x)
is the Jacobian matrix. The primal-dual search direction ∆y = (∆x,∆µ) is then
defined as a solution of the system of linear equations

Drt(y)∆y = −rt(y),(6)

where Drt(y) is the Jacobian. As t→∞, system (5) reduces to the original KKT
condition for (4). Therefore, the basic idea is to take PD search directions for a
sequence of increasing values of t. This leads to the following algorithm.

PDIPM Algorithm
Input: x : f(x) < 0; µ > 0; ν > 1; ε > 0, εf > 0
Repeat steps 1, 2, 3, 4, 5, until ‖r1‖2 ≤ εf and η̂ ≤ ε.

1. Set t = νm/η̂.
2. Compute PD search direction ∆ypd = (∆xpd,∆µpd).
3. Determine step size s > 0 by line search. Set

s = 0.99 sup{s ∈ [0, 1]|µ+ s∆µ ≥ 0}

and multiply s by β ∈ (0, 1) until

f(x+) < 0, ‖rt(x+, µ+)‖2 ≤ (1− αs)‖rt(x, µ)‖2.

4. Update the iterate by y = y + s∆ypd.
5. Compute the duality gap η̂(x, µ) = −f(x)Tµ.

2.2.1. Solution of l1RLS ––– PDIPM. Interior point methods are widely used
for solving differentiable convex programming problems. To get rid of non-differen-
tiability of the l1RLS (1) and to transform (1) to a problem solvable by the PDIPM,
we have to introduce new variables and new constraints. There are two main op-
tions.
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Option 1. The l1RLS (1) can be transformed to equivalent formulation by intro-
ducing a new variable u ∈ Rn and new constraints −ui ≤ xi ≤ ui, i = 1, . . . , n,

min
x,u
‖Ax− b‖22 + λ1Tu

s.t. x− u ≤ 0,

−x− u ≤ 0,

(7)

where 1 denotes a vector of ones. Formulation (7) is a convex quadratic problem,
with a differentiable quadratic objective function and linear constraints. Note that
the number of variables is doubled by this transformation.

In the case of the option 1, the primal-dual search direction is the Newton step
for the system of nonlinear equations

rt(x, u, µ1, µ2) ≡


2AT(Ax− b) + µ1 − µ2

λ1− µ1 − µ2

− diag(µ1)(x− u)− 1
t1

−diag(µ2)(−x− u)− 1
t1

 = 0.

The PD search direction (∆x,∆u,∆µ1,∆µ2) is then defined as a solution of the
system of linear equations (6), which can be written as

2ATA 0 I −I −p− µ1 + µ2

0 0 −I −I −λ1 + µ1 + µ2

−M1 M1 U −X 0 M1(x− u) + 1
t1

M2 M2 0 X + U M2(−x− u) + 1
t1

 ,

where X = diag(x), U = diag(u), M1 = diag(µ1), M2 = diag(µ2) and p =
2AT(Ax − b). Since solving this whole system is not effective, we have to re-
duce it. By denoting J1 = M−1

1 (X − U), J2 = M−1
2 (−X − U) and eliminating

(∆u,∆µ1,∆µ2), we obtain a reduced system of the form

(2ATA− Jp + JmJ
−1
p Jm)∆x = −p+ s1 − s2 − JmJ−1

p (λ1 + s1 + s2),(8)

where Jp = J−1
1 + J−1

2 , Jm = J−1
1 − J−1

2 are diagonal matrices and s1 = 1
t (X −

U)−11, s2 = 1
t (−X − U)−11 are vectors. Clearly, the matrix (2ATA − Jp +

JmJ
−1
p Jm) ∈ Rn×n from system (8) is symmetric and positive definite.

The other three components of the PD search direction ∆u, ∆µ1, ∆µ2 can be
computed as follows

∆u = J−1
p (λ1 + s1 + s2 + Jm∆x)

∆µ1 = −µ1 − s1 + J−1
1 (−∆x+ ∆u)

∆µ2 = −µ2 − s2 + J−1
2 (∆x+ ∆u),

(9)

where matrices J1, J2, Jp, Jm are diagonal ones. Therefore, the computation cost
of components ∆u, ∆µ1, ∆µ2 is low.

Option 2. The l1RLS (1) can be transformed to a convex quadratic problem
also by splitting the variable x into positive and negative parts. We replace x
by x = x+ − x−, where x+ = max(0, x) and x− = max(−x, 0). Then ‖x‖1 =
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‖x+ − x−‖1 = 1Tx+ + 1Tx−. By this transformation, we obtain an equivalent
formulation of the form

min‖Ãz − b‖22 + λ1Tz,

s.t. z ≥ 0
(10)

where Ã = [A,−A] ∈ Rm×2n and z =

(
x+

x−

)
∈ R2n is a new variable. As in the

first option, we obtain a problem with a quadratic objective function and linear
constraints and the number of variables is also doubled.

For (10), the primal-dual search direction is obtained from Newton’s method
applied to the system of nonlinear equations

rt(z, µ) =

(
2ÃT(Ãz − b) + λ1− µ
diag(µ)z − 1

t1

)
= 0.

The PD search direction (∆z,∆µ) is then defined as a solution to the system of
linear equations (6), which is of the form(

2ÃTÃ −I −2ÃT(Ãz − b)− λ1 + µ
diag(µ) diag(z) −diag(µ)z + 1

t1

)
.

By eliminating ∆µ, we obtain the reduced system

(2ÃTÃ+ J)∆z = −2ÃT(Ãz − b)− λ1 + s,(11)

where s = 1
t diag(z)−11 and J = diag(µ) diag(z)−1 is a diagonal matrix. The

matrix (2ÃTÃ + J) ∈ R2n×2n in this system is symmetric and positive definite.
The second component of PD search direction ∆µ can be easily obtained as follows

∆µ = −J∆z − µ+ s.(12)

2.2.2. Solving Newton systems. Each iteration of the PDIPM is dominated
by the cost of computing the PD search direction from system (8) or (11). For the
l1RLS (1) of large dimensions, solving these systems exactly is not computationally
efficient. However, we do not need to solve these systems exactly. Instead of direct
methods, we can use preconditioned iterative methods to obtain an approximate
solution to system (8) or (11). For more details on inexact interior point methods,
the reader is referred to, e.g., [2], [5], [14], [15], [19].

In our experiments, we compute the PD search direction approximately, apply-
ing the preconditioned minimum residual method (Minres). The Minres method
requires the system matrix to be symmetric but need not to be positive definite.
This condition is satisfied for both systems (8) and (11). The Minres algorithm
uses a preconditioner P , which has to be symmetric and positive definite. We set
P = kI − Jp + JmJ

−1
p Jm for system (8) and P = kI + J for (11), where k is a

positive parameter. As an initial point for the Minres algorithm, we use the search
direction found in the previous step of the PDIPM.
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3. Numerical experiments ––– Truss Topology Design

One of many applications of the l1-regularized least squares is truss topology design
(TTD) [3], [16]. Truss is a mechanical construction made of elastic bars linked to
each other at nodes, which can be fixed or free. We can consider structures like
electric masts, railroad bridges or the Eiffel tower as trusses. The truss can be
exposed to an external load, under which construction is deformed. The goal of
TTD is for a given nodal grid and forces acting at the nodes to construct a truss
of maximum rigidity.

In the simple TTD problem, we are given an r × c grid of nodes, m/2 of the
nodes are free, others are fixed. Pairs of nodes can be linked by a bar. By n, we
denote the number of potential bars. Note that as the grid gets larger, dimensions
of the TTD problem (A ∈ Rm×n) considerably increase. By a vector b ∈ Rm, we
denote 2D external forces acting at the free nodes. Our aim is to construct such a
structure that withstands these forces in an optimal way. An attractive feature of
the TTD problem is such that although it seems to deal with the weights of the
bars only, it finds the geometric shape of the truss as well. In the optimal truss,
majority of the bars will have zero weights, which is guaranteed by the property
of the l1 regularization.

3.1. Experiment 1 ––– Comparison of methods

In this section, we compare the performance of our MATLAB implementations of
3 versions of the PG method (basic, Accelerated and Descent PG) and 2 versions
of the PDIPM (one for reformulation (7) and other one for (10)). All experiments
were performed in MATLAB running on a notebook with Intel Core-i7 2.4GHz
processor and 8GB RAM.

We illustrate the performance of methods on a TTD problem with more than
35300 variables/potential bars. Our test problem is a bridge type TTD problem
with grid size 7× 49 and matrix A ∈ R678×35382. In TTD, the matrix A is sparse,
it has at most 4 nonzeros per column (in 2D truss). There are 4 fixed nodes spaced
at the bottom (representing the pillars of the bridge) and a unit downward force
is applied at every node at the height 1. An initial point is set to be the vector
of zeros and the regularization parameter is set λ = 0.0002 for every method. In
tests, we give each method the same time for solving the TTD problem (160s,
300s, 700s) and we compare the number of iterations, duality gaps and trusses
attained by each method.

In Table 1, we can see the suboptimality and the number of iterations attained
by each method after 160, 300 and 700 seconds. As the measure of suboptimality,
we use the dual gap between the primal objective attained by the method and
the fixed chosen value of dual objective. It is easily observable that the proximal
gradient methods, which are the first order methods, perform far more iterations
than primal-dual interior point methods for the same given time. For example,
the APG method does over 1.4 million iterations after 700 seconds, whereas the
PDIPM does only 69. Note that the APGM does twice as many iterations as
the DPGM, mainly because the DPGM evaluates the objective function in every
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time 160s 300s 700s
# it. value # it. value # it. value

PGM 361216 6.25e-04 677245 4.61e-04 1554266 3.04e-04
APGM 326247 9.68e-08 609655 1.98e-10 1429618 1.00e-10
DPGM 156707 2.87e-07 290189 1.29e-07 724994 1.00e-10
PDIPM1 26 7.92e-05 36 6.07e-07 69 1.27e-09
PDIPM2 19 7.04e-04 24 1.34e-04 39 9.07e-07

Table 1. Comparison of methods – the number of iterations and suboptimality.

step and this can be prohibitively expensive for large scale problems. We also
observe that the PDIPM for an equivalent formulation (7) performs better than
the PDIPM for (10). Main advantage of the PDIPM1 is that the dimension of the
linear system in computation of the PD search direction (8) is n× n whereas the
dimension of (11) is 2n × 2n. Even though the PG method performs most itera-
tions, its rate of convergence is not good enough to compete with the accelerated
and the descent version of the algorithm or the PDIPMs. Overall, the APGM
converges fastest to an optimal solution and attains best suboptimality at each
time. A slightly worse performance is provided by the DPGM and the PDIPM1.
Despite of slower theoretical convergence, the APGM (first order method) per-
forms better than interior point methods thanks to the low computational cost of
its iterations. Note that this is the case because of the size of the problem (and
the sensitivity of IPMs to it) – for a smaller grid size IPMs should perform better
than PG methods.
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Figure 1. Computational results for proximal gradient method (PGM) for termination times
160, 300 and 700 seconds.

When we compare plotted suboptimal solutions (trusses in Figures 1, 2, 3, 4,
5) by methods after 160s, 300s, 700s, we can see similar behavior as in Table 1.
Pictures of solution by the PGM do not resemble bridges. However, the APGM
and the DPGM do produce visibly bridge-like structures even after 160 seconds
and we can observe pillar positions. Majority of the bars gets zero weight. This
observation is not surprising, because the attained dual gaps are better than 3e-07.
From the last pictures, we can see that the PDIPM1 perform much better than
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Figure 2. Computational results for accelerated proximal gradient method (APGM) for termi-

nation times 160, 300 and 700 seconds.
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Figure 3. Computational results for descent version of accelerated proximal gradient method

(DPGM) for termination times 160, 300 and 700 seconds.
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Figure 4. Computational results for primal-dual interior point method for formulation (7)

(PDIPM1) for termination times 160, 300 and 700 seconds.

the PDIPM2. Again, we can consider the APGM as winner of this comparison.
Final trusses of the APGM, the DPGM and the PDIPM1 are quite comparable.

3.2. Experiment 2 ––– Number of pillars

In the second experiment, we study impact of the number of fixed nodes (pillars)
on the geometric shape of a truss. Our test problem is a bridge type TTD problem
with the grid size 7× 40 and over 23500 potential bars (variables). Again, a unit
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Figure 5. Computational results for primal-dual interior point method for formulation (10)

(PDIPM2) for termination times 160, 300 and 700 seconds.

downward force is applied at every node at the height 1. An initial point is set to
be the zero vector and λ = 0.0002. We compare trusses with 3, 4 and 6 pillars.
The TTD problems are solved by the PDIPM1 with the same desired accuracy.

From Figure 6, we can see that when the number of pillars increases, then height
of the construction decreases. We also observe that more bars are needed when
truss has 3 pillars in comparison with 6 pillars. The value of the objective function
decreases with the number of pillars as 4.05e-03, 2.64e-03, 1.65e-03. Therefore,
from economic point of view, it is better to use more pillars to save money for
material. Note that if we allow to move these pillars (optimal placement of pillars),
it is possible to reach even a better value of the objective function.
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Figure 6. Number of pillars – 3, 4, 6.

4. Conclusion

Our paper dealt with the famous l1-regularized least squares problem. We ana-
lyzed and compared two different approaches for solving this problem. The first
approach was based on application of proximal gradient methods, which are the
first order methods, applied to an original formulation of l1RLS problem. In the
second approach, we described two specialized inexact primal-dual interior point
methods, which used a preconditioned iterative method for finding a primal-dual
search direction. Interior point methods were applied to equivalent differentiable
formulations of the original problem. We illustrated and discussed the performance
of these approaches on a truss topology design problem with over 35000 variables.
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Despite of slower theoretical convergence, the accelerated PG performed better
than the interior point methods thanks to low computational cost of its iterations.
All methods except of basic PG produced visibly bridge-like structure/solution
after 700 seconds.
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